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Abstract

We present a system for model-free, adaptive
object tracking with a redundant anthropomor-
phic robot head. The visual tracking system is
based on the idea of “Democratic Integration” to
fuse information from several cues in a biologi-
cally plausible, self-organized fashion. The mo-
tor control system utilizes the idea of “controller
partitioning” to exploit complementary capabili-
ties of redundant degrees of freedom in the neck
and eyes. A biologically inspired vergence control
mechanism ensures coordination of the robot’s
two eyes. We demonstrate the performance of
the overall system in different active tracking sce-
narios.

1. Introduction

The long term goal of our research is to understand how
biological systems can autonomously learn to see. How
does the developing primate brain form representations
of the objects in its environment? Since the developing
visual system actively explores its visual environment,
it shapes the statistics of what it is seeing rather than
being passively exposed to it. Furthermore, it shapes
these statistics in a purposeful manner — even infants
tested minutes after birth show preferences for some vi-
sual stimuli over others. Also, eye movements are likely
to play an important role in the development of invari-
ant representations. Thus we believe that in order to
fully understand the post-natal development of the pri-
mate visual system it is crucial to take its active and
goal-driven nature into account. Our approach to the
problem of autonomous visual learning is to build em-
bodied models of these active learning processes. To
this end we have developed an anthropomorphic robot
head platform, whose kinematic structure closely resem-
bles that of the human neck/eye system (Fig. 1). In
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Figure 1: Anthropomorphic robot head with nine DoFs.

this paper, we present a system for active object track-
ing implemented on the robot head. This system will
form the “front end” for a more sophisticated module
for learning higher level object representations in future
explorations into autonomous learning in actively devel-
oping visual systems. The system presented here allows
our robot to actively track “interesting” objects in its
environment, creating the opportunity to learn models
of their appearance and behavior.

Our specific goals for this system were the following.
First, the tracking scheme needs to be model-free, i.e.
it must not require a detailed prior model of the ob-
ject to be tracked, because we are interested in the com-
pletely autonomous learning of representations of unfa-
miliar objects. Second, despite the lack of a model of
either the object or its typical patterns of motion, the
system should function robustly and be able to cope with
fast object movements over a wide range. Third, the
system should operate in real-time, generating motor re-
sponses at the rate of the visual input of 30Hz. Finally,
the system should be roughly consistent with biological
constraints, if it is to be part of a larger model for the
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Figure 2: Average time elapsed vs. size of motion for horizontal (top left) and vertical (top right) movements of the left eye

and horizontal (bottom left) and vertical (bottom right) movements of the neck. For horizontal eye movements (top left), the

dashed lines indicate the range of saccade durations typically observed in humans.

learning of object representations in the primate brain.

The remainder of the paper is organized as follows.
Section 2 briefly describes our redundant anthropomor-
phic robot head. Section 3 explains the adaptive visual
tracking system. In Sec. 4 we describe how our parti-
tioned motor control system of the robot exploits the
complementary nature of the robot’s degrees of freedom
(DoFs). Section 5 presents experiments and Sec. 6 dis-
cusses our system from a broader perspective.

2. Anthropomorphic Robot Head

We have developed an anthropomorphic robot head that
closely mimics the neck-eye system of the human head
(Fig. 1). The robot head is intended as a flexible plat-
form for studying autonomous visual learning and hu-
man robot interaction. A detailed description will be
published elsewhere (Kim et al., 2004). Here we only
give a brief overview. The robot head has a total of
9 degrees of freedom (DoFs). Six of them are for the
neck and the two eyes: both eyes can independently pan
and tilt. The neck can pan and tilt, too. The remaining
3 DoFs are for facial expressions (jaw opening, eyebrow
lifting, smiling/frowning) but will not be used in this pa-
per. The robot head is controlled from a host computer

(Linux PC, Pentium-4 3.06GHz processor, 2GB RAM).

The robot’s eyes are two miniature CCD cameras
(Point Grey Research, model FireFly). The cameras are
connected to the host computer via two IEEE 1394 in-
terfaces with 400 Mbit/s. Each camera gives 24 bit color
images with up to 640x480 resolution at 30 fps. We use
a focal length of 4mm, providing a diagonal field of view
of 100 degrees.

All DoFs are actuated via servo motors. They provide
fast, easy, and fairly accurate control, while being robust
and inexpensive. Most DoFs are connected via four bar
linkages, introducing a slightly non-linear relation be-
tween the rotation of a servo shaft and the rotation of
the actuated DoF. Table 1 gives the range of motion
and the average angular resolution for the robot’s major
DoFs. The servos are controlled through two serial con-
trol boards (Mini SSC II). The control boards receive
commands from the host computer through a 9600bps
serial interface allowing us to issue up to 400 motor com-
mands per second. Since we are using 9 DoFs, we can
send a command to each servo every 22.5ms — faster
than the frame rate of the cameras. Due to the use of
very small, light-weight cameras and fast servo motors,
our robot can make saccade-like gaze shifts that come
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Figure 3: Block diagram of the democratic integration system. Solid lines represent feed-forward information flow, while

dashed lines represent adaptation signals.

Range Resolution
Hor. Ver. Hor. Ver.

Left Eye 42.8◦ 35.3◦ 0.37◦ 0.28◦

Right Eye 37.9◦ 33.4◦ 0.33◦ 0.27◦

Neck 180◦ 40.2◦ 0.71◦ 0.17◦

Table 1: Range of motion and average angular resolution of

the neck and eye DoFs.

close to the speeds of human saccades. Figure 2 com-
pares the durations of the robot’s saccades with those
of humans (Becker, 1991). The focus of this paper is
smooth pursuit-like tracking, however.

3. Adaptive Visual Tracking

Given the lack of a detailed model of the target object we
need to have a tracking system that evaluates and adapts
itself according to the tracking results. We use the
Democratic Integration idea (DI), which is a framework
for integration of different visual cues in a self-organized
manner (Triesch and von der Malsburg, 2001). This
system adaptively fuses several cues into one result.
There are two ways in which it is adaptive: first, it al-
lows for a re-weighting of cues based on their estimated
reliabilities, second, cues adapt object models to better
match the fused result. Such re-weighting can also be ob-
served in human object tracking (Triesch et al., 2001).

The two eyes of our robot head play different roles
in the tracking system. The dominant left eye uses an
adaptive tracking scheme to estimate the object’s posi-
tion. A vergence controller steers the right eye to the
location looked at by the left eye, as described in Sec-

tion 4.
Figure 3 shows a block diagram of the DI system. We

are using four cues (shape, color, motion, prediction). A
detailed description of the cues is given in the appendix.
Our current implementation of the active DI-style track-
ing system works in real time (30Hz) with an image res-
olution of 160x120 pixels.

3.1 Democratic Integration System

In this system N different cues search for features in the
image that match the appearance of the object. Each
cue i computes a saliency map Ai(x, t) that measures
the similarity of the cue’s object model pi(t) to features
extracted from the image I(x, t). High values indicate
high similarities. Each cue has a reliability ri(t) that
controls the cue’s influence on the result saliency map
R(x, t). Concretely, R(x, t) is a weighted sum of the
cues’ individual saliency maps:

R(x, t) =

N
∑

i=1

ri(t)Ai(x, t). (1)

The estimated target position x̂(t) is the point yielding
the highest value in the result saliency map, as long as
this value exceeds a threshold T (here T = 0.6). Other-
wise no target is detected:

x̂(t) = argmax
x
{R(x, t)} , ifR(x̂, t) > T. (2)

3.2 Adaptation of Reliabilities

The adaptive parameters in the integration of the cues
are the reliabilities ri(t). They reflect a cue’s agree-
ment with the result in the recent past. The agree-
ment is measured with the quality q̃i(t). A detailed
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Figure 4: Block diagram of the partitioned controller.

discussion of different quality metrics can be found in
(Triesch and von der Malsburg, 2001). Here we mea-
sure the quality by comparing the response in the cues’
saliency maps at the estimated target position with the
average saliency Āi of each cue:

q̃i(t) = max
{

0, Ai(x̂, t)− Āi(t)
}

. (3)

If a target has been detected, the reliabilities are updated
to follow the normalized qualities qi(t):

qi(t) = q̃i(t)/
N
∑

k=1

q̃k(t)

ri(t) = αrel · qi(t) + (1− αrel) · qi(t− 1). (4)

If no target has been detected, the reliabilities are
adapted towards their initial values. αrel ∈ [0, 1] is a
adaptation constant, controlling the speed of adaptation.
A value close to 1 leads to a fast adaption, a small value
close to 0 causes slow changes. Due to the normalization
of the qi(t), the ri(t) are also normalized with their sum
converging to one.

The adjustment of the adaptation constant αrel is im-
portant: If it is too small the system can’t react fast
enough to the sudden failure of one or more cues. On
the other hand, if αrel is too large, this typically also
worsens performance.

3.3 Adaptation of Cues

The adaptive cues try to maximize their agreement with
the result saliency map by adapting their object models
towards features fi(t) extracted at the estimated target
position. This causes a better agreement with the result
in the future, provided that the visual appearance of
the tracked object is not changing much from one frame
to the next. The shape cue for example uses a small
grayscale template (e.g. 7x7 pixel) as object model pi(t)
and searches for image locations that are similar to the

template. The process of object model adaption uses
similar dynamics as (4). If a target has been detected,
the cues’ object models are adapted according to:

pi(t) = αcue · fi(t) + (1− αcue) · pi(t− 1). (5)

If no target has been detected, the cues’ object models
are adapted towards their initial values. Each cue can
have its own adaptation constant αi, but in our experi-
ments they are all identical: αi = αcue ∀ i. The adjust-
ment of the adaptation constant αcue is also important:
a constant object model is unlikely to match the object
for more than a few frames, but a object model changing
too quickly would not carry any information about the
stable properties of the object.

3.4 Initialization

As we have mentioned in the Introduction, infants tested
shortly after birth already have preferences for some vi-
sual stimuli over others. Here, in the initialization of the
cues, we incorporate this idea of having preferences for
the visual system by setting initial models for the cues.
One always needs a priori knowledge about the target
to guide initial target selection. For example, a system
configured to do face tracking could have its color object
model set to skin color initially, or can use an additional
face detection cue. Other cues like the motion cue can
work without such a prior model and may have high re-
liabilities right from the start. If we don’t have a priori
knowledge for a cue we set its reliability to zero and its
object model to an arbitrary value. As soon as the other
cues agree on a target this cue will be bootstrapped and
automatically integrated into the tracking process. It
is important to find a set of cues that is sufficient for
bootstrapping the system.



4. Motor Control System

The robot head has pan and tilt DoF for both eyes and
the neck, such that multiple combinations of pan and tilt
angles of the eyes and the neck can provide the same ori-
entation of the camera in space. This redundancy needs
to be resolved by the controller. Our solution is based on
the idea of controller partitioning (Oh and Allen, 2001),
which exploits complementary properties of redundant
DoFs.

4.1 Eye-neck control mechanism

Since the robot’s cameras are very small, the eyes move
faster than the neck, where the servo has to move the
entire robot head. On the other hand, the neck has a
much wider range of movement. The basic idea behind
our partitioned controller is that once the tracked object
is out of the center of the image, we use the DoF with
the faster response (eye) first to reduce the visual error,
and then the slower DoF (neck) to bring the eye back to
its center position. In other words, we use the neck DoF
to compensate for the small range of the eye DoF.

Inside the partitioned controller, we have 2 PD con-
trollers in a cascade. The first controller receives the
deviation y(t) of the target object from the center in
pixel coordinates. The second controller takes as input
the estimated eye position derived from the output of
the first controller. Here we explicitly assume that the
horizontal and vertical mapping from image coordinates
to motor commands are independent from each other
and can be controlled separately. This may not be com-
pletely accurate due to a number of reasons but is a
good approximation. The first PD controller computes
the motor command meye(t) given the visual error:

meye(t) = KP,eye · y(t) +KD,eye · ẏ(t) (6)

ẏ(t) = y(t)− y(t− 1) .

KP,eye is the proportional gain for the eye, and KD,eye

the derivative gain.
This motor command is used to estimate the future

eye angular deviation from its center position x̂eye(t):

x̂eye(t) = x̂eye(t− 1) +meye(t) . (7)

Here, we assume linearity and no delays to approximate
the eye position x̂eye(t) calculated from the previous mo-
tor commands. In other words, we make an assumption
that the estimated eye angular deviation from its cen-
ter position has a one-to-one relationship with the given
motor commandmeye(t). This approximation works rea-
sonably well as demonstrated in Section 5. Then this es-
timated deviation is fed to the neck controller, where
another PD controller is used to make a neck movement
mneck(t), that brings the eye back to its center position:

mneck(t) = KP,neck · x̂eye(t) +KD,neck ·meye(t) . (8)

Figure 5: Left and right image pair before (above) and after

(below) vergence control.

Both controllers ignore inputs that are below a certain
threshold. The vision system can detect errors that are
smaller than the smallest possible corrective movement.
The thresholds will suppress small oscillations around
the target position. The first threshold (±2 pixels for
the full image resolution) corresponds to the visual er-
ror for the eye controller. The second one (±1 ticks)
corresponds to the angular error for the neck controller.

A block diagram for the complete controller is given in
Figure 4. In this figure, F1 corresponds to the threshold
opearation in the eye controller and F2 to the threshold
operation in the neck controller. We also use a sim-
ple linear predictor in front of the partitioned controller
which is basically the same as the prediction cue de-
scribed in the appendix. One could use a more sophis-
ticated predictor that estimates the target dynamics to
improve the tracking performance, as demonstrated in
(Shibata and Schaal, 2001b).

Note that due to the feedback delays in the system,
the active tracking will always lag behind the target,
showing object following behaviors.

4.2 Vergence control mechanism

Since tracking is done with only one “dominant” eye,
we need a method for ensuring the coordination of both
eyes, i.e. a way of controlling the non-dominant eye to
look at the same object. We have adopted and extended
previous work by Theimer and Mallot for doing vergence
control (Theimer and Mallot, 1994). They extract Ga-
bor jets from the center of left and right image and then
compute a phase-based distance estimate in pixel coor-
dinates. This estimate can be used to bring the center
of the left and right image to the same target without
specific knowledge about the object. This method mim-
ics an array of disparity tuned simple cells as could be
found in the primary visual cortex.
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Figure 6: Eye and neck angle deviation from center position due to a step input(left) and a swinging pendulum(right).

Our version extends this idea and extracts a grid of
Gabor jets from the right image and compares it to a
Gabor jet from the left image. Due to space limitations,
we will provide a detailed description in a separate paper.
Figure 5 shows the left-right image pairs before and after
the vergence control. A red cross is drawn at the center
for comparison.

Alternatively, one could solve this vergence problem in
the tracking application by having two separate track-
ing modules for the left and right eye and then have
each module control one eye independently of the other.
In this case the neck controller would be driven by the
average deviation of the left and right eye from their
central positions. As long as the two tracking modules
share models, both eyes will track the same object. This
tracking approach, although more time consuming, is
more biologically plausible than the current scheme. Fu-
ture work will try to combine two DI systems with the
vergence control mechanism presented here.

5. Experiments

5.1 Experimental setups

We have experimented with two different setups to eval-
uate the performance of our active tracking system. In
the first setup, we let the robot head track a tennis ball
in order to evaluate the controller’s behavior in response
to step inputs and oscillatory inputs. For initialization,
we supply the system with color models for the color cue
only. It is able to track robustly by bootstrapping the
other cues. In the second setup, we track the face of a
moving person.

For the DI tracking system, the initial reliabilities of
the cues are 0.55 for the motion cue, 0.45 for the color cue
and 0 for the shape and prediction cues. We have used
a template size of 7x7 for both experiments. Blurring

KP,eye,horizontal 0.189 KP,neck,horizontal 0.0189
KD,eye,horizontal 0.1 KD,neck,horizontal 0.1
KP,eye,vertical 0.284 KP,neck,vertical 0.0474
KD,eye,vertical 0.15 KD,neck,vertical 0.1
KP,vergence 0.075
KD,vergence 0.1

Table 2: Controller gains used in the experiments.

in the motion cue is done using a gaussian filter of size
5x5 for the tennis ball tracking experiment and 7x7 for
the face tracking (see appendix). Blurring in the color
cue is done using a gaussian filter of size 3x3 for tennis
ball tracking and 5x5 for face tracking. The adaptation
constant for the dynamics of cue reliability, αrel, is set
to 0.1 and the adaptation constant for the dynamics of
the cues’ object models, αcue, is set to 0.05.

The gains for the controller were set manually after
some experimentation (see Table 2) and are the same for
all experiments. For tuning the gains, first, we set the
gains for the neck controller equal to zero and moved
the eyes only. We increased the gains of the eye con-
troller until we have sufficiently fast response with the
overshoot below a certain threshold, say ±5 pixels. Then
we fixed the gains of the eye controller and increased the
gains for the neck controller till we have sufficiently small
overshoot with fast response time.

5.2 Step input

For the first experiment, we let the system track the ten-
nis ball for a while without moving the robot head. Then
we switched on the control system to measure the step
response, and plotted the eye and neck angular devia-
tion from its center position along with the visual error.
We only show data for the horizontal movements of the



left (dominant) eye and the neck. The object was placed
near the horizontal boundary of the image in order to
generate a visual error, close to the maximum of ±80
pixels (±35 degrees).

In the left side of Figure 6, the step input is given at
0 s. In other words, we turned on the control system
at 0 s and it clearly shows that the eye will first start
to move in the direction of the object and the neck will
follow the eye. Near the end of the movement, the eye
will move in the opposite direction of the neck move-
ment since the neck movements will cause the eye to
make compensatory movements. There is an overshoot
in the visual error at the end of the movement. An extra
mechanism like the vestibulo ocular reflex can be used
to alleviate the problem (Shibata and Schaal, 2001a).

5.3 Oscillatory input

To create an oscillatory input, we used a tennis ball as
a pendulum with an amplitude of approximately ±40
pixels. We let the system adapt its object models while
actively tracking the object. The right side of Figure 6
shows that the eye immediately starts moving to reduce
the visual error. The neck slowly follows the eye move-
ment. Due to the feedback and visual processing delays
we can see the visual error follows the oscillation of the
swinging ball with the same frequency.

5.4 Face tracking

For the face tracking experiment, we used skin color as
the initial model for the color cue. Note that the color
cue alone is not sufficient for robust face tracking, if other
objects with a similar color are present in the scene.

Figure 8 shows every 20th frame of an image sequence
captured from the left camera while tracking faces. A
blue cross marks the center of the image and a red cross
the object position estimated by the DI tracking system.
Video clips are available on our website1.

One of the nice things about the DI tracking system
is that it self-evaluates its cues and finds out how useful
each of the cues is. Figure 7 shows that the system is able
to automatically suppress the simple motion cue based
on difference images, as soon as it becomes useless when
the robot head starts to move.

6. Discussion

We have presented an adaptive, model-free tracking sys-
tem implemented on an anthropomorphic robot head.
Our goals were fourfold: First, the tracking system
should be model-free, because we want to use it in the
context of a learning system that develops object rep-
resentations completely autonomously. Second, despite
the lack of a detailed object model, the system should

1http://csclab.ucsd.edu/publications/siab04 facetracking.mpg
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Figure 7: Reliability of cues as a function of time in face

tracking experiment.

function robustly and handle fast movements over a wide
range. Third, the system should operate in real-time,
which in our case meant a frame rate of 30Hz. Fourth,
the system should be biologically plausible because it
will ultimately be a part of a larger embodied model for
the development of object representations in the primate
visual system. The system we have presented in here es-
sentially meets all these requirements.

Our tracking system is based on the democratic inte-
gration idea (Triesch and von der Malsburg, 2001). The
democratic cue integration used in the tracking sys-
tem has the ability to bootstrap representations au-
tonomously and does not require a detailed model of the
object to be tracked (although some coarse prior knowl-
edge is needed to specify which objects are “interest-
ing”). It has been argued that this architecture mim-
ics the robustness and flexibility known from biological
vision systems. Furthermore, fast re-weighting effects
as produced by the Democratic Integration mechanism
can be readily observed in object tracking by humans
(Triesch et al., 2001).

In the context of active tracking as demonstrated here,
it is interesting to note that the system was fairly robust
to the camera movements, despite its reliance on a simple
motion detection cue based on difference images. This
can be attributed to the democratic integration mecha-
nism which automatically suppresses the motion detec-
tion cue during times of fast camera movements.

The idea of cue integration or sensor fusion
has been very popular in diverse areas of com-
puter vision. Helpful reviews, introductory papers
and books published on the topic are available
(Luo and Kay, 1989, Alomoinos and Shulman, 1989,
Clark and Yuille, 1990, Abidi and Gonzalez, 1992).
A number of different theoretical frameworks



Figure 8: Sequence of images (top left to bottom right) of tracking a face. The red crosses indicate the estimated target

position. The dark blue crosses mark the center of the image.

are being used for cue integration, most no-
tably probability and information theoretic ap-
proaches using Bayesian inference (Pearl, 1993,
Bayes, 1783, Manyika and Durrant-Whyte, 1994),
Dempster-Shafer evidential reasoning (Shafer, 1976,
Hutchinson and Kak, 1992), and possibility theory
(Zadeh, 1978, Dubois and Prade, 1992). In the areas of
visual tracking, (Triesch and von der Malsburg, 2001)
shows the robustness of the system with only weak
visual cues. (Denzler et al., 2002) have combined DI-
style cue integration with probabilistic fusion to work
with multiple cameras for object tracking. While the
Democratic Integration idea was originally introduced
in the context of tracking, it is worth mentioning that
it has also recently been successfully applied to the
problem of model-free segmentation from video streams
(Hayman and Eklundh, 2002). The potential benefits
of such an approach for the purpose of autonomous
learning of object representations is obvious. We will
explore this issue in future work.

In order to exploit the complementary nature of the
robot’s redundant degrees of freedom (fast eye move-
ments with only small kinematic range and slower neck
movements with wide kinematic range) we used the idea
of controller partitioning (Oh and Allen, 2001). This
simple method works very effectively and is likely to be
sufficient for our purposes. However, a number of im-
provements could easily be made if higher accuracy was
required (e.g. for a highly foveated vision system). Most
interesting to us seems the option of adding a feedback
error learning component to the partitioned controller
(Kawato, 1990). From the standpoint of biological plau-
sibility, the partitioned control scheme is likely to be
far simpler than the control mechanisms actually used
by the primate visual system. At present, there seems
to be little data about the coordination of neck and

eye movements during tracking tasks. However, data
from natural tasks where eye, head, and hand move-
ments are recorded simultaneously suggests rather com-
plicated forms of coordination between eyes, neck, and
hands (Hayhoe et al., 1999).

Since tracking is only done with one “dominant” eye,
we implemented a vergence control method to ensure
coordination of both eyes. Our method is an extension
to the one proposed in (Theimer and Mallot, 1994). It is
reasonably accurate but currently needs several frames
to make the eyes converge on the same point.

While none of the individual components of the system
is entirely new, we consider their integration into our an-
thropomorphic robot head as a significant achievement.
Future work will extend this system by adding the ability
to autonomously learn and maintain representations for
the objects in the robot’s environment — bringing us one
step closer to an embodied account of the development
of the primate visual system.
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Appendix: Description of Individual Cues

This section describes the detailed specification of the
cues. Figure 9 shows the saliency maps of the individual
cues for a typical frame during tennis ball tracking. Most
cues operate on grayscale images, only the color cue uses
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Figure 9: Saliency maps of the different cues during the track-

ing of swinging tennis ball. The length of the gray bars above

the cue saliency maps represent the reliabilities of the cues.

The bar above the result saliency map indicates the maxi-

mum saliency.

color images.

Motion Cue

The motion cue does not have any adapting object mod-
els and can be used for bootstrapping the other cues. It
takes the current and the last input image and computes
their difference image:

D(x, t) = |I(x, t)− I(x, t− 1)| . (9)

All positions with differences over a threshold Tmotion =
15 are set to one, all others to zero:

Ã(x, t) = 1 if D(x, t) > Tmotion, 0 otherwise. (10)

This thresholded difference image is convolved with a
gaussian filter to suppress camera noise and detect larger
blobs of motion:

A(x, t) = Ã(x, t) ∗ G(x) (11)

The specific kernel size of the smoothing filter depends
on the approximate size of the target. This motion cue
is useful to detect moving targets as long as the cameras
are stationary.

Color Cue

The color cue operates in YUV color space. It creates a
two dimensional lookup table L(u, v, t) ∈ [0, 1] that con-
tains a similarity value for every color in the discretized
UV-color space.

This lookup table forms the object model of the color
cue, along with a mean Ȳ and deviation σY of the bright-
ness of the target object.

Every pixel x of the saliency map gets the similarity
value that is assigned to the color found at the location

in the source images, as long as its brightness is in the
accepted range:

Ã(x, t) =

{

0, if
∣

∣I(x, t)− Ȳ
∣

∣ > σY

L (U(x, t), V (x, t), t) otherwise.
(12)

This saliency map is convolved with a gaussian filter to
detect larger blobs of homogeneous color (11). The size
depends on the expected size of the target object.

The first step of adapting the color object model is ex-
tracting the average color from a 3x3 image patch around
the target position x̂(t).

This color value is converted to polar coordinates, re-
sembling hue and saturation values h̄ and s̄. If the stan-
dard deviation of h̄ in this image patch is smaller than
a predefined threshold σh, the new object model is com-
puted according to the following equation:

f(h, s, t) =

{

1, if
∣

∣h− h̄
∣

∣ < σh ∧ |s− s̄| < σs

0, otherwise
(13)

This range of similar colors has a rectangular shape in
polar coordinates h and s, which is approximated with
a pie slice polygon in the cartesian UV color space. This
is plotted into the new lookup table f(x, t), which is
blended with the lookup table p(x, t) according to (5).

Prediction Cue

The simple prediction cue tries to estimate the object
location with a linear prediction based on the last two
target positions:

X̂(t) = x̂(t− 1) + (x̂(t− 1)− x̂(t− 2)) . (14)

The saliency map is defined as a gaussian blob with σ =
10 at the estimated position:

A(x, t) = exp

(

−
(

x− X̂(t)
)2

/(2σ2)

)

. (15)

If the last target positions are unknown, or the predicted
position is outside of the image boundaries, the whole
saliency map is set to 0.1. This cue doesn’t have a object
model, the adaptation lies in the linear prediction.

Shape Cue

The shape cue computes the similarity of its shape
model, a gray level template P (x, t) = pshape(x, t), to
image patches of the same size around every pixel using
a normed squared difference metric:

Ã(x, t) =

∑

x′ (P (x′, t)− I(x+ x′, t))
2

∑

x′ (P (x′, t)2 · I(x+ x′, t)2)
. (16)

This metric provided by the OpenCV template match-
ing function has the lowest values for the highest similar-
ity. In order to get a saliency map with values between
0 and 1 we compute:



Amin = min
x

Ã(x, t), and Amax = max
x

Ã(x, t)

A(x, t) = max

{

0, 1−
(Ã(x, t)−Amin)

K · (Amax −Amin)

}

, (17)

with K = 0.002. A template adapted to a non-
homogeneous surface leads to a very peaked response
and is useful to precisely track a spot on the target ob-
ject. For the adaptation of the prototype template the
cue extracts an image patch centered at the target posi-
tion in the input image. This image patch is blended to
the current object model template as in (5).

References

Abidi, M. and Gonzalez, R., (Eds.) (1992). Data Fusion
in Robotics and Machine Intelligence. Academic
Press.

Alomoinos, Y. and Shulman, D., (Eds.) (1989). Inte-
gration of Visual Modules. Academic Press.

Bayes, T. (1783). An essay towards solving the problem
in the doctrine of chances. Philosophical Transac-
tions of the Royal Society, 53:370–418.

Becker, W. (1991). Saccades. Vision & Visual Dys-
function Vol. 8:Eye movements, pages 95–137.

Clark, J. J. and Yuille, A. L., (Eds.) (1990). Data Fu-
sion for Sensory Information Processing Systems.
Kluwer Academic Publishers.

Denzler, J., Zobel, M., and Triesch, J. (2002). Prob-
abilistic integration of cues from multiple cameras.
Dynamic Perception, pp.309–314.

Dubois, D. and Prade, H. (1992). Data Fusion in
Robotics and Machine Intelligence, chapter Com-
bination of fuzzy information in the framework of
possibility theory, pages 481–505. Academic Press.

Hayhoe, M., Land, M., and Shrivastava, A. (1999). Co-
ordination of eye and hand movements in a normal
environment. Invest. Opthalmol. & Vision Science,
40.

Hayman, E. and Eklundh, J.-O. (2002). Probabilistic
and voting approaches to cue integration for figure-
ground segmentation. ECCV (3), pages 469–486.

Hutchinson, S. and Kak, A. (1992). Data Fusion in
Robotics and Machine Intelligence, chapter Multi-
sensor strategies using dempster-shafer belief accu-
mulation, pages 165–209. Academic Press.

Kawato, M. (1990). Feedback-error-learning neural net-
work for supervised motor learning. In Eckmiller R
(Ed.) Advanced Neural Computers. Elsevier, North-
Holland, pages 365–372.

Kim, H., York, G., Burton, G., Murphy-Chutorian,
E., and Triesch, J. (2004). Design of an anthro-
pomorphic robot head for studying autonomous de-
velopment and learning. International Conference
on Robotics and Automation (ICRA), accepted.

Luo, R. C. and Kay, M. G. (1989). Multisensor integra-
tion and fusion in intelligent systems. IEEE Trans.
on Systems, Man, and Cybernetics, 19(5):901–931.

Manyika, J. and Durrant-Whyte, H., (Eds.) (1994).
Data Fusion and Sensor Management: A Decen-
tralized Information-Theoretic Approach. Ellis Hor-
woord, Chichester.

Oh, P. Y. and Allen, P. K. (2001). Visual servoing by
partitioning degrees of freedom. IEEE Trans. on
Robotics and Automation, 17(1).

Pearl, J., (Ed.) (1993). Probabilistic Reasoning in Intel-
ligent Systems. Morgan Kaufmann Publishers, 2nd
edition.

Shafer, G., (Ed.) (1976). A Mathematical Theory of
Evidence. Princeton University Press.

Shibata, T. and Schaal, S. (2001a). Biomimetic gaze
stabilization based on feedback-error learning with
nonparametric regression networks. Neural Net-
works, 14(2):201–216.

Shibata, T. and Schaal, S. (2001b). Biomimetic smooth
pursuit based on fast learning of the target dynam-
ics. IEEE Int. Conf. on Intelligent Robots and Sys-
tems.

Theimer, W. M. and Mallot, H. A. (1994). Phase-based
binocular vergence control and depth reconstruction
using active vision. CVGIP: Image Understanding,
60(3).

Triesch, J., Ballard, D., and Jacobs, R. (2001). Fast dy-
namics of visual cue integration. Perception, 31:421–
434.

Triesch, J. and von der Malsburg, C. (2001). Demo-
cratic integration:self-organized integration of adap-
tive cues. Neural Computation, 13(9):2049–2074.

Zadeh, L. (1978). Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 1:3–28.


