Pattern Recognition, Proc. 25th DAGM Symposium, Magdeburg, Germany, 2003, pp. 410-417, Springer-Verlag Berlin Heidelberg, ISBN 3-540-40861-4

Extraction of orientation from floor structure for
odometry correction in mobile robotics

Christof Schroeter, Hans-Joachim Boehme, and Horst-Michael Gross

Fachgebiet Neuroinformatik,
Technische Universitaet lImenau
{christof.schroeter, hans-joachim.boehme, horst-michael.gross} @tu-ilmenau.de

Abstract. We are presenting a method for correcting odometry readings of a
robot for increased accuracy of position estimation. Our method uses a simple
pragmatic approach and exploits the distinct structure of the floor in our exper-
imental area. By continually extracting orientation information from the floor
view, we are able to correct the heading component of odometry, thereby elim-
inating the major source for position errors. Compared to other approaches the
solution is computationally inexpensive. Our experiments show that by employ-
ing our correction method we are able to significantly increase position accuracy
and consistently map paths up to several hundred meters.

1 Introduction

Self-localization is a basic task in any autonomous robot application. Knowledge of po-
sition is a pre-requisite to any sensible navigation behaviour. Most robots are equipped
with some sort of odometry sensors (like wheel encoders) for measuring their own mo-
tion. Using dead-reckoning, these measurements can be used by the robot to localize
itself relative to a reference point. Due to the nature of dead-reckoning the resulting po-
sition estimates are prone to a variety of errors, and accuracy is decreasing over time. In
our PERSES project [4], we developed a simple approach for correcting the orientation
component of odometry readings by exploiting the special floor structure found in the
environment we are using for development and experiments, a home depot.

This paper is structured as follows. In section 2 we motivate the use of our orien-
tation correction method and discuss related topics such as scan matching, landmark
navigation and SLAM. Section 3 shows in detail the implementation of our floor image
processing and correction of odometry data. Section 4 contains experimental results and
proves the vast improvement in position estimation, enabling us to consistently map an
area of 40 * 40m? without additional localization techniques.

2 Localization

In our PERSES project, we are developing an interactive artificial shopping assistant
that will act as a guide and mobile information terminal for customers in a store en-
vironment. Current experimental platform is a RWI B21r robot. To be able to act au-
tonomously, the robot must localize itself within its environment. The B21r is equipped

with wheel encoders to keep track of its own position by dead-reckoning. Odometry
is widely used in robotics because it is inexpensive, allows high sampling rates and
provides good short-term accuracy. However, the fundamental idea of integration of
incremental motion information inevitably leads to the accumulation of errors. Error
sources can be divided into 2 categories: systematic and non-systematic errors. Ex-
amples for systematic errors are inaccurate drive geometry (wheel diameters etc.) and
finite encoder resolution, while non-systematic errors are introduced by uneven floors,
slipping or external forces (interaction with external bodies) [1]. While some of these
errors can be corrected by carefully adjusting system parameters [2], the overall effect
of deviation in position estimation is unbounded if no external reference is used. Partic-
ularly, the accumulation of orientation error causes large position errors. An example is
shown in Fig. 1 (left). Here the robot traveled a straight path of 30 meters, turning by
180° at the end and returning to the starting point. Due to increasing orientation error,
the straight legs appear bent and the end point is virtually located 10 m from the start.

Advanced localization techniques have been an area of intensive research for a long
time and a number of different methods have been developed.

2.1 Scan Matching

In scan matching, features are extracted from readings of range measuring sensors and
matched to obtain displacement between measuring positions [6]. Most applications use
laser scanners for their high accuracy and reliability. Sonar sensors have been used too,
but results are generally less accurate due to the higher variance of sonar measurements.
For robust results from matched scans this method still depends on a position hypothesis
from odometry. Because we are strongly focusing on visual sensing and aiming towards
a low-cost platform, regarding the potentially significant cost increase by equipping a
robot with a 2D laser scanner, we are hesitant to rely on scan matching.

2.2 Landmark Navigation, Monte Carlo Localization

Another possibility of tracking the position of a robot is by localizing itself relative to
known landmarks in the environment. Landmarks can be detected by range sensors or
visual input. Usually the robot needs to maintain its position between landmark obser-
vations by odometry. Newer methods, like Monte-Carlo-Localization (MCL), perform
probabilistic localization by estimating a probability distribution over the state space [3,
5]. This distribution is updated with motion (odometry) and environment observations.
Both landmark navigation and MCL need a map of their environment. In order to build
this map, knowledge of respective positions is needed, so either method is not fit for
mapping previously unknown terrain.

23 SLAM

The chicken-and-egg problem of mapping and localization is adressed by a still rela-
tively new method called Simultaneous Localization and Mapping (SLAM). In SLAM,

mapping and localization are not seen as separate tasks, but solved together. This is
derived from the observation that the 2 problems depend on each other. The base of
SLAM is an extended state space that contains position and map. A probability dis-
tribution over this common state space is maintained that converges with motion and
observations [8]. Most successful applications are using laser scanners, while visual
SLAM and adaption to arbitrarily large environments are subjects of ongoing research.

Here, our aim was to develop a pragmatic solution to consistent map building that
is computationally efficient and does not need costly sensoric equipment. Furthermore,
our experimental observations show that odometry errors of our experimental platform
B21r mainly occur in the orientation component of odometry data. While drive range
measurements are reasonably accurate, the growing and unpredictable error in orienta-
tion causes mapping to fail completely without a means of correction. Looking for a
source of reference, we found the floor pattern in our experimental area contains easily
recognizable features that provide (partial) orientation information.

The floor consists of square pieces of 30 cm by 30 cm. While the pieces themselves
are only slightly textured, the lines between them show a strong contrast (Fig. 1 right).
Orientation of these pieces is consistent over the whole store area. The idea of our
method is to detect the main orientation of the lines between pieces and use them as
reference for recalibrating odometry at each motion step.

We have experimented with deriving displacement directly from the floor observa-
tions, but due to the narrow field of view we would need a very high update frequency
for robustly finding corresponding points between subsequent pictures.

Fig. 1. left: the map shows the effects of heading error in odometry (light areas mark free space,
dark areas mark obstacles), right: tiled structure on the floor of our experimental area, a home
depot

3 Floor-based odometry correction

To obtain images of the floor we use a camera dedicated to this purpose only. This
camera is attached at a height of 1.40m and protruding, looking down vertically, so that
it is seeing about 50cm of ground space in front. Images are captured at the relatively
low resolution of 192 * 143 pixels for fast processing. We use grayscale images because
color yields no further information about orientation.

3.1 Processing the floor image

Figure 2 (top left) shows that the image is distorted radially, which is visible in the slight
curving of straight lines around the center of the image.

Fig. 2. top row from left to right: initial image as captured from the camera, image after radial
correction, angle of local orientations (gray values coding orientation angles in a range of -90°
to 90°), bottom row: power of local orientations (smoothed by box filter), histograms for the 4
sectors (see text for explanation), overall histogram showing strong peak at main orientation

To correct this, each pixels distance to the center of the image is increased by the
formula

2
Trew = Told * (1 + 754 % k)

with an empirically determined radial correction factor £ = 2 x 106, This is a very
simple approach to correcting camera abberation, but it’s sufficient for our problem.
Figure 2 (top center) depicts the corrected image.

The next step is to calculate local orientation for each pixel. This is done by applying
an orientation tensor (inertia tensor method) as described in [7].
In detail, this consists of the following steps:

1. Bandpass filtering of the image by applying binomial filters of different sizes.
By = image @ binom(3 3)
By = By @ binom(5 5)
B3 = 3.0 % (B — By)

2. Calculate local x- and y-gradients as difference of direct neighbours

’ _ (0Bs(x,y) 0Bs(z,y) T
Via(e.y) = (200, 2P0

= (Bs(z — 1,y) — Bs(x + 1,y), Bs(x,y — 1) — Ba(x,y+ 1))"

3. Calculate angle and power of local orientation at each image point
(?Bg 833 633 ’ aBS 2
2¢0 = at 2 _
¢ ““”(*w*ay(m) By

ower = <%>2_<% 2—}—4*%*% * % 2—}— % AT
p - Ox Jy Ox Oy Oz dy

The result of the orientation tensor are fields of angle and power of local orientation
for each point of the image. As seen in Fig. 2 (top right, bottom left), at the edges of the
tiles there are strong local orientations with angles aligned to direction of these edges
while on the surface of the tiles the orientations are unaligned but with low power. In
a histogram of local orientations, weighted with respective power, the maximum will
show the robot orientation with respect to the main orientation of the floor. While the
orientationtensor output contains a range of -90° - +90° , the actual information that can
be gathered is only an angle in the range 0° - 90° . Due to the square tiles images rotated
by a multiple of 90° are indistinguishable. This corresponds to the histogram having 2
(dependent) maxima, one originating from vertical lines, the other from horizontal ones.
Each angle k < 0° corresponds to an angle k + 90° in the orientation tensor output,
therefore all these values are simply mapped into the 0° - 90° range by adding 90°.

Situations may occur where the robot encounters objects lying in its path or steers
near towards immobile objects, like e.g. goods shelfs. In such cases, it may happen that
the view of the floor camera is partly occupied by objects occluding the floor, leading
to unpredictable local orientations in a part of the image and disturbing the histogram.
To avoid errors resulting from such a situation the image is split into 4 sectors (upper
right, upper left, lower right, lower left) and histograms are evaluated for each sector
separately. This is based on the expectation that in most cases an object will only cover
one sector. The histograms are smoothed by a box-filter, then for each sector the main
orientation is determined by the maximum in the sector-specific histogram. If one of
these 4 values is outlying, the respective sector is discarded, the remaining sectors are
merged into a common histogram by multiplication and the maximum of this histogram
is regarded as main orientation in the image.

Problems may occur when the floor structure is widely obscured by large objects or
strong light/shadow contrasts introduce misleading edges. Ideally this will result in the
histogram having no strong maximum, in which case no correction will be applied until
the floor is visible again. However, situations may occur where objects in the image lead
to a wrong orientation. Since we only use this correction approach during map building
by joysticking, the human operator is responsible for avoiding such critical situations.

3.2 Re-calibrating odometry

Given the true orientation of the robot, we can now correct odometry readings. In our
architecture, sensor readings from wheel encoders are already translated into a position
in low-level processing and sent to the high-level software as (X,y,o)-triplets. These low-
level routines always use the orientation measured by odometry and therefore calculate
wrong (x,y)-positions when the true orientation is different. This means application
level software must not only adjust the orientation component, but also calculate the
true position change between 2 odometry data readings and update position. To this
purpose, the last odometry reading is stored together with the corrected position and
the angle difference between odometric orientation and visual orientation is maintained
continually. When receiving a new odometry position, the difference between current
and previous believed position is calculated as the driven path, rotated by the known
odometry orientation error and added to the last corrected position. Correction over 2
steps is shown in Figure 3. The method simplifies by implying all the rotation error
that occurs in one step is aquired at the starting point of this particular step. This seems
sufficient for very small steps (updates are done with a distance of a few cm only).
Experimentation with more sophisticated but computationally expensive models only
showed marginal differences.

accumulated
rotation error

(X, 32)-(x5, 37) \

— COIT@Cted path

odometry path

current step rotation error
—— (difference of odometry angle
‘(xzs)’2) ‘ + accumulated error and

~ visually determined orientation)

odometry

orientation __ |(xy. ¥;) (o3| Fig. 3. Principle of correct-
— Start ing odometry with reference
(4,1) orientation

Now with a good estimate of the true position of the robot, we can build maps by
generating local maps from sonar range readings and incorporating them into a global
map. For this purpose we use the grid map approach and update formula from [9].

4 Results

We tested our method by driving closed loops of different size in our home depot ex-
perimental area. By exactly returning to the starting point, we were able to determine
the error in localization.

In the first experiment (Fig. 4 top row) we drove through 2 hallways with an overall
path length of about 55 meters. Without correction the end position yielded by odom-
etry was about 7 m from the real position (left). With correction (right), the difference
between real and estimated position is about 10 cm in either x- and y-direction of the
reference frame. After driving the same loop back in the opposite directon the error still
was no larger than 12 ¢cm in either direction. The second pair of maps (Fig. 4 bottom
row) shows an experiment with a slightly longer path of about 120 m. Here without
correction the error was more than 12 m. With correction, however, the position after
driving that path was 8 cm in x- and 30 cm in y-direction, and after driving the same
path back to the starting point again, it was 30 cm and 40 cm. Overall repeated experi-
ments show that we can assume a total position difference of about 20 cm for each 50
m of driven path. These remaining errors are introduced by inaccuracies in the visual
orientation as well as from errors in odometry range measurement.

Fig. 4. Comparison of maps with uncorrected and corrected odometry, top left: closed path of
55 m length, without correction, right: same with correction, bottom left: closed path of 120 m
without correction, right: same with correction

Finally Figure 5 shows the result of mapping an area of about 30% of the whole
store. Here, after a total path length of 350 m, the effects of the remaining position error
become visible in the map (2 neighbouring hallways appear too near together leaving
no room for the goods shelf between). The total error was 0.9 m in both directions.
To avoid the accumulating of errors, we still need to re-calibrate robot position after
driving some hundred meters. To this purpose, we will choose some reference points
and measure their respective positions, so we can set exact position in regular intervals
when crossing such a point while joysticking the robot around. Once a map is generated,
we do not rely on correct odometric information anymore because we can then employ
another localization method based on that map as explained in section 2.2.

Fig.5. Here we mapped a
signifi cant part of the home
depot area

5 Conclusions

We developed and tested an approach to vision-based odometry correction by extract-
ing orientation from floor images. The implementation exploits the strong structure we
find in our experimental area, but with specific pre-processing it may be able to adapt
to other recognizable patterns. Although we cannot completely negate the long-term
effect of inaccurate odometry, we showed that it is possible to build maps without the
necessity of further sensors or special preparation of the environment. Our future inter-
est, however, lies in visual SLAM (Simultaneous Localization And Mapping) and we
expect to be able to build consistent maps without the need for odometry correction and
to gain flexibility in arbitrary environments for our robots.

References

1. J.Borenstein, H.R.Everett, and L.Feng. Where am I? - Sensors and Methods for Mobile Robot
Positioning. Technical report, University of Michigan, 1996.

2. J.Borenstein and L.Feng. Measurement and correction of systematic odometry errors in mo-
bile robots. IEEE Trans. on Robotics and Automation, 12(5), 1996.

3. F.Dellaert, D.Fox, W.Burgard, and S.Thrun. Monte carlo localization for mobile robots. In
Proc. of the 1999 IEEE Intl. Conf. on Robotics and Automation (ICRA), 1999.

4. H.-M.Gross and H.-J.Boehme. Perses - a vision-based interactive mobile shopping assistant.
In Proc. of the IEEE Intl Conf. on Systems, Man and Cybernetics (IEEE-SMC 2000, pp 80-85,
2000.

5. H.-M.Gross, A.Koenig, H.-J.Boehme, and C.Schroeter. Vision-based monte carlo self-
localization for a mobile service robot acting as shopping assistant in a home store. In Proc.
of the 2002 IEEE/RSJ Intl. Conf. on Intelligent Robots and System (IROS2002), pp 265-262,
2002.

6. J.-S.Gutmann and C.Schlegel. Amos: Comparion of scan matching apporaches for self-
localization in indoor environments. In Proc. of the 1st Euromicro Workshop on Advanced
Mobile Robots (EUROBOT ’96), 1996.

7. B.Jaehne. Practical Handbook on Image Processing for Scientific Applications. CRC Press
LLC, Boca Raton, Florida, 1997.

8. M.Montemerlo, S.Thrun, D.Koller, and B.Wegbreit. FastSLAM:A factored solution to the
simultaneous localization and mapping problem. In Proc. of the AAAI Natl. Conf. on Artificial
Intelligence, 2002.

9. Hans Moravec. Sensor fusion in certainty grids for mobile robots. Al Magazine, 9(2):61-77,
1988.

