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Abstract. In this paper we present a neural architecture for a mental
imaging like generation of image sequences. Mental imaging plays a cen-
tral role for various perception processes. Thereto, we investigated mech-
anisms to model this ability of biological systems at a functional level for
sequences of images. Because it is impossible to memorize many experi-
enced sequences, we developed an universal, general and very powerful
approach based on the ability to predict optic flow fields as consequences
of the systems own actions and tested the resulting architecture on a real
mobile system.

1 Introduction

Mental imaging is understood as a process, which generates conscious images
in mind without any sensory stimulation[1]. This is possible, since experienced
sensory (visual) impressions are stored by some neural memory structure and
can afterwards be reconstructed.

In literature there is broad consens about the central aspect of these imaging
processes. Many authors [1-4] propose, that perception and mental imaging share
common mechanisms and support each other. In [5-7] there is described, that
mentally generated images are used as an expectation for what the system sees.
This so called top-down expectation is then used to enhance the sensory bottom-
up data in order to become more robust against noise or sensory dropouts. Other
authors postulated, that mental imagery is also used for internal simulation of
the consequences of hypothetically executed actions in order to find an optimal
action sequence [5,8,9].

In general, we and almost any perceiving biological system do not operate
on sensory snapshots. Instead, we operate on a continuous flow of data, which
requires a continuous flow of corresponding expectations. The generation of sin-
gle mental images already requires a large memory to store the experienced
images. The extension to sequences of mental images seems to be unrealizable
through memorization, because of the exponential growth of data to be stored.
In consequence, a more general approach is required.

By learning universally valid sensorimotor relationships between subsequent
images and the executed motor actions of the mobile system such an approach
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could be developed. The resulting neural architecture is able to anticipate se-
quences of images, which are expected after the hypothetical execution of a given
action trajectory. This ability can be utilized to generate the desired continuous
flow of top-down expectations or to realize an internal simulation.

2 Scenario

We investigated our approach within a scenario with the miniature robot KHEP-
ERA equipped with an omnidirectional camera. Using a real robot in favor to
stored image sequences from any video stream is very important, since the exe-
cuted action causes the changes within the image and thus defines the direction
of the development of the whole image sequence. This emphasizes the fact, that
perception does not end in itself, instead it is a sensorimotor process integrat-
ing the generation of behavior [10]. For our experiments we used the scenario
depicted in figure 1. The omnidirectional camera images are polar-transformed
and then used to estimate optic flow using a correlation based method [11].

Fig. 1. Scenario used for our ex-
periments with the mobile robot
KHEPERA equipped with an om-
nidirectional camera.

3 Architecture

Our approach to mental imaging of sequences avoids the need of memorization
of all experienced image sequences by using an iterative process of subsequent
image transformations. Therefore, the required image transformation represents
the changes within the image that are caused by egomotion of the observing sys-
tem. If this transformation can be found, the system can generate sequences of
subsequent sensory visual impressions starting from a real or an initially mem-
orized image.

3.1 How to find this Transformation?

The required transformation has to comply the following criteria. It must be
invariant to color, shape, texture, and other object or scene specific features. In
contrast, motion parameters of the mobile system and the spatial configuration
of the objects within the scene are very important. With respect to these re-
quirements, optic flow seems to be well suited for this task, since it exclusively
represents spatial relations and movements of objects in the scene caused by
egomotion of the system.



To generate a hypothetically image sequence for a given action sequence, an
anticipation of the action consequences is crucially required. Instead of realizing
a scene depending mapping from the current image I(t) to the following one
I(t+ 1), our system learns the scene-independent mapping from past optic flow
fields and actions to the following one by a time-delayed neural network (TDNN):

OF(t—mn)...OF(t) x a(t—mn)...a(t) — OF(t+1)
Thus, the resulting image transformation depicted in figure 2 is based on uni-
versally valid sensorimotor relationships, represented by optic flow.
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3.2 Image Generation

Based on the predicted optic flow field OF (¢ + 1) and the current image I(t) it is
possible to generate the predicted image I(¢+ 1). This is realized by shifting the
pixels along their corresponding predicted flow field vectors. First, for each pixel
of the new image I(¢ + 1) a source region in I(¢) is computed. For this purpose
those flow vectors fP¢ are searched, which point most closely to the new pixel
position (i, k) (figure 3).
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To compute the source region for the new pixel at position (i, k) all distances
df of the flow vectors f? out of the neighborhood N to the new position (i, k)
are computed (equation 1). Then, the color of the new pixel ¢; ;, = (r,g,b)T
results from a superposition of all pixels out of neighborhood N weighted by a
distance-dependent factor (equation 2).
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Thus, an interpolated transformation of the image I(¢) to the predicted image
I(t + 1) is defined, which uses the predicted optic flow OF (¢t + 1).

4 Results

We tested the above described image transformation approach for several image
sequences. First, we put the robot into the situation illustrated in figure 4 top.
At each time step the process of mental imaging generates a sequence of im-
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Fig. 4. Internal simulation of images realized by our anticipatory system during straight
ahead movement of the mobile robot towards the blue rectangular mark (top). The
really experienced image sequence (leftmost column) plotted since time ¢ = 9 and
four image sequences with different starting points, generated by means of our mental
imaging approach, are plotted on the right.




ages (vertical columns), that reflect the expected image changes caused by the
locomotion of the mobile system.

The leftmost column of really experienced images shows the growing rect-
angular blue mark in the image caused by the oncoming opposite marked wall.
The rightmost mentally generated sequence based on the real image at time step
t = 9 shows in contrast to the real sequence only a vertical growth of the cen-
tral blue mark. The later the starting point for mental imagination, the better
the similarity to the last really experienced image at time ¢ = 14 can be seen.
Likewise, the image quality decreases over simulation time, since both optic flow
prediction errors and image interpolation errors are accumulated over simulation
time.
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Fig. 5. Internal simulation of images realized by our anticipatory system during a left-
turn movement of the mobile robot towards the blue rectangular mark (top). Image
arrangement as in figure 4.



Nevertheless, the principal ability of our approach to internally generate im-
age sequences representing the course of the changing reality caused by the
systems actions can be demonstrated.

Similar results are depicted in figure 5, where the robot drove a left turn
towards the blue mark. In contrast to the previous experiment, the driven curve
causes a horizontal shift of the polar-transformed image over time, which also is
predicted by our mental imaging architecture.

5 Outlook

The presented neural architecture for optic flow-based mental sequence-imaging
internally generates image sequences representing the consequences of a mobile
systems own hypothetically executed actions. These image sequences can be used
to generate the desired continuous flow of top-down expectations or to realize
an internal simulation process for action planning on image sequences.

In future work we intend to investigate these challenging anticipative mech-
anisms for mobile systems at the behavioral level in more detail.
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