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Abstract. We present a novel panoramic view based robot localization approach
which utilizes the Monte Carlo Localization (MCL) [1], a Bayesian filtering tech-
nique based on a discrete density representation by means of particles. We show
how omidirectional imaging can be combined with the MCL-algorithm to glob-
ally localize and track a mobile robot given a taught graph-based representation
of the operation area. To demonstrate the reliability of our approach, we present
promising experimental results in the context of a challenging robotics applica-
tion, the self-localization of a mobile service robot acting as shopping assistant in
a very regularly structured, maze-like and crowded environment, a home store.

1 Introduction and motivation

Self-localization is the task of estimating the pose (position and orientation) of a mobile
robot given a map of the environment and a history of sensor readings and executed ac-
tions. This includes both the ability of globally localizing the robot from scratch, as well
as tracking the robot’s position once its location is known. The localization problem is
one of the fundamental problems in mobile robot navigation and many solutions have
been presented in the past including approaches employing Kalman filtering, grid-based
Markov localization, or Monte Carlo Methods [3]. The current state-of-the-art localiza-
tion methods often use laser range finders or sonar, but these sensor modalities tend
to be easily confused in environments with very regular topology, e.g. a supermarket
or a home store with a great number of hallways of equal width, length and geomet-
rical structure. Because of this maze-like topology, self-localization methods based on
laser or sonar can produce numerous ambiguities complicating or preventing a quick
self-localization or re-localization in case of a complete loss of positioning. In contrast,
vision-based systems do not show these limitations, but supply a much greater wealth of
information about the 3D-structure of the hallways and racks. For example, the filling of
the goods racks gives the hallways a characteristic appearance, especially with respect
to color or texture. Because of this, we expected to defuse the localization problem
drastically by development of an approach for view-based localization that combines
omnidirectional imaging with the probabilistic Monte Carlo Localization (MCL) [1].

2 Omnivision-based MCL

The Monte Carlo Localization (MCL) method underlying our omnivision-based local-
ization approach is a version of Markov localization [6], a family of probabilistic ap-
proaches for approximating a multi-modal density distribution coding the robot’s belief
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Figure 1. General idea of our omniview-based Monte Carlo Localization. The approach is based
on a graph-based representation of the operation area. The nodes of the graph are labeled with
both view-based visual features and metric information about the pose of the robot (position and
heading direction in a world-centered reference frame) at the moment of the node insertion.

Bel(xt) for being in statext = (x, y, ϕ)t in its state space.x andy are the robot’s
position coordinates in a world-centered Cartesian reference frame, andϕ is the robot’s
heading direction. The key idea of MCL is to represent the beliefBel(xt) by a setSt

of N weighted samples distributed according toBel(xt): St = {x(i)
t , w

(i)
t }i=1..N .

Here eachx(i)
t is a sample, and thew(i)

t are non-negative numerical weighting factors
called importance factors. Because the sample set constitutes a discrete approximation
of the continuous density distribution, the MCL approach is computationally efficient,
it places computation just “where needed”.

The general idea of our view-based Monte Carlo Localization is illustrated in Fig. 1.
In our approach, we use a graph-based representation of the operation area by a set
of visual reference vectorsr(x, y, ϕ) extracted from the respective panoramic views at
positionsx, y in heading directionϕ (Fig. 1, bottom right). The graph is constructed on-
the-fly when manually joy-sticking the robot through the hallways of the store. During
this training, omnidirectional images are captured from the environment and associated
with the corresponding locations. For this purpose, in addition to the feature vectors
extracted from the omnidirectional images, the nodes of the graph are labeled with
metric information about the posex = (x, y, ϕ) of the robot at the moment of the
node insertion. A new node (reference point) with importance for the representation
is inserted, either if the Euclidian position distance to other reference points in a local
Ω-vicinity or if the Euclidian feature distance between the current feature vectorf input

t

and the feature vectorsrΩ(x, y, ϕ) of these reference points are larger than given values.
However, the labeling of the graph nodes with odometric data about the pose of the robot
necessitates an efficient correction of odometry because of the increasing error over
time, especially concerning the orientation angle. To attenuate this effect, we utilize a
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Figure 2.Topological map of the operation area in the home store. The size of the area is50×45
meters, the graph consists of 2007 reference points (marked as dots) labeled with visual feature
vectors and odometric data about the pose (position and orientation) of the robot at the moment
of node insertion. The total distance travelled to learn this map was about 1000 meters.

specific feature of our market floor that shows a very regular structure caused by tiles
that are uniquely oriented across the whole market area. For details of our vision-based
odometry correction see [2]. We utilized this odometry correction method for learning
a large-scale graph representation of the operation area as shown in Fig. 2 and achieved
a very small absolute position error of about60cm after a total distance of 1000 meters.

Feature extraction:Both during map-building and self-localization, the omnidirec-
tional image is transformed into a panoramic image (see Fig. 1, top). Each panoramic
image is first partitioned into a fixed number of non-overlapping sectors (typ. 10) each
covering a part of the panoramic field of view. The following criteria determined the se-
lection of appropriate features to describe the present scene: 1) To allow for an on-line
localization, the calculation of the features should be as easy and efficient as possible.
2) The features should include the orientation of the robot as prerequisite to estimate the
heading direction of the robot. 3) The feature description should allow for an easy gen-
eration of expected observations for unknown positions and orientations of the robot. 4)
The features should be largely insensitive against partial occlusion of the environment,
such as caused by people in the vicinity of the robot. Considering these criteria and
the requirements of other omnivision-based localization approaches published recently,
e.g. [4, 5], we decided to implement the simplest feature extraction method possible.
Thereto, for each sector of the panoramic image, the mean RGB-color value is de-
termined. This way, for each node in the graph a reference feature vectorr(x, y, ϕ)
consisting of a small number of mean RGB-values has to be learned.

The localization algorithm: In analogy to the MCL algorithm presented in [1], our
omniview-based MCL proceeds in two phases: In thePrediction phase (robot motion),
the sample set computed in the previous iteration (or during random initialization) is



moved according to the last movement of the robotut−1 (Fig. 1, left). Themotion model
p(xt|xt−1, ut−1) describes how the position of the samples changes using information
ut−1 from odometry. This way, MCL generatesN new samples that approximate the
expected density distribution of the robot’s pose after the movementut−1. To determine
the expected observationsf (i)

t of the moved samples, our approach requires interpola-
tions both in state and feature space because of the coarse graph representation and the
chosen feature coding. For each samples(i), we first interpolate linearly between the
reference feature vectorsr(x, y, ϕ) of the two reference nodes closest to the respective
sample positionx(i)

t . After this, the resulting feature vector is rotated according to the
expected new orientationϕ(i)

t of the samples(i). Since the feature vector only has a
discrete number of components, we utilize a linear interpolation between the features
of adjacent segments. This way, we obtain a set ofN new feature vectorsf (i)

t (x, y, ϕ)
describing the expected observations of the moved samples in the new statesx(i)

t .
In theUpdate phase (new observation), the actual panoramic view at the new robot

position has to be taken into account in order to correct the sample setSt. For this, the
importance factorw(i)

t of each samples(i) is computed. It describes the probability that
the robot is located in the statex(i)

t of the sample. We determine the similarityE
(i)
t be-

tween the current input feature vectorf input
t extracted from the panoramic view at the

new robot position and the expected feature vectorf (i)
t of each samples(i) simply by

computing the angle between both normalized vectors applying a simple Gaussian-like
observation model. Now w

(i)
t = 1− αE

(i)
t can be determined, whereα is a normaliza-

tion constant that enforces
∑N

j=1 w
(j)
t = 1. The final sample setSt for the next iteration

is obtained byre-samplingfrom this weighted set. The re-sampling selects those sam-
ples with higher probability that have a high importance factorw

(i)
t . Samples with low

importance factors are removed and randomly placed in the state-neighborhood of sam-
ples with high factors. After that, both phases are repeated recursively.

3 Experimental results

All experiments were carried out in the ‘toom’ home store Erfurt with our experimental
platform PERSES, a standard B21 robot additionally equipped with an omnidirectional
imaging system for vision-based navigation and human-robot interaction. The experi-
ments were performed as off-line cross-validation tests on different sequences of im-
ages acquired in the home store. All images were labeled with the corresponding correct
pose of the robot. One of the sequences is used as training data to build the graph while
the other ones are used as test data (5000 pose-labeled images) to determine the lo-
calization error. Every localization experiment has a typical length of 190 movements,
this corresponds to a path length of about 130 meters. Per experiment, the mean ab-
solute localization error is determined. Every experiment was repeated 20 times, and
the localization errors were averaged. It is to note that, in all cases, we studied the
worst-case scenario: our robot had no prior information about its initial pose - this is
a typical global localization problem. All tests can be judged as being very successful,
as our localization system was able to find and continually track the position of the
robot. Fig. 3 illustrates the typical course of a view-based self-localization and position
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Figure 3.Self-localization and tracking experiment executed in a large section (50×45m2) of the
home store. The sequence depicts the temporal condensation dynamics of about 4.000 samples
(initial distribution, after 3 steps, and 9 steps). In the beginning, the robot is globally uncertain, the
particles are spread uniformly throughout the free space. The variance of the 10% of the samples
with the highest importance factors is marked as circle. Already after 9 movements (about 5,50
m), MCL has disambiguated the robot’s position - the majority of samples is now centered tightly
around the correct position, the variance is drastically reduced.

tracking experiment executed in a large section of the store (50 × 45m2). Despite the
geometrical uniformity of the selected hallways and the coarse graph-structure (2007
nodes), our omniview-based MCL yields very precise localization results already after
a few robot movements. For example, after 9 movements and observations, which cor-
responds to a travelled distance of about 5,50 meters, the difference between estimated
and correct position of the robot was lower than 40 cm. The mean localization error of
our test set is even smaller than 25 cm. The time required for computation of the MCL
algorithm directly depends on the total number of samples. With the current on-board
equipment (1500 MHz AMD Athlon), our algorithm requires about 50 ms for 4.000
samples. The time for image transformation and feature extraction takes about 25 ms
per image. Therefore, our localization system enables real-time localization leaving a
good amount of processing time for other navigation modules.

Dealing with occlusions:It is clear that we have to cope with occlusions in the
scene, such as, for example, people walking by or objects being moved around in the
environment. However, due to its wide visual field, occlusion of the entire panoramic
view becomes very unlikely. For example, in Fig. 4 the two people standing as close as
possible to the robot occlude no more than 10% of the visual field. To test the robustness
of the localization algorithm, the test images were occluded by artificial gray-colored
segments. The impact of occlusion effects was gradually controlled by the percentage
of image content covered by the artificial image. Fig. 4 (bottom) depicts the results
w.r.t. localization accuracy and various degrees of occlusion. For 0% occlusion, the
mean position error is 25 cm and covers a range between 15 and 30 cm. The mean po-
sition error remains relatively low until 15% occlusion. Thereafter, the error vigorously
increases since the image is affected by severe occlusions. However, due to the geome-
try of robot and vision system, it is not possible to place more than three or four people
directly around the robot. Therefore, the maximum occlusion by people cannot be larger
than 15-20%. Moreover, the internal particle dynamics of the MCL-algorithm realizes
a kind of temporal self-stabilization of the estimation result, therefore, the influence of
heavy but short occlusions can be largely neglected.
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Figure 4. (Top)Occlusion example: two people are standing as close as possible to the robot and
occlude about 10% of the visual field.(Bottom)Result of experiments investigating the influence
of local occlusions on the position error(left) and and the orientation estimation(right).

4 Conclusions and future work

In this paper, we have shown that particle filters in combination with a graph-based
representation of the operation area by local panoramic views can be used to perform
an omniview-based self-localization of a mobile robot in a challenging real-world ap-
plication. Our localization system uses color omni-vision, works in real-time, and can
easily be trained in new operation areas by joy-sticking. The results of the executed ex-
periments confirm the accuracy and robustness of our omniview-based self-localization
method.

Currently, theoretical and experimental studies are carried out to further improve
our omniview-based MCL-system. For example, we are investigating the impact of the
motion and observation models on the pose estimation and are studying the influence of
a new mechanism adaptively controlling the sample rate on-the-fly on the localization
accuracy. Other running experiments are dealing with the impact of appearance vari-
ations at the reference points in the learned graph, e.g. as result of a changed filling
of the goods racks or modifications in the market topology. Moreover, our algorithm
has to demonstrate its capabilities scaling up to the whole market area with a size of
100× 60m2 over a longer period of operation.
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