
in: Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Systems (IROS 2003), Las Vegas, pp. 1505-1511, IEEE omnipress 2003

Omnivision-based Probabilistic Self-localization for a Mobile
Shopping Assistant Continued

Horst-Michael Gross, Alexander Koenig, Christof Schroeter and Hans-Joachim Boehme
Ilmenau Technical University, Department of Neuroinformatics

98684 Ilmenau, GERMANY
Horst-Michael.Gross@tu-ilmenau.de

Abstract— In continuation of [3], where we presented the
basic idea of our omniview-based MCL approach (Fig. 1)
and preliminary experimental results, this paper describes a
number of methodical and technical improvements address-
ing challenges arising from the characteristics of our real-
world application, the vision-based self-localization of a mo-
bile robot acting as shopping assistant in a maze-like environ-
ment, a home store. To cope with highly varying illumination
conditions, we present a reference-based correction approach
that realizes a robust, automatic luminance stabilization and
color adaptation already at the level of image formation. To
deal with severe occlusions or disturbances of the omnidirec-
tional image caused by, e.g. people standing nearby the robot
or local illumination artifacts, we introduce a novel selective
observation comparison method as prerequisite for a robust
particle filter update. Further studies investigate the impact
of the utilized observation model on the localization accuracy.
The results of a series of localization experiments carried
out in the home store (see video) confirm the robustness
and superiority of our advanced, real-time approach and
outperform the localization results obtained so far.

I. I NTRODUCTION AND MOTIVATION

In [3] we introduced our long-term research project
PERSES (PERsonal SErvice System) which aims to de-
velop an interactive mobile shopping assistant which can
autonomously guide its user, a customer, to desired articles
within a home store realizing aguidance function, or
follow him as a mobileservice-companionwhile con-
tinuously observing the user and his behavior. To ac-
commodate the challenges that arise from the specifics
of this interaction-oriented scenario and the characteris-
tics of the operation area, a very regularly structured,
maze-like environment, we placed special emphasis on
vision-based methods for both human-robot interaction
and robot navigation. Because the topology of such a home
store shows many similar, long hallways of equal length,
width and geometrical structure, self-localization methods
based on laser or sonar produce numerous ambiguities
complicating a quick self-localization or re-localization
in case of a complete loss of positioning. Moreover, 2D-
distance sensors only operate at certain planes of the 3D
space. Therefore, empty goods shelves show blank space
at the respective height which can be misinterpreted as
free space. Vision-based systems, however, do not show
these limitations, but supply a much greater wealth of
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Fig. 1. General idea of our omniview-based MCL. The approach is
based on a graph-based representation of the operation area. The nodes of
the graph are labeled with view-based reference observations and metric
information about the robot’s pose at the moment of node insertion.

information about the 3D-structure of the hallways. For
example, the filling of the goods shelves with different
articles gives the hallways a characteristic appearance,
especially with respect to color or texture. Because of
this, we expected to defuse the localization problem dras-
tically by development of an approach for vision-based
localization that combines omnivision with probabilistic
self-localization techniques. In recent years, a number of
omnivision-based robot localization approaches have been
proposed. Most of them construct appearance models of
the environment by compressing the captured panoramic
snapshots of interesting locations using eigenspace rep-
resentations, or apply specific image processing methods
(e.g., image histogram matching [8]), to localize and track
the robot. Several of the eigenspace approaches employ
a subset of the principal components [4], [6], other ones
use an illumination independent filtering of the eigenspace
data [5], exploit an eigenspace approximation to distortion
insensitive distance measures [9], or employ Bayesian
reasoning over the features of panoramic eigenimages [7],
to achieve a robust localization under illumination changes
or image occlusions. However, in most of these approaches
localization is typically performed in a straightforward
way: the current input image or its sub-space projection



is compared to all reference images, and that location
whose reference image best matches the current input
is considered to be the location currently taken by the
robot. Instead of using highly sophisticated image com-
pression and feature selection techniques followed by a
classifying mapping from the current observation to the
best fitting internal representation, we favor the opposite
way, namely a relatively simple pre-processing and feature
extraction in combination with a distributed probabilistic
multi-hypothesis estimation. This allows to generate and
track a set of alternative location hypotheses in parallel
which can be disambiguated in the following action-
perception-cycles. The reason is, that in ambiguous, maze-
like environments, localization on the basis of a crisp
mapping from observationo to state x becomes very
unreliable. Therefore, probabilistic methods, like Bayes
filters, are required to quantify the ambiguity by means
of beliefs for multiple location hypotheses. In [3] we
introduced the basic idea and essential aspects of our
omniview-based Monte Carlo Localization and presented
first promising experimental results as work in progress.
A short recapitulation of our approach will be given in
the next section, before we present improved aspects and
new experimental results in section III.

II. SUMMARY OF OUR LOCALIZATION APPROACH

Our omniview-based probabilistic self-localization ap-
proach presented in [3] is a version of the Monte Carlo
Localization (MCL) [1], [2] and makes use of particle fil-
ters for approximating a multi-modal density distribution
coding the robot’s beliefBel(xt) for being in statext =
(x,y,ϕ)t in its state space.x andy are the robot’s position
coordinates in a world-centered Cartesian reference frame,
and ϕ is the robot’s heading direction. The key idea
of MCL is to represent the beliefBel(xt) for being in
the current statext by a setSt of N weighted samples
distributed according toBel(xt): St = {x(i)

t ,w(i)
t }i=1..N.

Here eachx(i)
t is a sample, and thew(i)

t are non-negative
importance weights. Because the sample set constitutes a
discrete approximation of the continuous density distri-
bution, particle filters are computationally efficient since
they focus the particles on those regions in state space
with high likelihood, where things really matter.

The general idea of our omniview-based MCL is illus-
trated in Fig. 1. As map of the environment, our approach
employs a graph representation of the environment (Fig. 1,
bottom right) which is learned on-the-fly while manually
joy-sticking the robot through the operation area. Each
node of the graph is labeled with both visual refer-
ence observationsor(x,y,ϕ) extracted from the respective
panoramic view at positionx,y in heading directionϕ
and the corresponding odometric data about the correct
pose at the moment of the node insertion during teaching.
A new node (reference point) is inserted, either if the

Euclidian position distance to other reference points in a
local vicinity or if the Euclidianfeaturedistance between
the current observationot and the reference observations
or(x,y,ϕ) at adjacent reference points are larger than given
threshold values. The labeling of the graph nodes with
odometric data about the pose of the robot, however,
necessitates an efficient correction of odometry because
of the increasing error over time, especially concerning
the orientation angle. To attenuate this effect, we utilize
a specific feature of the market floor that shows a very
regular structure caused by tiles which are uniquely ori-
ented across the whole market. Details of our vision-based
odometry correction are presented in [3]. We successfully
utilize this odometry correction for learning of consistent,
large-scale graph representations of the operation area.

1) Feature extraction for observations:Both during
map-building and self-localization, the omnidirectional
image is transformed into a panoramic image (Fig. 1, top)
that is partitioned into a fixed number of non-overlapping
sectors. The following criteria determined the selection
of appropriate features to describe the omniview: a) To
allow for an on-line localization, the calculation of the
features should be as easy and efficient as possible. b) The
feature set should include the orientation of the robot as
prerequisite to estimate its heading direction. c) It should
allow an easy generation of expected observations for
hypothetical poses of the robot. Considering these criteria
and the requirements of other omnivision-based localiza-
tion approaches published recently, e.g. [9], [8], [6], [7],
we decided to implement the simplest feature extraction
method possible: for each segment of the panoramic image
only the mean RGB-values are determined.

2) The localization algorithm:The prediction and cor-
rection update of the sample set is achieved by a procedure
often referred to asSequential Importance Sampling with
Resampling. In the Prediction phase (robot motion), the
sample set computed in the previous iteration (or during
initialization) is moved according to the last movement
of the robotut−1 (Fig. 1, left). Here, themotion model
p(xt |xt−1,ut−1) defines how the position of the samples
changes using informationut−1 from odometry. This way,
MCL generatesN new samples that approximate the
expected density distribution of the robot’s pose after the
movementut−1. To determine the expected observations
ô(i)

t of the moved samplesi, our approach requires in-
terpolations both in state and feature space because of
the coarse graph representation and the chosen feature
coding. Therefore, for each samples(i), we first interpolate
linearly between the reference observationsor(x) of the
two reference nodes closest to the respective sample
position x(i)

t . After this, the resulting feature vector is
rotated according to the expected new orientationϕ(i)

t of
the samples(i), utilizing a linear interpolation between the
features of adjacent segments. This way, we obtain a set of



N new feature vectorŝo(i)
t (x,y,ϕ) describing the expected

observations of the moved samples in the new statesx(i)
t .

In the Update phase (new observation), the actual ob-
servationot at the new robot position has to be taken into
account in order to correct the sample setSt . For this, the
importance weightw(i)

t of each samples(i) is computed.
It describes the probability that the robot is located in the
statex(i)

t of the sample. The weights are determined from
the errorsE(i)

t between the current observationot at the
new robot position and the expected observationô(i)

t of
each samples(i) applying the camera-specific observation
model p(ot |xt) = f (Et) which returns the likelihood of an
observation error for a given pose (see Sec. III-D.1). This
way, the weightsw(i)

t = α · f (E(i)
t ) are determined, where

α is a normalization constant that enforces∑N
j=1w( j)

t = 1.
The final sample setSt for the next iteration is obtained
by resampling from this weighted set. The resampling
selects those samples with higher probability that have
high importance weights. Samples with low weights are
removed and randomly placed in the state-neighborhood
of samples with high weights.

3) Previous experiments and problems encountered:
All experiments were carried out in a large home store
with our experimental platform PERSES, a standard
B21 robot additionally equipped with an omnidirectional
imaging system for vision-based navigation and human-
robot interaction (Fig. 1, left). Our previous experiments
reported on in [3] were performed as simple off-line
cross-validation tests on different subsets of observation
sequences captured while manually joy-sticking the robot
through the store. A subset of these pose-labeled om-
niviews (about 2.000) was used as reference observations
or(x,y,ϕ) to build the graph while the other ones, the
“unknown” omniviews (about 6.000) captured between
the reference points along the traveled known route, were
used as test data to determine the localization errors in a
series of experiments. The achieved results confirmed the
general efficiency and accuracy of our omniview-based
probabilistic self-localization method.

In the practical application of our approach, however,
several problems occurred which forced us to further im-
prove technical and methodical aspects of our omniview-
based MCL-system. Moreover, we introduced a new ex-
perimental regime which consequently distinguishes be-
tween training tours traveled to build the graph and
test tours executed to acquire data (unknown observa-
tions labeled with the robot’s poses) for the localization
experiments. Now, the period of time between training
tour and test tours can be chosen between a couple of
hours at the same day and a few days or weeks, in
order to selectively investigate specific real-world effects,
like illumination changes or appearance variations (see
section III-D). To cope with highly varying illumination

conditions, we developed a very effective, reference-based
color and luminance adaption mechanism (see section III-
A). Because occlusions of the omniview are not only
a result of people standing nearby the robot or objects
being moved around, but also of local illumination ar-
tifacts, we developed a more selective mechanism for
the comparison between expected observations and actual
observation as prerequisite for the particle filter update
(sec. III-B). Other studies dealt with the impact of the
used observation model and the influence of a new type
of particles (grounded particles) on the accuracy of the
pose estimation (sec. III-D.1, III-C).

III. I MPROVEMENTS AND NEW RESULTS

A. Luminance stabilization and color adaptation

Highly varying illumination conditions are typical for
this kind of operation area because of the great number of
different lighting effects, e.g. by shop windows, air shafts,
or artificial lighting sources. However, to guarantee stable
luminance and color conditions within the camera image,
we developed an on-line control mechanism that real-
izes a reference-based luminance stabilization and color
adaptation. For this purpose, the camera was equipped
with a white reference ring attached outside the glass
cylinder of the mirror optics, as shown in Fig. 2. The
surface of this reference ring is not flat and horizontally
oriented, but shows a slightly convex curvature so that
light coming from the side is taken into account, too. With
that, all local illumination or diffuse reflectance effects
directly influence the luminance and color of the white
reference ring. This is an optimal prerequisite for an ef-
ficient reference-based luminance and color stabilization.
Because the employed digital camera (Sony DFW-VL500)
allows to externally control the mechanical iris and the
gain of the Red and Blue channels (Rgain,Bgain), our
control mechanism can directly affect the level of image
formation. This is an essential advantage over all image
processing based normalization algorithms proposed in
recent years. While the Y channel of the camera describes
the luminance, the U chrominance channel ranges from
Red to Yellow and the V channel from Blue to Yellow.
In case of perfect daylight illumination the chrominance
values U and V of a white object must be zero. We employ

Fig. 2. (Left) Omnidirectional camera with a convex, white reference
ring outside the glass cylinder serving as reference object for luminance
control and color adaptation. (Right) Captured omniview showing the
white reference ring marked as hatched region.



this specific reference of the color White for our lumi-
nance and color stabilization using a constant value PID-
controller which operates on the pixel region of the white
reference ring (Fig. 2). On the one hand, the controller
opens or closes the mechanical iris of the camera in order
to stabilize the mean luminancēY of the reference region
at a constant value of about 90% of its maximum. On the
other hand, it controls the mean chrominance valuesŪ
and V̄ of the reference region to zero using the external
gain control (Rgain, Bgain). Because of this very effective,
reference-based luminance and color stabilization, in all
experiments, we are able to much better handle extreme
changes in illumination and achieve relatively stable color
values for subsequent feature extraction.

B. Selective observation comparison (SOC)

In the Update phase, for each samples(i) the importance
weight w(i)

t is computed. The importance weightsw(i)
t are

determined on the basis of the errorE(i)
t between the ex-

pected observation̂o(i)
t of the samples(i) in its current pose

x(i)
t and the actual observationot applying the camera-

specific observation modelp(ot |xt) (see section III-D.1).
In the previous implementation, we simply determined
this error E(i)

t by calculating the norm (L1 or L2) of
the complete difference vectord(i)

t = ot − ô(i)
t . This non-

selective method calledcomplete observation comparison
(COC) has proved to be powerful and robust for small
occlusion or disturbance rates (< 20%). However, to better
deal with severe occlusions or disturbances caused by,
e.g., people standing nearby the robot or local illumination
artifacts, we developed a new mechanism to determine the
error E(i)

t on the basis of a selective comparison between
expected and actual observations. The general idea of this
selective observation comparison (SOC)approach can be
described as follows: If no local occlusions or disturbances
occur in a specific robot pose, the expected and the actual
observation should match nearly perfectly. However, in
case of local disturbances, the affected segments do show
significant differences and, therefore, should be left out
from computing the total observation error. Because of
this, our new SOC-algorithm takes only those segments
into account that show the lowest differences between
expected and observed features as well as minimize a
segment-specific error function. This way, the negative
influence of local occlusions or disturbances on the obser-
vation error can be largely reduced. First, for eachj of the
n segments an individual segment errorej is determined
as difference between the expected observationô j and the
actual observationo j in this segment. After that, these
segment errors are ranked in ascending order, withe1 ≤
e2≤ ej ≤ . . .≤ en, yielding those segments most important
for the current observation comparison. Thereafter, the
lowest total error is searched for by iterating the number

of segmentsk taken into account. Of course, the best result
will be achieved, if only a single segment, namely the first
one with the lowest error, is taken. To avoid this effect and
to compensate a preferring of a small number of segments,
a penalty function is introduced which is the larger the
smaller the number of the segmentsk taken into account
is. In a series of experiments, several penalty functions
were investigated, however, the term

√
n/k yielded the

best results in handling disturbances. The total error is:

E(i) =
n

min
k=1

((
c+

k

∑
j=1

ej

)
·
√

n
k

)
−c

with c as a small offset constant avoiding a multiplication
by zero. Finally, the selected lowest total observation error
E(i) is used to determine the respective importance weight.

C. Inclusion of grounded samples

To allow a faster self-localization or re-localization of
the robot in case of a complete loss of positioning, we
extended our previous algorithm and inserted a specific
type of samples with fixed positions and orientations, so
called grounded samples. These grounded samples are uni-
formly distributed within the state space and act as nuclei
of crystallization for the freely movable regular samples
in all cases, where these samples are already concentrated
in a local region of the state space, but a new localization
is required, for example, because of a false localization
or “kidnapping” of the robot. In a series of experiments,
we investigated the influence of the number of regular and
grounded samples on the localization error. For the given
localization problem, the highest efficiency was achieved
with 4.000-10.000 regular and 200-500 grounded samples
depending on the complexity of the task. Therefore, in the
following experiments a constant number of 200 grounded
and 6.000 regular samples is used. The time required
for the particle filter update directly depends on the total
number of samples. With the current on-board equipment
(1500 MHz Athlon), our algorithm requires about 100 ms
for 6.000 samples. The time for image adaptation and
feature extraction takes about 25 ms per image. Therefore,
real-time localization is possible.

D. New experimental results

As mentioned above, we introduced a new regime
for the localization experiments which consequently
distinguishes betweentraining tours traveled to build
the graph andtest tours, called unknown tours (UT),
executed to acquire unknown data for the localization
experiments. Because the period of time between training
tour and test tours now can be chosen arbitrarily,
specific real-world effects, like illumination changes
or appearance variations, can be investigated. Each of
the experiments reported in the following was repeated
50 times to determine the mean localization errors and
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Fig. 3. Learned graph of the operation area in the home store. The size
of the area is50×45m2, the graph consists of 3.500 reference points
(red dots) labeled with reference observationsor (x) and odometric data
about the posex of the robot at the moment of node insertion. The total
distance traveled to learn this graph was about 1.500 m. The reference
point for re-calibration during teaching is located left from the info point.

their variances. As explained in section II, our approach
employs a graph representation of the environment which
is learned on-the-fly while manually joy-sticking the
robot through the operation area (Fig. 3). The nodes
of the graph are labeled with both visual reference
observationsor(x,y,ϕ) and odometric data about the pose
x = (x,y,ϕ) of the robot at the moment of node insertion
during teaching. For correct pose labeling, we utilized the
vision-based odometry correction method presented in
[3]. To minimize the pose error for labeling during graph
building, the complete training course was broken into
shorter sub-courses of a maximum length of 150 meters
allowing a re-calibration at a reference point with exactly
known position (Fig. 3). Using the recorded unknown
test data acquired during several test tours (UT1-4), we
conducted a great number of localization experiments
comparing both observation comparison methods. In all
experiments, we studied the worst-case scenario: our
robot had no prior information about its initial pose - a
typical global localization problem.

1) Impact of the observation model:Fig. 4 depicts
the utilized camera-specific observation modelp(ot |xt) =
f (Et) of our omnivision system. The dark, solid line
was determined experimentally and shows the averaged
probability distribution of the errors between reference
observations and a great number of snapshots captured at
these reference positions over a longer observation period
(12 hours). Despite the mainly static character of the
environment, the captured images do vary due to changes

in illumination, pixel noise, and several camera-specific
influences, like drift processes. The dotted line depicts the
course of the approximated observation model described
by a Gaussian model with a standard deviation ofσ = 0.1.
In a series of experiments we investigated the influence
of the parameterσ on the mean localization error and
variance, and the percentage of localization losses. The
localization is regarded as lost, if the localization error
is larger than 2.5 m per estimation step. The localization
accuracy and percentage of localization losses achieved
for different σ are given in Table I. As can be seen,
the smaller σ is the stronger the observation model
influences the computation of the importance weights.
For σ < 0.05, already slight differences between expected
and actual observation cause large error likelihoods and,
therefore, very similar, small importance weights. Be-
cause of this, alternative localization hypotheses cannot
be disambiguated effectively, therefore, the localization
errors and variances remain high. Forσ > 0.2, a similar
effect can be observed. In this case characterized by a
relatively flat Gaussian, the selectivity of the observation
model is largely lost. Therefore, even strongly differing
observation errorsEt create very similar error probabilities
and, with that, very similar importance weights. Because
of this, the particle cloud cannot be resampled effectively,
and the condensation dynamics last much too long. In
the experiments, the best overall results were achieved
with σ = 0.1, therefore this value was employed in all
the following experiments. In this case, the majority of
samples quickly converges to the correct position, and
the final spreading of the particle distribution reaches
a minimum. In all experiments, our novel SOC-method
clearly outperforms the COC-method.

2) Experiments comparing SOC vs. COC:The objec-
tive of the following series of experiments is to directly
compare the two observation comparison methods re-
garding localization accuracy, robustness, and percentage
of localization losses due to real-world disturbances and
occlusions. Each experiment was repeated 50 times to
determine the mean localization error and its standard
deviation σ . Fig. 5 illustrates the courses of the mean
localization errors obtained from a series of experiments

Fig. 4. Experimentally determined observation model of the used
omnivision system. The model returnsp(ot |xt) = f (Et), the likelihood
of an error between actual and expected observation in posext .



SOC-method COC-method
σ loc. loc. % local. loc. loc. % local.

of OM error σ losses error σ losses
0,01 18,92 6,00 73,97 18,10 5,59 71,83
0,05 0,99 0,98 0,64 3,64 2,54 12,96
0,10 0,73 0,60 0,47 2,16 1,80 5,99
0,15 0,93 1,47 2,16 1,91 2,07 6,54
0,20 1,34 2,45 6,00 0,96 0,57 1,18
0,25 1,44 2,67 6,75 2,18 1,23 4,45

TABLE I

INFLUENCE OFGAUSSIAN OBSERVATION MODEL ON LOCALIZATION

ACCURACY AND PERCENTAGE OF LOCALIZATION LOSSES.

performed on test observations of unknown tours (UT
1,2,4) traveled a couple of days after the training tour.
Table II (upper part) additionally compares the mean
localization errors and standard deviationsσ of these tours
for both comparison methods. It turned out that our SOC-
method in all experiments produces significantly lower
localization errors and does lose the correct position only
very seldom (< 0.5% of all estimations). In UT 2, a
demanding tour with a great number of natural occlusions
and disturbances, the COC-method fails almost completely
(Fig. 5, middle). Due to the disturbances, it generates
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Fig. 5. Courses of the localization errors of a series of experiments
performed on test observations of three unknown tours UT1 (55 m), UT2
(47 m), and UT4 (340 m) traveled a couple of days after the training
tour. An error larger than 2.5 m characterizes a loss of positioning.

numerous alternative localization hypotheses and is not
able to disambiguate the correct robot’s position. This
results in a much too large localization error between 2
and 30 m. Fig. 5 (bottom) compares the localization results
achieved on the test data of the extra long unknown tour
UT 4 with a length of 340 meters. As can be seen, the
time needed for localization by means of the SOC-method
is shorter, and the localization error is without exception
smaller than that of the COC-method (see Table II, too).
Moreover, the COC-method repeatedly looses the location
during this tour. All experiments clearly express the merits
of the SOC-method in handling critical situations.

3) Localization at known reference points:It should be
noted that a significant part of the localization errors de-
termined in the experiments presented before is a result of
a non-perfect pose labeling of the reference nodes and test
observations due to deficits of the vision-based odometry
correction [3]. For this reason, the true absolute errors
of all experiments are typically smaller than the ones
reported here. To eliminate the influence of the odometry
correction used for labeling, we included another localiza-
tion experiment, that does not require reference odometry
data for evaluation of the localization results. Instead, it
uses a reference point in the operation area with exactly
known position (Fig. 3). Table II (bottom) compares the
localization results at the end of several test tours with
respect to this reference point. However, because of the
comparatively low rate of image disturbances at this point
both methods achieve roughly equal localization results.
In this case the SOC-method is not able to take advantage
of its disturbance suppression.

4) Occlusion experiments:To investigate the efficiency
and robustness of the two observation comparison methods
dealing with occlusions and disturbances, we utilized the
mean localization error as integral performance measures
again. In the occlusion experiments, the omni-images of
unknown test observations were randomly occluded by
artificial image segments showing Gaussian-distributed
color noise. The impact of occlusion effects was gradually
controlled by the percentage of image content covered by
these artificial images. Please note that the observations of

SOC-method COC-method
tour loc. error loc. σ loc. error loc. σ

(in m) (in m) (in m) (in m)
UT1 0,71 0,25 0,79 0,33
UT2 0,93 1,47 1,91 2,07
UT4 0,45 0,20 0,59 0,28

UT1 0,31 0,04 0,38 0,08
UT3 0,62 0,08 0,58 0,10
UT4 0,60 0,07 0,40 0,08

TABLE II

COMPARISON OF THE MEAN LOCALIZATION ERRORS AND THEIR

VARIANCES σ DURING SEVERAL TEST TOURS(UT 1-4) AND WITH

RESPECT TO REFERENCE POINTS WITH KNOWN POSITION(BOTTOM).



the test tours additionally contain natural disturbances and
occlusions which cannot be quantified in detail, but worsen
the localization results. However, this effect can be tol-
erated, because it is a systematical error influencing both
comparison methods in a similar manner. The influence of
the two observation comparison methods on the accuracy
of the pose estimation is illustrated in Fig. 6 for various
degrees of occlusion and two different localization test
tours (UT1, UT2). During UT1, the error curves for the
COC- and SOC-method behave very similar until 30% oc-
clusion (mean position error of 70 cm), thereafter, the error
curve of the COC-method dramatically increases since the
images are affected by severe occlusions which cannot be
handled by this non-selective comparison method. For the
SOC-method the mean position error remains very low
until 60% occlusion, thereafter it begins to increase, too.
During UT2, which is one of the most demanding tours
showing a great number of natural disturbances which
negatively influence the experiments, the localization error
of the COC-method is already very high at the beginning
and continuously increases for higher occlusion rates. In
comparison to this behavior, the error of the SOC-method
remains low until 45% occlusion, only after that it begins
to increase. In both cases, our SOC-method produces
significantly lower localization errors, because it can better
handle higher image occlusion or disturbance rates.

IV. CONCLUSIONS AND FUTURE WORK

This work is the continuation of our omniview-based
MCL approach reported in [3], where we introduced
the basic idea and essential aspects of our vision-based
probabilistic approach and presented first promising ex-
perimental results as work in progress. In this paper, we
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Fig. 6. Results of experiments investigating the influence of local
occlusions on the absolute position error during two different localization
test tours on completely unknown data (UT1, UT2). The curves show
the mean localization errors and theirσ as error bars.

introduced several technical and methodical improvements
of our original approach addressing challenges arising
from the characteristics of our real-world scenario, a home
store, and presented a series of new experimental inves-
tigations. To compensate color variations under changing
scene illumination, we introduced a reference-based, on-
line control mechanism realizing a robust luminance and
color adaptation already at the level of image formation.
To better deal with severe occlusions or disturbances,
we proposed a novel, very robust mechanism allowing
a selective observation comparison as prerequisite for an
effective particle filter update. We conducted a great num-
ber of comparing localization experiments investigating
the impact of the observation model and of our new
observation comparison method on localization accuracy
and dynamics dealing with occlusions and disturbances.
The results of these new experiments (see video) confirm
the greater robustness and superiority of our improved
approach in handling critical real-world situations, e.g.
situations with occlusions, illumination artifacts, or ap-
pearance variations. Our new approach works in real-
time and can easily be trained in new operation areas
by joy-sticking. Currently, theoretical and experimental
studies are carried out to further improve our omniview-
based MCL-system. For example, we are investigating the
problem of an on-line adaptation of the reference graph
in order to handle appearance variations at the reference
points in the learned graph, e.g, as result of a varying
filling of the goods shelves or changes of the hallway
configuration.
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