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Abstract

We utilize HUMPHRYS’ W-Learning on a real
robot Khepera to coordinate three behaviors in
an augmented maze: first, to drive straight and
fast while avoiding obstacles, second, to find a lo-
cation marked by one projected color (e.g., where
food can be found), and third, to escape from an-
other color. We describe the experimental setup
and compare results of the individual agents to
those of a monolithic agent solving all tasks, and
of the agents coordinated by different types of W-
Learning. We demonstrate the feasibility of W-
Learning on a real visuo-motor system and con-
clude by discussing why the monolith outperforms
all forms of coordination investigated.

1 Introduction

Values from some Reinforcement Learning methods may
serve to coordinate some agents sharing the same "body’.

We investigate W-Learning (Humphrys, 1997) and its
applicability on a real robot for an adaptive coordination
of multiple goals.

The overall task may be solved by a monolithic learner
at the cost of an immense state-action space and training
time. Scalability to complex tasks, acceptable adapta-
tion times and an easier design of partial reinforcement
functions are the driving forces for multi-agent systems.

2 Theoretical background
2.1 W-Learning

In W-Learning (Humphrys, 1997), fig.1 right, a collec-
tion of individual agents is coordinated to each solve a
task and is assumed to be a fully trained Q-Learners. It
uses the Q-values of these agents to determine just how
badly they want to execute their own best action in a
certain state and select one.

The resulting effect may be described as follows: agent
1, insists not on its own suggested action and relinquishes
ownership of a state agent j, who executes an action
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Figure 1: Structure of agents and principle of W-Learning

that to agent ¢ holds less reward, but possibly avoids
catastrophic losses for j.

3 Experimental setup

We use a Khepera miniature robot equipped with 8 in-
frared sensors and an additional omni-directional color
camera, in a special maze with wooden obstacles and
projected color patches shown in fig.2 left and actions
expressed as speed ve [—1,4,7]; angle o € [—30,0, 30]°.

3.1 Image preprocessing

The camera produces an omni-directional view by look-
ing straight up at a parabolic mirror. It is transformed
into a rectangular image (fig. 2 right top) and reduced
to a grid of 6 by 4 regions, where averaged colors (fig.
2 right second) in HSI color space provided the inputs
for the agents. The regions preserve color, some heading
and distance information.

Figure 2: Top-view of the scenario with Khepera and image
produced and processed as inputs to Bump (third), Thirst
(fourth), and Escape (last). Robot is in Pos.4



3.2 Setup of the individual agents

All agents, except the W-Learner, share the architecture
shown in figure 1 left, comprised of of a vector quantizer,
such as a Neural Gas (Martinetz and Schulten, 1991)
and Sarse (Rummery and Niranjan, 1994) in a sub-
sequent supervised layer trained by straight Delta-
learning. Sarsa was used with (y = 0.8, A = 0.8, = 0.5)
with the the learning rate o held constant. Adaptation
of the input clustering and the Q-values proceeded con-
currently, and a Boltzmann exploration was used. Each
of the expert agents Bump, Thirst and Escape, used a
Neural Gas of 15 nodes, and the monolith 50. We real-
ized the following agents:

e Bump, which realizes an obstacle avoidance and oth-
erwise, tries to go as straight and fast as possible,

e Thirst, which will try to drive onto a blue patch
e Escape, who avoids driving onto the a patch,

e W-Learner, who consisted of and coordinated the
very same agents above, complemented by a coordi-
nation by a form of W-Learning

e Monolith, who is charged with solving all three
tasks as one overall problem and received as inputs
the inputs of all the other agents in one big vector

With IR = normalized infrared readings, v =robot
wheel speed, a = steering angle, [RF = lowest regions,

—8.0,if maxyr > 0.9
|v] % 0.25 — |(0.025 x «)| else

> activation(IRF (blue))

r(Bump) = {

r(thirst) =
r(esc) =
r(Mono) = r(WL) = r(Bump) + r(Thirst) + r(Esc)

4 Results

We measured the performance of the agents from 7 start-
ing points (fig. 2 left) by calculating average total re-
wards (see eq.2) per step, for each trial individually, and
summing those for all starting points, averaged across a
number of runs.

The Khepera was set into the respective point in the
orientation indicated by the white line in the dark circles
in figure 2 left and was allowed to drive until collision or
a maximum number of steps of 51, and the reward and
trial length were averaged for 10 experiments.

The results are presented numerically for all agents in
table 1 and discussed in the following paragraphs.

Negotiated WL (Humphrys, 1997) turned out to per-
form best among the WL-variants, while the monolith
outperformed all variants of WL. It was able to use all

— > activation(IRF (red)) (1)

Agent cum avg reward (o) | avg length (o)
Mono 6.6 (4.3) 938.7 (45.9)
WL(neg) 2.3 (3.4) 193.0 (60.6)
WL(mCH) 1.9 (3.1) 254.8 (40.1)
WL(wl) 1.3 (2.5) 211.4 (27.4)
WL(wIF) 0.7 (1.9) 134.0 (44.4)
Bump -3.9 (4.8) 292.3 28.5)
Escape -7.2 (6.0) 137.2 (29.6)
Thirst -8.4 (8.0) 183.5 (28.4)
Random -23.9 (9.1) 100.0 (32.2)

Table 1: Overview of all results. The numbers represent the
mean of total reward (as in eq. 2) per step in a trial, and
length of trials in steps, summed over all trials and the num-
bers in parentheses standard deviations. Mono = Monolith,
WL = W-Learning, neg = negotiated, wl = learned WL,
mCH = maximal collective happiness, wlF = learned WL
with full state space

correlated inputs as landmarks, and so coordinate the
different tasks more easily by finding optimal compro-
mises and exploiting mutual support.

It’s superior since it solves entire task optimally at
the cost of solving subtasks suboptimally. In contrast,
in WL the individual agents solve their tasks optimally,
but optimality at the global task cannot be achieved.

The monolith uses a total reward signal, which WL
never uses, to flexibly weigh the subtasks for an optimal
overall task, two disconnected steps for WL.

One reason for WL’s suboptimality was the fixed
weighting of the agents for the entire state space. Differ-
ent weight configurations supported better behavior of
WL in different states, which is currently unachievable.

The monolith considers costs of transitions between
subgoals. With implicit planning through v > 0, it op-
timizes full sequences of coordinated actions, when WL
looks at the current situation, plans only for one agent.
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