
in: Proc. Int. Conf. on Artifical Neural Networks (ICANN) 2003, Istanbul, pp. 346-349, Bogaziai University Press

Is Reinforcement-Learning Able to Solve Real-World

Challenges?

V. Stephan, M. Saupe, M. Bischoff, H. Reindanz, H.-M. Gross.
Ilmenau Technical University, Department of Neuroinformatics, P.O.B. 100565,

D-98684 Ilmenau, Germany
{vstephan,homi}@informatik.tu-ilmenau.de

Abstract

In this paper we compare several reinforcement-
learning (RL) approaches with respect to their ability
to solve problems arising in real-world. Thereto, we
investigated various RL-agents, ranging from classical
value-iteration like Q-learning to policy-iteration tech-
niques like ADHDP. These agents try to solve several
tasks within a simulated environment featuring proper-
ties, that usually characterize real-world problems like
continuous state and action space, partial observability,
changing goals or dead-times.

1 Introduction

There have already been a number of benchmarks in
context of reinforcement learning, such as [1] and [2].
But these tests did not deal with real-world problems or
were only focused on one special aspect arising in real-
world. Therefore we have decided to compare various
methods of reinforcement learning using a simple test
environment. The tests are designed with respect to
following problems of real-world: partially observable
system properties, time changing goals, dead-time be-
tween control variables and observed inputs. In a sep-
arate study, R-learning and different Q-learning were
investigated [3]. In this paper, we want to continue this
work with emphasis to other real-world specific aspects
and extend the tests to approaches based on Growing
Neural Gas [4] and ADHDP [5].

2 Benchmark-Scenario

To investigate the performance of the presented RL-
architectures in the framework of real-world control
problems, we decided not to conduct experiments with
a real problem, because of two major drawbacks: First,
a benchmark usually requires many experiments, which
would be very time consuming on a real platform or
process and second, it is almost impossible to guarantee

identical system properties for every single experiment
in order to make the results comparable.

Because of this, we use a typical and well-known con-
trol problem, which was extended by the interesting
real-world properties. The environment consists of
a ball rolling in a mountain range, which is defined
by the polynom y = 32x4 − 64x3 + 42x2 − 10x + 0.95
with x ∈ [0 . . . 1] (see figure 1). The dynamics of the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

start goal

position x

Figure 1: Simulation of a ball within a mountain range.

ball is described by equation 1, where ẍ denotes the
acceleration, ẋ the velocity, and x the position of the
ball.

mẍ = fA + fN + fC (1)
fA = −mg sin(α(x)) (2)

The tangent force fA, the unobservable disturbance fN ,
and the force fC , generated by the RL-agent to control
the ball, define the acceleration ẍ. m = 1000g denotes
the mass of the ball, g = 9.81m/s2 the gravity and
α(x) the steepness of the ground at position x.

For all the following experiments, the RL-agent receives
information about the current position x and velocity
ẋ of the ball and generates actions fC ∈ [−4N . . .+4N]
to move the ball from its initial position x0 = 0.25 to
the target position xT = 0.75. The reward is defined
as rt = −|xt − xT |.

3 RL-Agents

Standard Q-Learning:
Classical Q-learning [6] uses a predefined discrete set of
states, a predefined discrete set of actions, and approx-
imates via action value iteration a value for each state-
action pair solving the Bellman-equation (eqn. 3).

∆Q(st, at) = rt + γ ·maxat+1Q(st+1, at+1) (3)

Q(s, a) is the value of action a executed in state s, rt

denotes the received reward, and γ is a discount factor.

Q-Learning with Clustered State Space: A nega-
tive aspect of the standard Q-learning is its predefined
set of states. For a more efficient state-representation
a neural cluster called Neural Gas [7] is applied, which
places the state-representing weights according to the
real distribution of the systems states. By concentrat-
ing to these relevant regions of the systems state space,
the limited state-resources can be used much more ef-
ficiently.

Q-Learning with Incrementally Clustered State
Space: Both approaches explained above, use a fixed
number of 25 states. However, in a real-world envi-
ronment, which may change over time, it is difficult
to define an appropriate number of states in advance
to approximate the value function properly. By using
incremental neural networks, like Growing Neural Gas
[4], a RL-agent is able to adapt to changing environ-
ments by inserting new neurons in regions with high
input density.

Action Dependent Heuristic Dynamic Program-
ming: To handle problems with large state space and
continuous action space in reinforcement-learning, pol-
icy iteration approaches using function approximators
like MLP’s were developed. In ADHDP [5] a multi-
layer perceptron (MLP), called actor, is used to im-
plement the policy-mapping X 7→ A and a second
MLP, called critic, learns to approximate the Bellman-
equation. The actor is adapted by backpropagation
through the critic network in order to maximize the
critic output.

Random-Agent For comparison, we build a random-
agent, which chooses its actions independently from the
current input simply by generating equally distributed

actions within the given action space. This random-
agent of course is not used to solve the task, but its
performance is a valuable measure for the complexity
of the given problem and the performance of the RL-
agents.

4 Results

To investigate these RL-agents described above with re-
spect to the environment-properties introduced in sec-
tion 1, we designed various experiments. For every ex-
periment, the RL-agent started without any a-priori
knowledge to explore the environment. This explo-
ration was realized by adding a noise term to the gen-
erated action, which decreased over time (approx. 500
steps) down to zero. Each experiment consists of 100
trials, where for each trial the ball is initially placed
at its starting position and is controlled by the RL-
agent’s actions for 500 steps. In order to become more
robust against different weight initializations of the RL-
agents, each experiment is independently repeated 10
times. Thus, every plot shows the mean result over 10
independent realizations of the same experiment.

4.1 Learning with Different Starting Points and
Partial Observability
In a very first experiment (default), we inserted the
ball at the starting position 0.25 depicted in figure 1.
The RL-agents had to find out a strategy to move the
ball out of the starting valley by swinging up and,
after reaching the goal-valley, decelerate the ball to
keep the ball as close as possible to the target posi-
tion xT = 0.75. In a second experiment, we inserted
the ball in the target-valley (goalstart) in order to inves-
tigate, if any a-priori knowledge about the target posi-
tion may help the RL-agents to develop an appropriate
strategy. In a third test, we examined the influence of a
partially observable environment to the performance of
the RL-agents (POMDP). Thereto, in contrast to pre-
vious tests, the unobservable force fN ∈ [−2N . . . 2N]
with a sinusoidal shape was introduced to simulate an
oscillating wind.

As can be seen in figure 2, the standard-Q, the NG+Q,
and the GNG+Q approach achieve pretty good results.
The lower average performance of the GNG+Q in the
goalstart experiment is caused by a single unsuccessful
run, during which the agent suddenly and completely
forgot the strategy he learned. This can be caused by
the deletion of a neuron (and the loss of the associated
Q-values) through the GNG algorithm. The ADHDP-
approach is unable to control the environment (com-
pared to the performance of the RANDOM-agent).

 Q NG+Q GNG+Q ADHDP RANDOM
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

re
w

ar
d

default
goalstart
POMDP

Figure 2: Mean reward of the last trial out of a learn-
ing experiment with 100 trials averaged over
10 independent experiments for the RL-agents
standard-Q (Q), Q-learning with clustered
state space (NG+Q), Q-learning with incre-
mentally clustered state space (GNG+Q), Ac-
tion Dependent Heuristic Dynamic Program-
ming (ADHDP), and the random-agent (RAN-
DOM) for the experiments default, goalstart,
and POMDP. The higher the mean reward, the
closer and faster the agent moved the ball to the
target position (see section 2).

4.2 Learning with a Changing Goal
Changing system goals are of great importance for
many real-world applications. Thereto, we investigated
the ability of these RL-agents to perform this task
by moving the target position from 0.75 to 0.25 af-
ter agent-training and afterwards back to 0.75 during
one experiment. Figure 3 depicts clearly, that the well
performing agents Q, NG+Q and GNG+Q experience
a dramatical performance-reduction after moving the
target position. Nevertheless, they are able to adapt to
the new situation, where the NG+Q-approach is much
more successful even if this plasticity is decreasing over
time. Agent ADHDP poorly performs in the first de-
fault section, so a target change does not influence the
initially bad results.

4.3 Learning with Dead-Times
In a real-world environment, usually there is no instan-
taneous reaction to the controllers action. To simulate
this aspect, the generated actions were fed into the en-
vironment with a delay of 1 up to 5 time steps. For
comparison, a well trained agent takes about 15 steps to
move the ball from its starting position to the top of the
hill in the middle. Again, the Q, NG+Q, and GNG+Q-

0 50 100 150 200 250 300
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

trials

re
w

ar
d

Q
NG+Q
GNG+Q
ADHDP

Figure 3: Development of mean reward over 300 trials.
At trial 100, the target position was moved to
0.25, and at trial 200, the target was moved
back to 0.75.

agents perform well without dead-times between action
generation and execution (TD = 0). As expected, the
performance decreases with increasing dead-time (see
figure 4). A deadtime TD > 0 prevents the agent from
learning a valid mapping state × action 7→ reward,
because the causal relationship between state, action,
and reward is disturbed more and more with increas-
ing dead-time. ADHDP again is unable to develop a
problem-solving strategy with any dead-time.

4.4 Combination
Finally, we combined some of these real-world chal-
lenges investigated separately above in a complex ex-
perimental scenario. Thereto, the environment fea-
tured a dead-time TD = 2, the unobservable distur-
bance fN ∈ [−2N . . . 2N], and a time changing target
position. As to be seen in figure 5, agents Q, NG+Q,
and GNG+Q are able to solve the problem in the first
phase of the experiment despite of the present dead-
time and partial observability. The major problem
is the changing target position. The ability of these
Agents, to adapt to this change is reduced by the other
real-world properties (see also section 4.2). As in pre-
vious experiments ADHDP fails to control the environ-
ment appropriately.

Finally, it must be stated, that none of the agents inves-
tigated in this article, is able to solve the simulated real-
world problems sufficiently. As expected, after several
resettings of the target position even the best agents
perform pretty poor to move the ball to the target po-
sition.

 Q NG+Q GNG+Q ADHDP
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

re
w

ar
d

T
D

=0
T

D
=1

T
D

=2
T

D
=3

T
D

=4
T

D
=5

Figure 4: Mean reward of the last trial averaged over 10
independent runs for different dead-times.

5 Conclusions and Future Work

Our experiments show that Q, NG+Q and GNG+Q
produce the best results; the better performance of the
NG+Q-agent is caused by the ability to place neurons
according to input density and the fact that not only
the best-matching neuron but also it’s neighbours learn
in each step. The incremental GNG+Q agent is able
to remove rarely used neurons and reinsert them where
needed. Of course, this agent benefits from that advan-
tage, but also suffers from the fact, that sometimes the
deletion of neurons causes loss of vital information that
cannot always be relearned. In consequence, the per-
formance of the GNG+Q is varying in a larger range,
showing both the best and worst single runs of all suc-
cessful agents. The ADHDP agent was not able to
learn an appropriate control policy in our experiments
with the ball-world scenario. The relatively high av-
erage reward in the goalstart experiment documents,
that that agent benefits from the a-priori knowledge
about the target position. As described in [5], the used
ADHDP design depends on settings which start close
to the desired target position and system dynamics,
that produce sample trajectories leading away from the
goal into failure states. We conclude that this ADHDP-
approach is not applicable for this type of scenario.

Further work will address the stability-plasticity
dilemma, which may be solved by an adaptive explo-
ration, which is activated, if the learned values of the
state-action-pairs become invalid. Although our sce-
nario tries to simulate many aspects of the ”real world”
closely, final experiments must use a real environment.

0 50 100 150 200 250 300
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

trials

re
w

ar
d

Q
NG+Q
GNG+Q
ADHDP

Figure 5: Development of mean reward over 300 trials
for the combined scenario including dead-time,
partial observability and changing goals. The
target position is moved as well as in figure 3.

References
[1] S. Mahadevan. To discount or not to discount
in reinforcement learning: A case study comparing r-
learning and q-learning. In International Conference
on Machine Learning, pages 164–172, 1994.

[2] D. Surmeli and H.-M. Gross. Benchmarking
reinforcement-learning based on neural function ap-
proximatros. In Proc. of Fourth International Confer-
ence on Cognitive and Neural Systems. Boston Univer-
sity Press, 2000.

[3] H. Renkewitz. Untersuchung verschiedener Rein-
forcement-Lernverfahren auf ihre Realwelttauglichkeit.
Master’s thesis, Ilmenau, Technical University, 9 2002.

[4] B. Fritzke. A growing neural gas network learns
topologies. In Advances in Neural Information Process-
ing Systems 7. MIT-Press, 1995.

[5] J. Si and Y.-T. Wang. On-line learning control
by association and reinforcement. IEEE Transactions
on Neural Networks, 12:264–276, 2001.

[6] C. J. C. H. Watkins. Learning from Delayed Re-
wards. PhD thesis, Cambridge University, Cambridge,
England, 1989.

[7] T.M. Martinetz and K. Schulten. A “neural gas”
network learns topologies. In T. Kohonen, Mäkisara,
K., O. Simula, and J. Kangas, editors, Artificial Neural
Networks, pages 397–402. Elsevier Amsterdam, 1991.

