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Abstract— We introduce a computational model of sensor
fusion based on the topographic representations of a ”two-
microphone and one camera” configuration. Our aim is to per-
form a robust multimodal attention-mechanism in artificial sys-
tems. In our approach, we consider neurophysiological findings
to discuss the biological plausibility of the coding and extraction
of spatial features, but also meet the demands and constraints of
applications in the field of human-robot interaction. In contrast
to the common technique of processing different modalities
separately and finally combine multiple localization hypotheses,
we integrate auditory and visual data on an early level. This
can be considered as focusing the attention or controlling the
gaze onto salient objects. Our computational model is inspired
by findings about the Inferior Colliculus in the auditory pathway
and the visual and multimodal sections of the Superior Colliculus.
Accordingly it includes: a) an auditory map, based on interaural
time delays, b) a visual map, based on spatio-temporal intensity
difference and c) a bimodal map where multisensory Response
Enhancement is performed and motor-commands can be derived.
After introducing a modified Amari-neural field architecture in
the bimodal model, we place emphasis on a novel method of
evaluation and parameter–optimization based on biology-inspired
specifications and real-world experiments.

I. INTRODUCTION

In recent years a lot of promising work on the problem
of spatial hearing has been published – many investigations
and models of auditory perception exist from neurobiology
to psychoacoustics [3], [2]. However, although numerous
applications in robotics and human-machine interaction are
imaginable, only a few working examples are known. There
might be different reasons for that: on the one hand, the models
normally can include only a few details of the complex neural
coding and processing mechanisms in the real auditory system.
On the other hand, when aiming at localization systems
working in everyday environments, disadvantageous acoustic
conditions and effects like echos and reverberation must be
faced.

In computer-vision the situation is different. The field is es-
tablished and a huge number of models and applications exists
- biologically motivated approaches or technical solutions of
specific application problems. It is surprising, that multimodal
approaches are relatively seldom, even though artificial vision
systems provide processing of motion, color or other object
specific features and the mechanisms of spatial hearing and
vision complement one another quite obviously. For us, the
simulation of early auditory-visual integration is promising
significant advantage in the orientation behavior of mobile
robots [4]. Furthermore, some remarkable publications on

the neurophysiological background of multisensory integration
[10], [11] inspire new solutions for computational models.

Parts of the model described here, are comparable to the
system by Rucci, Edelman and Wray [7], because a direct
structural realization of neural mechanisms is used instead
of abstract statistical methods. In contrast to Rucci’s system,
the emphasis of our work is not placed on the problem of
self-calibration and adaption but on robustness and real-world
capability. For this reason, also the feasibility of significant
and reproducible experiments is discussed in this article.

In our approach, the biological model is not only considered
for the design of neuron–models and network–topologies in
the artificial system. We also use concrete neurological find-
ings like the recording of multimodal Response Enhancement
as criteria for an abstract quantitative validation and optimiza-
tion of the model parameters.

II. MODEL DESIGN

A. Binaural Model

In contrast to visual perception, hearing starts with one–
dimensional, temporal signals, whose phasing and spectrum
are essential for the localization. To evaluate spatial infor-
mation of a sonic field, the auditory system utilizes acoustic
effects caused by a varying distance between the sound source
and the two ears and the shape of the head and body. We
can categorize these effects in intensity differences and time
delays. In [2] a comprehensive study of sound localization
based on different types of binaural and monaural information
is presented, including findings about the localization blur:
The achieved precision in the horizontal plane corresponds
conspicuously to the relation of azimuth angle variation and
interaural time differences (ITDs) – a hint for the importance
of ITD processing. The assumption, that many localization
tasks could be solved just by calculating ITDs and the detailed
functional and structural description of the ITD processing
neural circuits has been the starting point of our modeling.

Our work on real–world–capable ITD processing is similar
to Lazzaro’s neuromorphic auditory localization system [6],
but follows a more pragmatic approach. In our simulations, we
use digital algorithms for the preprocessing and coincidence
detection within the auditory patterns, as well as an Amari-
type dynamic neural field for the evaluation of ambiguous
localization hypothesis [8]. The model includes the following
stages:
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1) Microphone signals are filtered by a cochlear model (all–
pole–gammatone filter).

2) For each frequency channel, the signals from left and
right are cross–correlated (Jeffress coincidence detection
model for the Medial Superior Olive (MSO) [5]) - the
time–code of binaural delay is transformed into a place
code, representing interaural phase differences.

3) The resulting pattern is projected onto a non–tonotopic
representation of ITDs and, thus, of azimuthal locations
of sound sources. As the result of a first winner-take-all
(WTA) process, only one direction will be dominant at
a time. (Model of the external Inferior Colliculus, ICx)

4) With the help of a special microphone configuration (see
fig. 1, left), a simple estimation of interaural spectral
differences determines the in front or behind orientation.
This way, a 360◦-map of horizontal directions is formed.

Performance tests included all sorts of common sounds
(clicks, hand claps, voices, pink noise) and were performed
outdoors (without echoes) and in an empty, acoustically dis-
advantageous (echoic) lecture hall. In quiet situations (back-
ground noise < -30dB), 100% of the test signals were local-
ized correctly within the accuracy of the discrete system. In
additional tests in a shopping center (less echoic, signal-noise
ratio 3-5dB) command–words and hand–claps of a person
were detected with a probability of 81% and a precision of
+/- 10◦ (90% within +/- 20◦). To demonstrate the ability of
detecting even moving natural stimuli, the processing of a 12
word long sentence is shown (figure 1), where the tracked
speaker position is traveling once around the microphones
(performed in the lecture hall without background noise).

Fig. 1. Left: Microphone configuration and 360-degree localization of a
speaker moving as described in the text. Right: Visualization of the MSO
output (bottom) and the resulting activity in the WTA (ICx-model, top).

B. Concept for a Subcortical Auditory-Visual Integration

Usually, spatial perception and attention have multimodal
character, whereas hearing and vision seem to be complemen-
tary strategies. Other than the auditory system, vision is based
on a receptor, that is already providing topologically organized
information and the question becomes in which way objects
of interest manifest themselves in the continuous visual repre-
sentation? In the context of human-robot interaction, we have

named feature candidates like pure intensity, motion, color or
contour. In contrast to the low-level auditory-space processing
in the midbrain, we must now distinguish between cortical
object recognition and low-level multi-sensor fusion. Firstly,
we clarify the term ”low-level”: Since visual features do not
have interrelations with the frequencies of acoustic events,
the first stage for a visual-auditory integration can be found,
following the projections from the non-tonotopical spatial
maps in the extern IC. Investigations on the mainly visually,
but also auditory (via ICx) innervated, Superior Colliculus
(SC), provide evidence for a merging of the sensor modalities
and the forming of multisensory spatial maps [10]. Visually
sensitive neurons found here, are not or less specialized for
color or orientation of contours but respond to broadband
intensity and certain velocities of moving stimuli (changes
in intensity). We use these findings as a basis for our multi-
modal model, although we also consider to integrate higher-
level features as an option in concrete applications.

According to [11], at least the following properties of the
representation and integration of multiple sensory inputs in the
SC had to be considered in the model architecture:

a) Superficial SC (SCs) is responsive only to visual and
especially to moving stimuli: Counterpart of a retinotopically
ordered map in SCs is a one-dimensional map of horizontally
arranged intensity differences, provided by a wide-angle vision
system. Presumed, that auto-motion is omitted during sensory
recording, the intensity differences are coding scene motion.

b) (i) Deep layers of the SC (SCd) respond to visual,
somatosensory, auditory and multi-modal stimuli. (ii) visual
receptive fields (RF) are significantly larger than in SCs:
In the model, we propose convergent visual projections from
SCs to SCd, where also the auditory input from ICx is
received. According to the field of vision, the RFs of the
visual projections might cover just a part of the resulting
multisensory map.

c) Most SCd multisensory neurons display Response En-
hancement when receiving spatially and temporally coincident
stimuli but show response depression if simultaneous stimuli
are spatially separated: This actual property of multisensory
integration can be realized by a WTA-type network with both
auditory and visual afferents and global inhibition. Competing
features inhibit each other, aligned stimuli excite one another.

d) Maximal enhancement occurs with minimally effective
stimuli: Especially for a strong activation, the WTA response
is limited by global inhibition and by the sigmoidal output
of the neurons. With a suitable set of network parameters,
weak bimodal inputs should show a greater enhancement than
the combination of stronger stimuli, which lead to a more
saturated WTA–process.

e) In SCd overlapping multisensory and motor-maps
initiate overt behavior: We are going to use the multisensory
map to code turn reflexes of a robotic head toward the acoustic
or visual stimulus; small moves if the stimuli originate almost
from the center, and stronger ones if ”something” is to be seen
on or heard from the side.



f) Different modality-specific RFs have to be aligned
to allow Response Enhancement, even if eyes and/or ears
can be moved separately: If so, there has to be also an
exclusively visual map in SCd, controlling eye movement. This
is consistent with the known models of saccade generation [9].
To achieve map alignment every eye-specific motor-command
must cause an adjustment in the auditory map. In the model,
this is realized by a controlled change of the weights of the
ICx–SCd projection (fig. 2).

Like Rucci, Edelman and Wray in [7], we use similar
network–types to model the auditory Inferior Colliculus and to
realize the multimodal map. A nonlinear notation can be given
as a dynamic field of Amari-type [1], modified by a bimodal
input:

τ
d

dt
z(r, t) = −z(r, t) + cAxA(r, t) + cV xV (r, t)

−ci

∫
y(z(r, t))dr

+cn

∫
w(r − r′)y(z(r′, t))dr′

The state z(r, t) of a neuron at position r is depending
on three components: the weighted bimodal inputs xA and
xV , global inhibition according to the integrated network
output and lateral feedback from neighboring positions r′.
All neurons have sigmoidal output, calculated by the Fermi-
function: y(z(r, t)) = (1 + exp(−σ · z(r, t)))−1.

Fig. 2. A simplified and universal model of the Superior Colliculus, which
satisfies the properties, mentioned in the text. Further simplifications can be
made, if no separate camera turns are possible (no separate SCd visual map

and static ICx-SCd-projections) or if an omnidirectional camera is used
(modified SCs-SCd projection).

For every experiment, the multimodal part of the model is
simulated three times: with only visual, auditory and multi-
modal input. Based on these results, the amount of Response
Enhancement (RE) can be measured in a similar way to
neurophysiological recordings as:

RE = (CM − SMmax) · 100/SMmax

where CM is the combined-modality response (yA+V ) and
SMmax is the response to the most effective single-modality
stimulus (max(yA, yV )) [10]. The response itself is the tempo-
ral integration of the activity at one position in the spatial map.

Fig. 3. The representation of exemplary bimodal (hand clap) and
simultaneous unimodal stimuli (waving hands) is shown for the auditory,
visual and multimodal maps (MSO denotes the binaural cross-correlator).

The spatial resolution is given by the audio-recording setup (39 steps
between 90 degrees left and right). To evaluate the amount of Response

Enhancement, the SCd-map is computed three times: with only visual (V),
only auditory (A) and bimodal input (A+V).

Below it is normalized over the duration of the experiment
(usually 1-2sec.). The relation of single modality effectiveness
and multimodal enhancement can be illustrated if we plot the
sum of the unimodal responses yA +yV against the amount of
the Response Enhancement in the corresponding multimodal
case. If we further vary the stimulus–intensity, a characteristic
curve is formed for every experiment (fig.4). Based on the
results of some random samples (represented by the curves in
fig.4) there is evidence, that the Amari–field can perform the
desired features robust and in a wide dynamic range.

Fig. 4. Ineffective single-modality stimuli should produce the strongest
Response Enhancement. Four experiments with correlated auditory and

visual events were repeated with varying stimulus intensity. The
single-modality responses yA + yV are plotted against the amount of

Response Enhancement in the corresponding multimodal case. The
Amari–field dynamics and the sigmoidal output of the units causing

characteristic intervals: After a subthreshold range with additive
combination of very weak responses, the sharp rise in the output–function
and the feedback in the network produce large enhancement values. If the
stimuli become even stronger, saturation due to the limited output and the
global inhibition is observed – first for multimodal stimulation only, and

finally even for single-modality activation. The marked interval, where the
RE-value seems to be generally decreasing, defines a range on the horizontal

axis between 1–100% of the theoretical, saturated output of a neuron.



III. DATABASE CONCEPT FOR FLEXIBLE AUDIO-VISUAL

SUPERPOSITION

Since we are not processing highly specific features but
modeling early stage mechanisms, the effects and properties
of our simulations have to be basic and universally valid. The
question, how to prove the general validity of the model in
diverse and real situations, is a critical point, not only in this
study. A common technique is to use recordings or realtime ex-
periments in a restricted environment (lights and noise-bursts
in a dark, anechoic chamber) for a detailed analysis. However,
the relevance of those analysis to real situations must be doubt
for several reasons: In reality, the stimuli are not point-like
and, simply depending on the situation and the distance to the
observer, occur in very different shapes, characteristics and
dynamics. Another practice, which is widely used in the fields
of Neuroinformatics and Artificial Intelligence, is to generate
simulations of the environment. Virtual experiments can be
repeated and varied easily, but have the drawback of providing
less complexity than real sensory inputs.

To overcome this dilemma, we combine recordings of
real situations and off-line simulations in a novel approach.
Separate recordings of sounds and visual scenes are stored
in a database and can be assembled to randomly arranged
but reasonable situations. The type of stimuli and scenes
characterizes typical situations in man-machine-interaction,
while the database can be extended for another purpose
or to reproduce other simple multimodal setups (e.g. such
as in [7]). Up to now, the visual stimuli include local
motion (gestures, single hand-claps, waving hands) and
translations (people walking by, getting closer or away).
Since motion coded by intensity differences is the only
visual cue in the model, the experiments become widely
independent from object color, illumination or background
texture. For the acoustic database, we recorded different
words and claps and reproduced them from a number of
angles in a lecture hall (≈ 300m2, 1sec reverberating time).
Yet the current database, including five people, 14 visual
and 11 acoustic events, offers a combinational variety,
that is suitable for reproducible statistical interpretations. To
share ideas and experiences, the data are public available from
http://cortex.informatik.tu-ilmenau.de/˜schauer,
where also a more detailed description of the experimental
setup is provided.

IV. EVALUATION OF MODEL BEHAVIOR

The novel database concept enables a new method of
testing and evaluating our model, already with respect to real–
world applications. Beside single experiments, it is possible
to inquire benchmarks and statistical analysis. In the context
of our simulations, we define a benchmark as a number of
repetitions of a multimodal experiment, where certain temporal
and/or spatial parameters of the scene vary. If the database
covers the complexity of the potential environment, we assume
that a model which performs well in the benchmark will do
the same in the real application.

Now the missing link in the concept is to answer the
question, what is good performance in a certain situation? For
the conventional problem of object recognition an appropriate
method is to distinguish between wrong and right localizations
and calculate rates of successful recognitions. Here such an
approach fails, because we neither are able to define objects
nor decide what the right localization is in the one or the
other situation. On a very early processing stage (which is
modeled here), the idea of objects as well as the interpretation
of stimuli–directions in the context of concrete situations
are irrelevant. Since higher cognitive mechanisms seem not
to be involved in the forming of primary multimodal maps
in the midbrain, it simply makes no sense to use these
criteria for the evaluation. Ones again, the neurobiological and
physiological findings provide a solution for the problem: The
response properties in the multimodal SC are the result of an
evolutionary optimization – a process that was and is based
on the same spatial and temporal stimuli–dynamics we have to
face in our perspective application (e.g. speech and gestures).
If we can quantify the multimodal properties and use them
for the optimization of the SC-model, we can expect a robust
model–behavior in real and natural situations.

In the following, we translate the qualitative descriptions
and quantitative findings about the multimodal SC-maps into
a number of optimization criteria. We start our consideration
with the diagram in fig. 4. While the result of one experiment
marks a point, given by yA + yV and the corresponding RE-
value, a benchmark of some hundred experiments forms a
scatter plot. The noise or variation within this plot is caused
by the different stimulus intensities and the more or less
distinct spatial and temporal disparities in the scenes. Words
are spoken with different loudness, gestures were performed
rapidly or slowly, the image contrast changes with lighting, the
positions of moving hands differ more or less from the head-
position (which gives the auditory localization) and the time
flow of gestures and sounds is a very stochastical process.
In the evaluation step, we demand not less than the basic
multimodal features to be reflected in the (yA + yV )-to-RE
scatter plot of a benchmark. To test this hypothesis and to
define boundary condition for the behavior of the model we
use 5 criteria:

• The maximum criterion: what is the strongest enhance-
ment, observed in all experiments of the benchmark

• The mean criterion: the mean of the all RE-values spec-
ifies the overall amount of the multimodal enhancement.

• The orientation criterion: To characterize the relation
between single–modality effectiveness and multimodal
enhancement, orientation and shape of the scatter–plot
are crucial. A comparatively easy way to quantify these
features is the Principal Component Analysis (PCA)
of the scatter–plot. The Eigenvectors of the covariance
matrix of the plot indicate the alignment of the data. The
orientation criterion is calculated as the deviation of the
strongest component from the diagonal of the normalized
and centered scatter–plot (fig.5).

• The shape criterion: The relation of the Eigenvalues of



the covariance matrix is measuring how strong or reliable
the single–/multimodal relation is. A shape-factor of 1
characterizes a round scatter–plot, which is not signifi-
cant, larger values correspond to a dominant component
in the distribution, i.e. a clear orientation of the plot.

• The single modality criterion: to assure that the Amari–
field is performing a reasonable winner–take–all behavior,
we ask for mean yA + yV -values larger than a certain
minimum.

Fig. 5. The orientation and shape criteria. Normalized and centered data of
a benchmark are used. The length of the arrows corresponds to the

Eigenvalues of the covariance matrix of the scatter–plot, their directions are
given by the Eigenvectors.

V. AMARI–FIELD OPTIMIZATION

The benchmarks over real audio-visual stimuli and the eval-
uation criteria described above can be utilized as a universal
framework for the optimization of multimodal maps. Since
we use a recurrent Amari-field to model the multimodal inte-
gration, the demand for reasonable or optimal topologies and
parameters is of particular interest. The principle suitability
of the network could be shown for random samples in fig.4,
but WTA-type structures are known to be hard to analyze
and adjust. We have to face variations in a high dimensional
parameter space and no direct connection exist between a
contrast function (or criterion) and the parameters to find an
optimal operating point analytically.

Beside the evaluation criteria further constraints help to
reduce the degree of freedom in the parameter space. The
width of the recurrent connections of the Amari-field is
controlling the way, how different input shapes are processed.
The more neighboring units lay within the excitatory feedback,
the broader the visual stimuli or the audio-visual disparity for
a single multimodal event can be. Also the time-constant of
the dynamic Amari–neurons can be fixed before the parameter
search. Depending on the time-window in which multisensory
interaction should occur, the time-constant was set to 250 msec
in all experiments.

Other parameters like the slope of the neurons output–
function or the weight on input, feedback and global inhibition
are harder to adjust. In a first step, we alternated the parameters
for a small number of experiments, until we found broad inter-
vals, where the model shows acceptable WTA-behavior and the
characteristic curves of fig.4 overlay as much as possible. After
that, we permuted the remaining parameters (e.g. the weights

for input, feedback and inhibition) in discrete gradations and
run the same benchmark for each parameter set. This way a
(yA + yV )-to-RE scatter–plot and the corresponding criteria
are calculated on every discrete point in the remaining 3- or
4-dimensional parameter space. For a better visualization, we
omit the inhibitory weight in the diagram and just plot the
results for varying input- and feedback-weights and selected
criteria in fig. 6. To find an optimal parameter set, we choose
the mean Response Enhancement as the final optimization
criterion and used the others to define a suitable subspace
where a number of constraints were fulfilled: a) the highest
observed enhancement values should be larger than 500% but
smaller than 1500%, b) the orientation of the scatter–plot
should be close to the diagonal (less than 30 degrees deviation,
compare fig.5), c) the orientation should also be significant,
i.e. the scatter–plot has to be narrow (factor between 1st and
2nd Eigenvalue > 5), in addition the mean single modality
activation should be at least at 10% (single modality criterion,
not plotted). On all points in the remaining subspace (fig. 6d),
we determined the highest mean RE-value and thus got the
final optimal parameter set.

The described method is universally applicable to other net-
work types. Provided that the criteria change slowly and con-
tinuously in the parameter space, it can run automatically and
is cascadable. On a common one-processor PC, a MATLAB-
implementation is finding an optimum for 4 parameter (each
with 10 variation) and 100 audio-visual experiments per step
in about three days.

Fig. 6. Visualization of the evaluation criteria and the constraints which
define a valid parameter–subspace in terms of a plausible audio-visual

integration. Other Amari-field parameters were: sigmoidal output with σ=8
and inhibitory weight=0.2. The feedback vector was a normalized Gaussian

with r=10.

Using the optimal parameter set, we observed not only
a good winner-take-all behavior of the Amari-field but also
multimodal features which correspond almost perfect to the
results of known neurophysiological studies:

• Response Enhancement is performed for correlated



multimodal stimulation (fig.7). The amount of Response
Enhancement and the spatial disparities and effective time
windows in which this effect occurs are plausible com-
pared to biological perception and can also be adjusted
to the demands of specific applications. That means the
spatial window for grouping auditory and visual stimuli
is depending on the minimum object distance and can
be realized by applying large receptive fields and wide
feedback connections.

• Maximal enhancement occurs with minimal effec-
tive stimuli. It could be shown, that a typical WTA-
process is suitable to cause an inverse proportionality of
single modality effectiveness and multimodal Response
Enhancement. (fig.7)

• Response Depression occurs for simultaneous but spa-
tially separated events. In the model, this property is
based on the global inhibitory mechanism of the WTA-
network. In a corresponding benchmark (not plotted),
depression up to 60% was observed.

Fig. 7. Visualization of the benchmark for the optimal parameter set,
including 300 experiments. The maximum multimodal enhancement was

1200%, the average value 200 %. The scatter–plot is oriented almost
diagonal in the range of values and the inverse relation of single-response

and multimodal enhancement is significant (factor 5.8 between 1st and 2nd
Eigenvalue of the covariance matrix of the scatter–plot data).

VI. CONCLUSIONS

Based on a robust sound localization and scene motion,
simply coded by temporal intensity differences, it was possible
to demonstrate essential properties of sub-cortical sensory
integration by simulating a dynamic neural field of Amari
type with bimodal inputs. Response Enhancement, Response
Depression and the relation of maximum enhancement to least
effective single modality stimuli where shown.

Further, the proposed concept of generating virtual audio-
visual experiments with the help of a database of real-world
scenes enables a wide range of new methods and analysis. The
spatial and temporal parameters of early multisensory integra-
tion (time-windows, receptive fields) can now be investigated
by means of statistical benchmarks, already in the context of
real situations and concrete applications. A key idea of this
concept is to replace traditional specifications for the object
recognition task by response properties, observed in the multi-

modal parts of the Superior Colliculus. Exemplarily we re-
alized a successful high–dimensional parameter optimization
in a hard–to–adjust recurrent network based on multiple bio-
inspired criteria. In a next step, we are going to integrate a
Response Depression criterion to complete the evaluation and
optimization concept.

Along with the first simulations, we gained new insights
in the mechanisms of early saliency or attention. An example
is the interpretation of the very large receptive fields in the
SCd, that are necessary for grouping even spatially separated
stimuli, if multimodal events occur close to the observer. If,
e.g. command words and gestures are processed, a person’s
head and hands are represented in noticeable different direc-
tions, but contributing to the same multimodal event. In this
situation, a high spatial resolution in the auditory and visual
representations would be counterproductive. In general, one
can assume, that the reliability of a multimodal activation is
much more important than a high localization precision (as
observed e.g. during saccade generation in the superficial SC
or in the auditory maps of ICx).

Although it is imaginable to perform also the initiation
of motor commands and map shifting on the base of the
databank, we strive for a realtime capable implementation on
an experimental robot platform and tests in real man-machine
communication. The practical aspect of the application of the
model is an expected significant advantage in the detection
and tracking of users interacting with a mobile robot [4].
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