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Abstract

In this paper we present an architecture functionally in-
spired by biology for drawing selective attention to vi-
sually unexpected and therefore conspicuous events or
image changes. This ability is investigated by means of
a mobile-robot scenario, whereby the observing system
is moving around and detects other dynamic objects
within the scene based on vision only. After detection
of an dynamic object our system is able to track it or
to realize a higher behavior like hunting or escaping.

1 Introduction

Traditional approaches to visual perception are based
on the ‘information processing paradigm’ [1], which can
be characterized by a strict separation between sensory
perception and generation of behavior (see [2, 3] for a
review).

In recent years, the appreciation of visual perception
as a generative sensorimotor process gained increasing
acceptance [4, 5]. The generative aspect of perception
has been emphasized especially by [6, 7, 8] who sup-
posed that anticipation of sensory consequences of ac-
tions may play an integral role in perception. If this
holds true at different levels of complexity and for dif-
ferent modalities, then, there must exist structures that
are capable of predicting the sensory consequences of
actions. Such sensory predictors seem to be multi-
functional systems, since they can be used to a) en-
hance the incoming bottom-up sensory information by
a top-down expectation generated previously [9] b) di-
rect selective attention to those environmental subre-
gions which caused a mismatch of top-down expecta-
tion and bottom-up sensory information and c) inter-
nally simulate the consequences of action sequences in
order to find and execute those actions, that entail pos-
itive outcomes for the system [10].

In this paper, we present a hybrid network architecture
to direct selective visual attention to image subregions
with significant mismatches between anticipatory ex-
pectation and sensory observation.

The detection of dynamic objects in image sequences
is well known from literature as ”tracking”. But most
of these systems crucially require a stationary observ-
ing system and therefore interpret any changes between
subsequent frames as an indicator to a dynamic ob-
ject. In the following we try to overcome the restriction
of the stationary observer and present an architecture,
that draws visual attention to dynamic objects in the
scene during egomotion of the observing system. In
contrast to other tracking approaches of moving ob-
jects during camera motion [11], our architecture does
not require any a priori knowledge like camera or move-
ment parameters.

2 Experimental framework

For our experiments, we use the real robot platform
KHEPERA, a miniature robot equipped with an omni-
directional color-camera (see figure 1) to investigate the
proposed attentional mechanisms at the level of behav-
ior. Figure 2 depicts a typical environment with the

Figure 1: Used robot platform KHEPERA equipped with
an omni-directional camera.

mobile robot inside. The input of our attention draw-
ing architecture is, as indicated in section 1, exclusively
visual. Thus, we use the optic flow as a small fraction



Figure 2: View of the environment with the KHEPERA.

of the entire visual input, because it is largely indepen-
dent of specific visual details of the objects in the scene,
entails implicit information about the 3D-structure of
the environment, object motion and the egomotion of
the system. In the preprocessing of the original omni-
camera-images we perform a polar transformation (see
figure 3 top) to the deskewed form depicted in figure
3 (bottom). These transformed images are used to es-
timate the optical flow fields, because an action of the
robot with a rotational part yields a rotation of the
omni-camera-image but only a shift in x-direction of
the polar transformed image. This is very advanta-
geous, since the applied correlation based optical flow
estimation [12] needs not cope with rotated correlation
areas, which would be very time consuming.

left right

Figure 3: Top: original image taken from the omni-
camera mounted on top of the KHEPERA ob-
tained in its position in the environment (see
figure 2). Bottom: polar transformed im-
age: middle=front, left and right image bor-
ders=back.

The system’s goal is first to detect moving objects
within the scene. After detection of a dynamic object,
the robot has to drive towards or away from it in order
to realize a hunting and escaping behavior, respectively.

We believe, that the behavior of an autonomous system
operating only on this information is a very good in-
dicator of the performance of the system’s 'perception’
of its environment.

3 Architecture

Figure 4 depicts our architecture to detect dynamic
objects. The main principle is a comparison between
the really observed and expected optic flow field, which
is anticipated based on prior sensorimotor experiences
of the mobile system.
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Figure 4: Anticipatory architecture to detect mismatches
between the really observed and expected optic
flow.

First, based on the current polar-transformed image
sequence, the sensory optical flow is estimated in the
bottom-up pathway. The sensory predictor anticipates
the next expected flow field and operates on the last
optic flow field and the currently executed motor com-
mand of the robot. That generated top-down expecta-
tion is compared to the real observation, whereby the
resulting mismatch-map describes large differences be-
tween the corresponding flow vectors.

3.1 Sensorimotor prediction

As indicated in figure 4, the sensory prediction of the
consequences of the mobile systems own actions is an
essential part of our architecture. Therefore, we trained
a recurrent artificial neural network on really experi-
enced optical flow data of the mobile robot within a
static environment. Thus, the applied Jordan-network
[13] learns universally valid sensorimotor relationships
between subsequent optic flow fields under influence of
the systems own motor commands. Consequently, the



neural network realizes the anticipative function ap-
proximation OF(t) x a(t) — OF(t + 1), where OF(t)
is the current optic flow, a(t) is the currently executed
motor action of the robot and OAF(H— 1) is the predicted
optic flow field.

3.2 Mismatch detection

To detect large mismatches between the top-down ex-
: r'E

pectation f - (t) and the sensory bottom-up observa-

tion ;%(t), the difference Ap, for all flow vectors is

computed by equation 1. A threshold operation with

6 = 0.67 defines the value of the corresponding element

by, in the mismatch-map (equation 2).
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Afterwards, a simple morphological processing elimi-
nates outliers. Finally, an image-region with large dis-
crepancies between the expected and really experienced
optic flow fields is obtained.

4 Results

Since the sensory predictor was trained within an static
environment, the behavior of dynamic objects is not
predictable in this context. Therefore, large discrepan-
cies between the internally expected and actually ex-
perienced visual inputs refer to one or more moving
dynamic objects in the scene.

4.1 Stationary observer

Despite the recently defined system goal of detection
of dynamic objects during egomotion of the observer,
we first show the ability of our architecture to de-
tect dynamic objects even without observer-egomotion.
Thereto, we use a second KHEPERA, which moves as
indicated by the dashed line in figure 5.

The detection results of the middle column were ob-
tained from mismatches between sensory observation
and anticipatory expectation. In the right column in-
dicated long optical flow vectors a moving object. This
approach is similar to classical tracking systems based
on differences between subsequent images. As can be
seen, both approaches are able to detect the moving
robot very precisely.

4.2 Dynamic observer

Another, more interesting experiment is presented in
the following section, where the observing system is
moving too. In that case, the classical approach purely
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Figure 5: Stationary observer. Top: the observing robot
remained in place, while the passively mov-
ing, second robot is driving from right to left
along the dashed line. Left Column, from
top downwards: sequence of really experienced
polar-transformed images. Middle column:
black areas mark regions without noticeable
differences between the anticipatory expecta-
tion and observation, the non-black areas mark
regions with large mismatches. Right col-
umn: as in the middle, except that large optic
flow vectors triggered selective visual attention.

based on changes between subsequent images must
fail, because the egomotion causes permanent image
changes. The functioning of our anticipatory architec-
ture in this more realistic case is depicted in figure 6.
In this experiment both mobile robots are driving, the
passively moving one is locomoting along the dashed,
the observing one moves along the solid arrow in the
opposite direction. As can be seen, the anticipatory
approach is able to track the other moving robot dur-
ing egomotion of the observer. In contrast, the classi-
cal approach exclusively based on large image changes
marks in addition to the moving object also regions in
the lower image, where the egomotion caused large flow
vectors of the ground.

Another scenario is depicted in figure 7. Both robots
move with the same speed and direction along the il-
lustrated arrows. In consequence, the passively mov-
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Figure 6: Dynamic observer I. Top: the observing robot
moves along the solid and the passively loco-
moting robot along the dashed arrow. Left
Column, from top downwards: really expe-
rienced images. Middle column: non black
areas mark regions with large mismatches be-
tween observation and anticipatory expecta-
tion. Right column: non-black areas mark
regions with large optic flow vectors.

ing robot causes almost no changes in the correspond-
ing region of the observed image. In contrast to pre-
vious experiments, in this case the dynamic object is
not characterized by large optic flow vectors. Instead,
abnormal short vectors in the frontal area mark the
other dynamic object in the scene. In consequence, the
classical algorithm based on detection of large image
changes is as expected absolutely unable to detect the
other moving robot in front of the observer. The ap-
proach based on the mismatch between anticipatory ex-
pectation and sensory observation provides pretty good
detection-results, as can be seen in the middle column
of figure 7.

4.3 Dynamic observer with static obstacles

After demonstrating the abilities of our anticipatory ar-
chitecture to detect dynamic objects during egomotion
of the observer, the following experiment illustrates,
that our approach is able to distinguish between static
and dynamic obstacles. This is possible, since the pre-
trained sensory predictor is able to anticipate the optic
flow vectors belonging to static obstacles. Thereto, we
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Figure 7: Dynamic observer II. Top: both robots move
with the same speed and direction along their
arrows. Left Column, from top downwards:
really experienced images. Middle column:
non black areas mark regions with large mis-
matches between observation and anticipatory
expectation. Right column: non-black areas
mark regions with large optic flow vectors.

used the scenario depicted in figure 8, where in addi-
tion to figure 6 a cylindric static obstacle is included in
the upper part.

Similar to the experiment without static obstacle (fig-
ure 6), the anticipatory approach is able to detect the
other moving robot during egomotion of the observer.
Furthermore, the cylindric static obstacle in the right
part of the polar transformed image causes correctly no
large differences between sensory observation and an-
ticipatory expectation and is therefore not marked as
dynamic obstacle.

4.4 Further constellations

In addition to the previously presented experiments,
we investigated numerous other constellations with and
without static obstacles in order to obtain more reliable
information about the performance of our approach. In
figure 9) there are some scenarios sketched. The ap-
proach for selective attention to dynamic objects dur-
ing egomotion of the observing system produced similar
results to the experiments discussed in more detail in
the previous sections.



Figure 8: Dynamic observer with static obstacle. Top:
the observing robot moves along the solid
and the passively locomoting robot along the
dashed arrow. Left Column, from top down-
wards: really experienced images. Right col-
umn: non black areas mark regions with large
mismatches between observation and anticipa-
tory expectation.

4.5 Realization of higher behaviors

Based on these very encouraging detection-results, we
extended our architecture by a very simple behavior
generation. Thereto, we computed the center of gravity
of the mismatch-map in x-direction ¢, and deduced an
steering angle ¢ of the observing robot by equation
3, where ¢, is the x-coordinate of the center of the
mismatch-region in the range between 0.0 (leftmost)
and 1.0 (rightmost) within the image.

¢ = «

—

o= 3] Q

« is a gain constant, that defines, whether the observ-
ing robot drives towards or away from the detected
dynamic object. If for instance, a dynamic object is

Figure 9: Overview of other investigated scenarios for
selective visual attention to dynamic objects
during egomotion of the observing system. All
scenarios were tested with and without static
objects.

detected on the left, @ = 1 causes a steering angle to
the left and vice versa.

Figure 10 shows two different scenarios, wherein the
generation of behavior based on the detection of dy-
namic objects was investigated. As can be seen, the

Figure 10: Top view of two scenarios for investigation
of behavior generation. The passively mov-
ing robot drives along the dashed arrow and
the observing system moves along the trace
indicated by the black circles.

observing and actively moving robot drives towards the
passively moving robot. This kind of hunting behav-
ior can be inverted by using a negative gain constant
a = —1 to an escape behavior. In that case, the ob-
serving robot drives away from any detected dynamic
object in its environment. Figure 11 illustrates the re-
sulting escape behavior of the observing robot. As soon
as any dynamic object can be detected, a corresponding



Figure 11: Top view of two scenarios for investigation
of behavior generation. Again, the passively
moving robot drives along the dashed arrow
and the observing system moves along the
trace of black circles.

steering command is executed, increasing the distance
between the two robots. Due to the omnidirectional
visual field of the camera, also objects in the back of
the system can be detected (figure 11, right).

5 Conclusion

In this paper we presented an architecture for guid-
ing selective visual attention to dynamic objects during
egomotion of the observing system. The presented ar-
chitecture is inspired by biology at a purely functional
level and bases on the ability to learn and predict uni-
versally valid sensorimotor relationships.

Through comparison of the predicted sensory outcomes
of the systems own actions with the really observed
sensory situation, the system can draw its focus of at-
tention to those regions in order to analyse these areas
in more detail. Because our system was trained in a
static environment, measured significant discrepancies
between these two data streams can be interpreted as
moving objects. This is possible, since the sensory pre-
dictor has learned to anticipate the consequences of its
own motor actions for the static objects of the envi-
ronment. In consequence, absolutely not or at least
very poor predictable sensorimotor observations point
to dynamic objects. Thus, our anticipative architecture
draws, like biological systems, selective attention to vi-
sually unexpected and therefore conspicuous events or
image changes.

This ability is investigated by means of a mobile-
robot scenario, whereby the observing system is moving
around and detects other dynamic objects within the

scene based on vision only. After detection of an dy-
namic object our system is able to track it or to realize
a higher behavior like hunting or escaping.

This work demonstrates, that learning technical sys-
tems inspired by biological vision-mechanisms are able
to solve real world problems, like tracking of moving
objects during egomotion, without any a priori infor-
mation about the system itself.
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