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Abstract

We introduce a biologically inspired sound localization
system, based on an open two-microphone configura-
tion. Its purpose is to perform a robust, 360-degree de-
tection of objects, in particular humans, in the horizon-
tal plane. In our approach, we consider neurophysiolog-
ical findings to discuss the biological plausibility of the
coding and extraction of spatial features, but also meet
the demands and constraints of a practical application
in the field of human-robot interaction. We are pro-
cessing Interaural Time Differences for the left/right
detection and spectrum-based features to discriminate
between in front and behind. Tests in real environ-
ments are used to demonstrate the function and the
application of the system. We will briefly touch the
point of handling different acoustic room characteris-
tics and give reasons why the proposed model can show
advantages over conventional correlation methods.

1 Introduction

In recent years a lot of promising work on the problem
of spatial hearing has been published — many investi-
gations and models of auditory perception exist from
neurobiology to psychoacoustics [5, 11, 2]. However, al-
though numerous applications in robotics and human-
machine interaction are imaginable, only a few working
examples are known. There could be different reasons
for that: on the one hand, the models normally can
include only a few details of the complex neural coding
and processing mechanisms in the real auditory system.
On the other hand, when targeting at localization sys-
tems working in everyday environments, many acoustic
effects arising from very different acoustic characteris-
tics must be faced. Without using dummy-head record-
ings, our own sense of hearing is often insufficient, when
we try to evaluate spatial information in the playback
via headphones or stereo speaker systems. Hence, our
approach is to model a certain biologically inspired ar-
chitecture, which is well understood and based on reli-
able findings, and discuss its behavior and capabilities
in varying real-world scenarios, e.g. the problem of
human-robot interaction.

2 Biological Background & Model Concept

In biology sound localization means the evaluation of
the horizontal and vertical directions and calculation of
the distance of a sonic event. Thereby the nature of the
sound is just as important as who is listening: some-
times a rough idea about the direction is sufficient to be
alarmed or attempt to escape whereas another listener
is interested in the exact point of origin. Since the cate-
gories azimuth, elongation and distance are more or less
important to an animal, 1t is not surprising that differ-
ent species solve the localization task with varying ex-
pense and precision. We have to take this into account,
when we interpret morphological findings and compare,
e.g., the limited sound localization of the chicken with
a highly specialized hunter like the barn owl.

2.1 Acoustic Effects & Auditory Features

To evaluate spatial information, the auditory system
utilizes acoustic effects caused by a varying distance be-
tween the sound source and the two ears and the shape
of the head and body. We can categorize these effects
in intensity differences and time delays. Since the pro-
cessing in the central auditory system is distributed in
parallel frequency bands, a varying sound level is repre-
sented by spectral differences, interaural time delays by
phase differences. Beside those binaural cues, monau-
ral mechanisms contribute to localization, especially if
the sound source is located in the medial sagittal plane
where interaural effects can hardly occur. We use the
terminology currently found in literature and specify
the following spatial cues as candidates for our model-
ing: (i) Interaural Time Differences (ITD), (ii) Overall
Interaural Intensity Differences (IID) and (iii) Sound
Color and Tuning Frequencies, according to direction—
depending Head-related Transfer Functions (HTF).
As mentioned, the success or precision of sound local-
ization also depends on the type of a sound event, its
dynamic and spectral shape. Low frequencies, whose
wavelengths are large compared to the size of the head
and the pinnae, reach the two ears undamped with al-
most the same intensity. The only reliable spatial in-
formation to be found in low—frequent sounds is an I'TD



(for humans up to 0.65ms), if the sound is heard from
the left or the right. The problem with ITD process-
ing is, that it is limited to the lower frequency range.
If the wavelength is shorter than the ear distance, the
ITD representation by phase differences becomes am-
biguous. According to a maximum ITD of 0.65ms this
problem occurs above approximately 1.5 kHz.
Nevertheless, we can estimate the direction of those
sounds because of another effect: the higher the fre-
quency, the less the sound waves can bend around the
head — TIDs arise and become the major spatial cue. In
[1] a comprehensive study of sound localization based
on different types of binaural and monaural informa-
tion is presented, including findings about the local-
ization blur: The achieved precision in the horizontal
plane corresponds conspicuously to the relation of az-
imuth angle variation and I'TDs.
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Figure 1: Localization blur in the horizontal plane:
a) noise-burst experiments (according to[1]).
b) Approximation of ITD-based localization in
a time-discrete model.

2.2 Model Architecture

Although we are not able to simulate the tricky but ad-
vantageous merging of multiple spatial cues, we expect
that already the analysis of TTDs will provide sufficient
information to solve many localization tasks. Our as-
sumption is based on the following ideas: (i) ITDs seem
to be the most important cue to horizontal localiza-
tion (except for front/behind discrimination) which we
are interested in. (ii) ITD analysis provides a high az-
imuthal resolution and works best with onsets and low—
frequent or broadband sounds like the human voice.
(iii) In contrast to the processing of IIDs, sound color
and tuning frequencies, an I'TD-based system requires
no dummy-head technique. (iv) Especially for ITD-
processing we can account for numerous neurobiologi-
cal findings.

Our work on real-world—capable ITD processing is sim-
ilar to Lazzaro’s neuromorphic auditory localization
system [9], but follows a more pragmatic approach. In
our simulations, we use digital algorithms for the pre-
processing and coincidence detection within spike pat-

terns, as well as an uniform spike-response neuron in
the other parts of the model. The motivation to use
spikes is, that ITD calculation requires a timing that is
more precise than the description of neural activities by
firing-rates. The applied spike response neuron model
is inspired by Gerstner’s work [6] and takes up funda-
mental properties of biological cells: the spatial and
temporal integration of stimuli via postsynaptic poten-
tials (PSP) in the dendritic tree, the generation of an
action potential when reaching a threshold, and the
effect of diminished sensitivity during a period of re-
fraction. An absolute refractory period and axonal de-
lays are not modeled. To describe the impulse response
of a synapse (PSP), we chose the so called a—function
fal(t) = %el_%, the afterhyperpolarization (AHP) fol-
lows a simple exponential fading function. The combi-
nation of these potentials results in neural dynamics,
which are more complex than that of leaky integrate-
and-fire models.

3 Components of the system

The I'TD-processing system was extended by a simple
in front/behind discrimination, so that we can describe
the overall architecture by four stages:

Filtering and spike coding: The analog signals from
two microphones are filtered by a cochlear model (all-
pole—gammatone filter) [13] and coded into spikes.

ITD calculation: For every frequency channel the
spike patterns from left and right are cross—correlated.
The time—code of binaural delay is transformed into a
place code representing interaural phase differences.

Mapping and selection: The resulting pattern is
projected onto a non—tonotopic representation of the
azimuthal locations of sound sources. As the result of
a winner-take-all process, only one direction is domi-
nant in the final representation.

In front/behind discrimination: With the help of
a special microphone configuration an estimation of in-
teraural spectral differences determines the in front or
behind orientation. A 360°-map is formed.

3.1 Filtering and spike coding

The frequency analysis in the cochlea as the basis for
the tonotopic organization of the auditory pathways is
realized by an all-pole gammatone (APG) filter cascade
[13]. With respect to the broadband tuning in the audi-
tory nuclei involved in ITD processing [5] we calculate
16 logarithmically arranged channels in the relevant
frequency range from 100 Hz to 2.5 kHz from the digi-
tized microphone signals. The output of the filter cor-
responds to the mechanical properties of the cochlear
basilar membrane and must be transformed into a neu-



ral response, the specific timing of spike trains in the
auditory nerve. For this we use a receptor model, sim-
ulating the interaction of inner hair cells and ganglion
cells 1. Since their firing is connected to the movement
cycles of the basilar membrane, the resulting spike pat-
tern shows the effect of phase locking on the acoustic
stimulus [12].

3.2 Cross-Correlation

The majority of the known ITD-detectors is based on
Jeffress’ coincidence model [7], whose basic idea is the
cross-correlation of corresponding frequency-bands in a
highly specialized neural structure. The time-window,
necessary for the correlation function, is realized by
counterpropagating neural delay lines. This thesis writ-
ten about 50 years ago is still up to date and cor-
responds to findings in the auditory brainstem: the
evidence of binaural delay line—structures seem to be
clearly connected to I'TD-processing.
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Figure 2: a) Dual delay-line structure in the brainstem of
the barn owl [3]. b) Model of the coincidence
mechanism. c¢) Asynchronous shifting is used
to prevent the missing of spikes in the time-
discrete delay-lines. This model is more similar
to single delay line structures of mammals

According to Jeffress’ coincidence model, the calcula-
tion of I'TDs is realized by counterpropagating axonal
delay lines. Coincidence cells, located at different po-
sitions along the axons, generate spikes if they receive
a simultaneous stimulation from the left and the right
hemispheres. Because of the different time delays, de-
pending on the length of the propagating fibers, each
cell becomes sensitive to a certain ITD. In this way,
the temporal information of ITD is transformed into
a place code, represented in the spatial distribution of
the activity in a neural structure.

IThe receptor model is similar to the spike response model
with, the exception, that the output of the cochlear filter is used
as a generator potential instead of PSPs at the dentrites.

3.3 Mapping and selection

Even under advantageous conditions, e.g., an outdoor
experiment with just one sound source, no noise or
reverberation sound, the ITD representation is never
a perfect single peak but contains local maxima in
a flashy symmetrical arrangement. Since the coinci-
dence detection is similar to the calculation of the cross-
correlation of periodical signals, its result is just as pe-
riodical. Therefore it 1s easy to associate the displace-
ment of the local maxima to periodical components of
2. In the context of localization
it is the feature of tonotopy to distinguish I'TDs from

the acoustic stimulus

ambiguous phase differences by a recombination of fre-
quency bands. Phase differences are located at differ-
ent positions in the ITD map depending on the char-
acteristic frequencies. In a convergent projection from
many frequency bands they produce a diffuse activa-
tion. The position of the detected I'TD is independent
of the tonotopic organization and gives rise to a less
ambiguous feature (figure 3). The idea of a summa-
tion of the tonotopic response is strongly supported by
findings in the Inferior Colliculus (IC) of the barn owl,
where ambiguous activations of single high frequency
bands of the central IC, but a definite response in the
non-tonotopic extern IC could be observed [9].
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Figure 3: The combination of the tonotopically dis-
tributed response of the coincidence detector in
an one-dimensional [C-model enables a disting-
tion between I'TD and phase differences (IPDs).

The one-dimensional response is often disarranged by
interferences with other sources, echos, or ambiguities
which could not be suppressed yet. To obtain reliable
results, we need to simulate a focusing mechanism, that
selects a dominant ITD. OQur model uses a structure

2Tn simulations one actually has to face two kinds of periodical
inputs: (i) the characteristic frequency and (ii) the maximum
spike frequency of the receptor cells. Because a delay line of the
coincidence detector is activated by just one neuron, the response
of the coincidence cells codes also the periodicity within spike
bursts from the receptors. In contrast to biology, this yields
additional local maxima in the ITD map.



containing lateral and self excitation and an interneu-
ron which integrates the instantaneous activity of the
net and generates recurrent inhibition to all cells. In
the resulting winner-take-all (WTA) process only a sin-
gle region of dominant feature representation can main-
tain activity [8]. For the application to dynamic acous-
tic scenes, the network is capable of moving the focus
of attention to moving or new sound sources.
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Figure 4: Left: Structure of the WTA network.
Right: Result of the selection process.

3.4 In Front or Behind

We believe the description of the ITD-processing of
our model to be plausible and conclusive. However, at
this point, we usually had to face one quite unpleasing
question: What’s the use of this expensive, biologically
inspired I'TD-model, if we cannot solve the very sim-
ple but important problem: Is what T hear right in
front or behind me? As mentioned, this task requires
the processing of HTFs, including cues in the monaural
spectrum, which is perhaps the most complicated part
of spatial hearing. Although multi-cue approaches are
becoming more and more relevant for artificial hearing
systems [14], no concrete applications are known. Es-
pecially if no dummy—-head recordings are available, the
standard solution is to calculate multiple time—delays
in larger microphone arrays.

But, do we really have to model HTF-analysis to
achieve a horizontal 360°—localization? The precision
of the pure ITD-system is already in the range of the
general human capabilities in spatial hearing. The only
thing missing is simply to discriminate between front
and behind. But what means simply - we would need to
know the unaltered sound without head-related trans-
fer as a reference, expert knowledge about our very
own HTFs and tuning frequencies or the memory of
how typical acoustic events sound in front or behind
us. Since we are not able to model this amazing capa-
bility, we state the question in a slightly different way:
Is it possible to generate a reference signal with a sound
color typical for the opposite direction, that means the
biologically little plausible idea to have one ear directed
forward and the other one backward. By comparing the
left and right spectrum of such a stereo—signal we could
answer the front/behind question — without knowledge
about the sound, memory of a reference sound and

even without detailed HTF-analysis. If we utilize the
acoustic bending effect, that is limited to low frequen-
cies and build a frequency-dependent directional mi-
crophone characteristic, we can specify that the more
light sound color belongs to the microphone pointing
forward, the more hollow sound comes from the back-
ward microphone.

behind

sound source

in front

Figure 5: Simple microphone configuration for the
spectrum-based front/behind discrimination

We decided to use little tubes, like artificial ear chan-
nels, in a configuration shown in figure 5. To compare
the sound color of the binaural signals we determine
the actual spectrum in the left and right channel, e.g.
by a short-term FFT in time windows of n samples.
For each FFT—vector [fi...f,] we calculate a value
C = LY i fi, the center of mass of the spectral
shape. It is level-independent and does not correspond
to a real frequency in the signal, but, a simple differ-
ence of the left and the right C-value is realizing the
comparison of the spectral shapes: Clefe < Cright —
infront; Ciepr > Crigne < behind. If the values are
very similar, a front/behind discrimination is not nec-
essary, because the source is about 90° left or right and
the I'T'D-calculation alone is providing a definite result.
The short—term spectral comparison can be unstable
due to window effects of the FFT—-calculation. By us-
ing samples up to 250 or 500ms long, we can prevent
this but the disadvantage is a delayed response of the
whole system.

4 Simulations and results

4.1 Offline simulation

Firstly, the localization system was tested offline with
data recorded in an open environment including back-
ground noise but only little echo effects. Narrow and
broadband sounds, including numerous speech signals,
were recorded by 2 microphones (omni-directional char-
acteristic, base distance b6=0.25 m).

The localization of single sources was comparatively
simple and robust — the directions of all tested broad-
band sounds were determined correctly 2. Figure 6

3 A successful localization means the emergence of an unequiv-
ocal winner—neuron in the WTA-layer at the theoretically cor-



illustrates the dynamical focusing on a moving source,
emitting pink noise. While the coincidence pattern dis-
plays a diffuse activation and disturbances, the capa-
bility of the WTA network to detect a dominant ITD
leads to a clear feature representation. The focus is
stably locked to the correct direction, even if the sound
source is moving, which is an important feature of the
strong WTA dynamics (figure 6).
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Figure 6: Model behavior for a moving source emitting
pink noise. Visualization of the IC output (bot-
tom) and the WTA-layer (top).

If multiple sources are present in the acoustical scene,
the requirements to the localization system change con-
siderably. Because of interferences between periodical
sound components, the dominance of a certain source
has to be caused by its intensity or broader spectral
constitution. The experiment shown in figure 7 demon-
strates, how the focus of attention is shifted from a
narrowband sound toward a voice stimulus.
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Figure 7: Localization of a continual narrow band sound
and a human call setting in about 100 ms later.

4.2 Online simulation

Because the synchronous simulation 1is still not real-
time capable and acoustic problems occur in smaller
rooms, we use only a short block of samples from the
signal’s onset for online processing. The simulation is
fast enough to trigger a turn-reflex of the active—vision

rect position. Corresponding to the inaccuracy of the angle—
measurement and the localization blur, also adjacent cells are
considered to be correct winners.

head of a robot and showed robust results on hand-
claps and similar signals. In large rooms even human
speech can be localized reliably.

Several experiments were run in a shopping center with
only little reverberations but a high background noise
and in an empty, relatively echoic lecture hall. We no-
ticed that the WTA process is able to focus on a sound
source in about 10ms — often unaffected by the first
echos reaching the microphones. For most broadband
signals, this time is longer than the arrival of a first
wavefront, which has been considered as the longest
part of reverberate signals we can localize. But only if
a voiced sound hits the resonance frequency of a small
room (in our recordings resonances build up after 30ms
or later), the focus of the WTA layer may be shifted to
an apparently random position of an interference. This
way we can model major aspects of the precedence ef-
fect — the dominance of the original sound event over
its echos.

The successful processing of voiced, reverbereated
sounds demonstrates the superiority of the proposed
model over conventional correlation methods. The re-
sult of a simple cross-correlation of more or less sinu-
soidal signals is a sine itself, that means ambiguous
with a smooth, hard to derive maximum. The maxi-
mum search in a mean response strongly depends on
the size and position of the applied time window. Our
model, too, suffers partly from the periodicity of sine-
components of a sound but benefits from some special
properties: (i) The spike-pattern mainly codes tempo-
ral information like phasing - amplitude is coded in-
directly by the spike rate - the effect is a sharp peak
as the result of the coincidence detection instead of a
smooth sine-response. (ii) The broadband response of
the cochlea filter together with the tonotopically dis-
tributed processing and the recombination of frequency
bands effectively prevents ambiguous responses. (iii)
Because competing sound sources, noise or the distur-
bance by interferences need energy and time to shift the
focus in the WTA-layer, the system shows a hystere-
sis property and thus prefers the signals onsets. Based
on these qualities the system integrates mechanisms of
onset, transient, and ongoing sound processing, and re-
alizes the localization beyond the first wavefront. Due
to the hysteresis of the WTA-layer, we become adap-
tive to the overall loudness and sensitive to onsets or
sudden changes. In practice, we gain the advantage of
achieving the correct result without having to deter-
mine the exact time of onsets and echos.

4.3 Building a 360°—map of horizontal angles

No matter how precise and reliable the TTD-based lo-
calization might determine angles from -90° to +90°, a
universal application, e.g. on a mobile robot, would fail



without the ability to discriminate between in front and
behind. Because we could not answer conclusively the
question of how to map the different spatial informa-
tion, especially since the front/behind detector has less
biological background, we decided to run the separated
algorithms in parallel. The front/behind prediction is
simply used to interpret the final WTA-output of the
I'TD system.

The tests included all sorts of common sounds (clicks,
hand claps, voices, pink noise) and were performed in
an empty lecture hall. As a good example for a moving
sound source, the processing of a 12 word long sentence
is shown (figures 8), where the tracked speaker position
is traveling once around the microphones.
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Figure 8: Left: 360-degree localization of a speaker mov-
ing around the microphones. Right: a) Speech—
signal, b) short—term (12.5 ms) and c¢) long—
term (0.5 s) spectral difference.

Also the front/behind discrimination was additionally
testet in the shopping center. In comperatively quiet
situations the obtained ratio between the speech signal
of a user (1-4 meter distance) and background noise or
other voices was at about 5-6dB. The command-words
and hand-claps of the user were detected with a propa-
bility of 81% and a precission of +/- 10° (90% within
+/- 20°).

5 Conclusion

Summarizing our experiments, the presented model
yields convincing results in open environments. Am-
biguities and disturbances in the I'TD representation
at the level of the IC are successfully suppressed by
the WTA process. Thereby the simulation of the spike-
based selection model proved to be uncomplicated — the
limited dynamic range of a spike coded WTA input en-
ables a robust operation of the network. While testing
the system in complex acoustic situations, it turned out
that an ITD-dependent differentiation between multi-
ple sources, as a typical application of the model, has
to be based on a sequential calculation and selection of
ITDs (see figure 7). Because the ITD feature is locked
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to the phase of the signal, the localization fails if in-
terferences occur between voiced sounds. Thus, even a
realtime—capable implementation will require an onset
detector to deliver reasonable results, and the one re-
striction which remains, is that our system is limited
to relatively quiet situations and can not perform the
so-called cocktail party—effect.

With the extension of the front/behind detector we
have, for the first time, a suitable tool to perform a
horizontal 360° sound localization on a low-cost two-
microphone platform.
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