Proc. 2004 |EEE Int. Conf. on Systems, Man & Cybernetics (SMC2004), The Hague, Netherlands, pp. 5398-5403, | EEE/Omnipress, ISBN 0-7803-8567-5

Robust Map Building for an Autonomous Robot
using Low-cost Sensors™

Christof Schroeter, Hans-Joachim Boehme, Horst-Michael Gross
[lmenau Technical University, Germany
christof.schroeter@tu-ilmenau.de

Abstract — The paper describes an approach for build-
ing a map of an indoor environment with a mobile robot,
using a combination of odometry and sonar range sen-
sors. Aiming for real-time large scale mapping on low-
cost platforms with limited sensory and computational
equipment, we discard high-complexity techniques like
probabilistic SLAM. Instead, the algorithms presented
here involve odometry correction and automatic pose re-
calibration, enabling us to build a coherent map that can
be used for navigation and self-localization. Ezrperimen-
tal results from different environments prove the effi-
ctency of our approach.

Keywords: Odometry correction, localization, map-
ping

1 Introduction

Self-Localization and Map-Building are two of the
key requirements for an autonomous mobile robot. The
robot must know where it is located within a certain ref-
erence frame and it must be aware of its environment by
means of an environment model (map). The purpose of
the map is to enable a robot to act reasonably within its
environment. Therefore, it must contain those features
that are required for the desired behaviour. Since the
behaviour of an autonomous robot is based on its sen-
sorical input, the environment model preferrably should
be built from sensor readings too, instead of providing
a designer model.

For a mobile robot, localization and mapping bear
mutual interdependencies. With the pose known, the
robot can integrate sensor readings into a common
frame as it moves around, iteratively updating its en-
vironment model. Likewise, with a known map, it is
possible to determine the robot pose by comparison of
sensor input and features stored in the map. In the ab-
sence of accurate pose information as well as a model of
the environment, both localization and mapping present
complex tasks.

In this paper we will focus on the aim of learning a
consistent geometric map from sonar range readings, us-

*0-7803-8566-7/04/$20.00 © 2004 IEEE.

ing odometry (egomotion measurements) as main pose
information and combining it with internal map align-
ment and visual input for increased accuracy. The re-
mainder of the paper is structured as follows. In section
2 we give an overview of related research work in the
field of pose estimation. Section 3 explains in detail
the algorithms used in our approach and demonstrates
results of mapping different environments. Section 4
contains our conclusions and plans for further research.

2 Related Work

Usually, a mobile robot is equipped with wheel en-
coders that enable it to measure its own motion and
determine the current position by dead-reackoning, i.e.
integrating incremental motion information over time.
Odometry is widely used because it provides high sam-
pling rates and good short-term accuracy for a low price.
However, it inevitably leads to accumulation of system-
atic and non-systematic measurement errors, resulting
in a growing difference between believed and real po-
sition. Therefore, uncorrected odometry alone is not a
reliable method for tracking a mobile robot’s pose and
building consistent large-scale maps.

Borenstein et al. described calibration for a robot’s
odometry system in [1]. Their approach focussed on
identifying possible error sources for a differential drive
robot and determining parameters to explicitly cor-
rect those errors. Martinelli [6] presented a strategy
for experimentally determining the systematic and non-
systematic errors in a synchro-drive robot, estimating
error parameters from several observables.

External sensors have been used to increase the ac-
curacy of odometry. A very popular approach is scan
matching, where overlapping sensor readings from dif-
ferent locations are compared and matched to compen-
sate for the error aquired while moving from one posi-
tion to the next one [5]. Scan matching depends on high
accuracy and resolution of the sensor for good matching
results. Hence, usually laser scanners are used for this
task.

As aforementioned, another possible approach to lo-
calization is using a given map to determine the current

position relative to known features by comparison with
sensor readings. Although in this paper, we are ex-
plicitely considering a situation where no prior map is
available, we give a short overview of such algorithms.

A simple method would be to provide positions of eas-
ily recognizable landmarks that can be detected by ei-
ther range sensors or visual input. Localization depends
on observation of one or more landmarks, while between
observations the position is maintained by odometry.
Newer approaches estimate probability distributions for
the robot state that are updated with motion and ob-
servations, using probabilistic motion and observation
models. Several algorithms like Kalman filters [7], grid-
based Markov methods [3] and particle filters (Monte-
Carlo-Localization, MCL) [2] have been used for prob-
ability estimation.

The chicken-and-egg problem of mapping and local-
ization is addressed by Simultaneous Localization and
Mapping (SLAM). In SLAM, mapping and localization
are solved parallely observing and exploiting the mutual
dependencies. The base of SLAM is an extended state
space that contains the position as well as the map. A
probability distribution over this common state space
is maintained that converges with motion and observa-
tions [10], [8]. Most successful applications are using
laser scanners, while visual SLAM and adaption to ar-
bitrarily large environments are subjects of ongoing re-
search.

3 Odometry Correction
3.1

Our current experimental platform is a RWI B21r
with 4 synchronously steered and driven wheels
(synchro-drive). Translation and rotation are measured
independently by incremental encoders. Our observa-
tions show that while odometry information is highly
accurate concerning the driven distance, deviations in
the believed orientation (motion direction) can become
quite high. This is caused by the robot not driving
straight lines but circular arcs when it should go ahead.
A possible explanation for this behaviour would be dif-

Odometry Calibration

ferent wear on the wheels. In contrast to differential
drive, in the synchro-drive, as the robot turns the posi-
tion of each wheel w.r.t. the heading direction changes,
altering that specific wheels influence on the driving be-
haviour. Therefore, determining the systematic errors
takes more effort than for the differential drive. On the
other hand, experimental data suggests that the error
can be described with a plain model, specifying an arc
radius for each specific wheel direction.

Fig. 1 (left) shows what happens when the robot
should go straight ahead, but the wheels cover differ-
ent distances. The actual driven path is a circular arc,
but the wheel configuration w.r.t. the driving direction
does not change, leading the robot to believe it has gone

Figure 1: left: The robot drives a circular arc instead of
a straight line. right: The map is distorted due to the
wrong perception of the robot’s own motion. Actually
the environment consists of one straight corridor (black:
free space, white: obstacles, grey: unexplored)

0=0°

do—

Figure 2: left: S is the point where the robot started a
straight line movement. D is where the robot believes
to be, when it is actually at D’. While the actual path is
an arc, the new position can be calculated by assuming
the robot went a direct line from S to D’, calculating
substitution parameters ¢’ and d’. right: The arc radius
is expected to depend on the motion direction w.r.t. the

wheel base.

straight ahead. The measured distance d is (almost)
exactly the length of the arc. During this motion, the
robot’s heading direction w.r.t. an external reference
frame has changed by angle a. Fig. 1 (right) demon-
strates the effects of this behaviour on the built map.
When the robot really drives a straight line (steered by
a human), the odometry systems measures an arc mo-
tion, which results in straight corridors appearing bent
in the map.

To correct these erroneous measurements, we need to
determine the radius of the resulting arc. If the radius
of the arc is known, we can compute the destination po-
sition from the driven distance d, by assuming a straight
motion in direction ¢’ with distance d' (Fig. 2 left). We
find:

= (1

d
(@x,dy)

dx

(0,r)

(0,0)

Figure 3: The arc radius can be computed from mea-
sured lengths dx and dy.

o=t 2
sin(3) = = (3)
d' = 2rx sin(=) (4)
¥ =643 (5)

Substituting d by d’ and ¢ by ¢’ we can do a regular
odometry position update now. However, we need an
additional correction for the robot heading, as the drive
direction no longer is the same as the heading direction.
Note that with a perfect synchro-drive, the orientation
of the wheel base w.r.t. an external reference frame
never changes during regular operation, therefore the
robot heading is always the same as the torsion towards
the wheelbase. However, for our approach we are main-
taining 2 parameters. ¢ describes the heading of the
robot in the external frame and changes with transla-
tion (due to described measurement errors) as well as
rotation. @ is the torsion of the robot, which changes
only with rotation and affects the influence of each sin-
gle wheel on the motion behaviour. Therefore # will be
needed for odometry correction. Fig. 2 (right) demon-
strates how the arc changes with drive direction w.r.t.
the wheelbase, as the varying wheel configuration de-
termines the drive behaviour. For example assume one
wheel has a smaller diameter than all the others. This
will lead to strong arc motion if the wheel is located at
the outer edge, while it will have almost no effect if the
wheel is near the center line of the robot (in drive direc-
tion). Therefore we do not only need to determine the
radius once, but must find a function mapping the drive
direction f to the arc radius. Our approach here was to
sample the radius at a number of directions and inter-
polate between those sample points. The ideal method
of measuring the radius of the robot path would be to
have the robot move in a full circle and measure the
diameter. Unfortunately, as the occuring radii are up
to 2000m, this is only feasible with a very large planar
area. Instead, we can only drive fragments of full circles
and try to measure observables that allow computation
of the arc radius. We propose 2 methods here.

Figure 4: left: Sample points show 1/r as function of
the heading direction, measured with method 1 (mea-
surement of dx and dy). right: Same with method 2
(measurement of pathlength d and differential angle o

The first method is illustrated in Fig. 3. The robot
is commanded to drive a straight line and the motion
in x and y direction is measured. Without any error, it
would only move in x direction. Without loss of general-
ity we can assign coordinates (0,0) to the starting point
and (dx, dy) to the end point. The center of the circle
is (0,r). Inserting the end point into the circle equation
we get

(dz —0)? + (dy — 7)? = r? (6)

dz? + dy?
Pr= ——
2dy

This method only requires the measurement of 2
ranges, but also depends on very exact alignment of the
robot and measurement, as we must ensure the mea-
surement coordinate system matches the inital heading
direction of the robot. Measurement results are shown
in Fig. 4 (left).

The second method needs no alignment at all, but
requires the measurement of angles. Using equation 2,
we can calculate r by measuring the difference between
initial and final heading along the arc path («). d and
a are marked in Fig. 2 (left).

(7)

= (8)

For direct angle measurement, the resolution that can
be achieved with simple methods is lower than for mea-
suring the ranges as in the first method. However, with
increasing distance d the resulting error in the radius
r is decreasing. Therefore, the second method should
be preferred if a reasonably large area is available for
experiments.

Fig. 4 (right) shows measurement samples taken with
method 2. We have plotted the inverse % as a function
of the orientation here. In both plots it is obvious that
the function approximately matches a sine wave. This
supports the hypothesis that the errors originate from
different conditions of the wheels, as those should be-
come more or less significant with the wheels taking a

Figure 5: A map of the same area as Fig.1, with odom-
etry correction applied.

Figure 6: After travelling the corridor several times,
position errors have grown enough to distort the map.

place near the center of the robot or closer to the edge
(w.r.t. drive direction), following a sine curve as well.
An additional best match sine curve is displayed in both
results plots. It is also visible that both methods yield
comparable results in the mean as well as the variance
of measurements. We must be aware that the results
contain impreciseness of measurements as well as non-
systematic errors in the robot motion itself.

Fig. 5 shows the area from Fig. 1 again, this time
mapped using the described odometry correction.

3.2 Map Matching

Fig. 6 shows the map of the corridor after the robot
has travelled from one end to the other several times.
It is clearly visible that the position error has grown
large enough to destroy the consistency of the map.
The odometry calibration from subsection 3.1 reduces
the pose errors significantly, however the main prob-
lem of odometry remains: the position uncertainty will
still grow unbounded over arbitrary time. Therefore,
an additional recalibration of the robot’s position be-
lief is needed. The idea in our approach is that when-
ever the robot re-enters an area that has already been
mapped before, a wrong position estimation leads to a
discrepancy between the map and the environment as
it is perceived by the robot’s sensors. The idea is some-
what similar to scan matching, with the difference that
we do not match consecutive measurements. Further-
more, since we are working with unreliable sonar range

Figure 7: top: The static map contains the whole area
that was already mapped by the robot. bottom: The
temporary map is only built from the most recent mea-
surements over a path of a few meters.

sensors, single scans do not seem very promising.

Instead, it seems reasonable to match maps against
each other. The purpose of the map building algorithm
is to compensate for erroneous measurements, making
the resulting map much more reliable than single scans.
To enable matching, we need to discriminate between
a temporary map, containing only recent measurements
within a certain travel distance window and a static
map, containing all older measurements that are not
part of the temporary map. This is implemented by us-
ing a queue where all measurements are stored together
with the respective odometry position. The scans leave
the queue and are integrated into the static map when
the robot has moved away from that position by a cer-
tain distance. The temporary map is rebuilt each time
from all the scans that are still in the queue.

As the robot moves along its path, the temporary
map will run ahead of the static map, always covering
the most recently crossed area. When the robot enters
an area it has seen before, the static map will already
contain that area. Only in that case there is an over-
lap between the static and temporary map. If the robot
has aquired an error in position belief since the area
was mapped last time, it will now assume a wrong po-
sition with reference to the static map, which leads to
a displacement between the static and temporary map.
By determining this displacement, we can calculate and
then correct the position error.

In order to find the best match between the static
and temporary map, we use a simple cross-correlation
algorithm. Since errors can occur as shift in x- or y-
direction or as rotation, the temporary map needs to
be shifted and rotated by different values within certain
bounds and a similarity measure has to be computed
each time. The scalar product is used for that purpose
here. The result is a 3-dimensional matrix containing
a fit value for each combination of x-shift, y-shift and
rotation (dz,dy, d¢).

C(dz,dy,d¢) = Z static(z,y) - temporary(z’,y') (9)

Ty
[m/]_[cos(d@) sin(d¢):|.|im:|+|:dx:|
y | | —sin(dé) cos(dg) Y dy

One problem with the scalar product is that for ”flat”
matrices it produces wide maxima instead of narrow
peaks. Since the maps usually consist of wide areas of
free space (nearly same value), the results are very un-
specific. If the matrices to match were merely shifted
and rotated copies of each other, we would still get a
distinctive peak for the true match. The mapping pro-
cedure may lead to slight differences between the maps
though, especially since the temporary map does not
contain very many scans. Overall, this often leads to
bad matches especially in the rotation component.

Therefore it is preferrable not to use the map for
matching as it is, but first extract certain features,
avoiding areas of equal value. We chose the edges be-
tween obstacles and free space as features here (see Fig.
7). With the resulting sparse matrices, maxima are de-
fined better in the correlation matrix.

Another problem is introduced by the typical struc-
ture of indoor environments. These mostly consist of
long corridors with parallel walls. When trying to deter-
mine the best match between the maps, the correlation
is very badly defined in the direction of the corridor.
This may lead to the correlation maximum not reflect-
ing the real position error. In such cases, the correlation
matrix usually shows a wide maximum that stretches in
one direction but is very narrow in the perpendicular di-
rection. Ifit is possible to identify such situations we can
apply correction only in the direction where the offset
is well known (usually across the corridor) while delay-
ing correction in the other direction until we get a more
reliable estimation. The distribution in the correlation
matrix can be described by calculating its eigenvectors
and corresponding eigenvalues. Here we first look for
the best rotation match, then calculate eigenvectors for
the remaining 2d matrix (Fig. 8). The first eigenvector
points at the direction of main distribution of matrix
elements, the eigenvalue represents the length of this
distribution. If the eigenvalue is very high, the corre-
lation is badly defined. In that case, correction is only
applied 1n the direction of the second eigenvector.

With the map gridsize known, the correlation can di-
rectly be converted into a position offset that is used
for correction of the position belief. Since the scans in
the queue are stored with the erroneous position belief,
they need to be corrected too, with a correction factor
decreasing over the distance to the current position.

The matching procedure is applied continiously in
certain intervals. A correction is only calculated though

Figure 8: left: features in the temporary map, cen-
ter: features in the static map, right: correlation matrix
(2d, for best rotation angle d¢, with eigenvectors high-
lighted)

Figure 9: left: features from static (dark grey) and tem-
porary map (light grey) overlayed without correction,
right: features from static and temporary map over-
layed after correction. A position error of about 1 pixel
in x direction (about 20 cm) has been corrected.

if there is an overlap between the static and the tem-
porary map (remember the static map runs behind the
temporary map when the robot moves through an area
for the first time) and when enough feature points (e.g.
walls) are found. That way, whenever the robot enters
an area it had mapped before, the position is recali-
brated automatically. To build a consistent map, we
must ensure we do return to a known area before the

error in position becomes too large. In theory, a larger
error can still be compensated by using a larger search
window, but this significantly increases computational
cost as well as the possibility of a false match.

Figure 10: With map matching the resulting map is
consistent, however remaining small errors between cor-
rection intervals lead to less details in the map.

Fig. 10 shows the same environment as Fig. 6, with
the map matching correction. Due to slight shifts in
position some minor details (like the door halfway down
the corridor) may not be represented very well in the

map, but the position errors were kept low enough to
build a consistent map.

3.3 Combination with Visual Odometry
Correction

As was stated before, the larger the possible error in
position belief, the higher is the computational cost for
determining the true position. On the other hand, it is
often impractical having to return to a known area too
soon. Therefore, any additional correction method that
further decreases the deviation of position belief from
the true position is helpful. In our intended application,
a service robot in a home store, we are applying an addi-
tional correction based on observation of the floor struc-
ture. The distinct structure is used as reference for the
robot heading, ensuring true orientation belief at any
time [9]. Since accuracy for translation measurement is
significantly higher than for rotation measurement, this
greatly improves the reliability of odometry. Further-
more, since orientation is correct at any time now, the
map matching only needs to determine correlation in x
and y dimension, since errors in ¢ do not occur.

.‘ T s e —e S ey

S
i =

—— e, et

TN
St])

L
I

L
EH
3

i

Figure 11: Dimensions of this map are about 100m *

100m.

4 Conclusions

We have presented an approach to odometry correc-
tion and map building with sonar sensors that allows
us to build consistent maps of virtually arbitrarily large
areas. The algorithms are computationally efficient and
require no high precision sensors like laser range finders.
A limitation of the algorithm is that the position belief is
only recalibrated when a known area is re-entered. Po-
sition errors that occured between recalibration points
may still have an effect on the map. Therefore, the
robot should not move too far without closing a loop,
returning to a known place.

The same algorithms can be used to localize a robot in
a given map when its position is known approximately
and to keep track of the correct position during motion
within a known environment. We also intend to inte-
grate the map match feature into MCL [4] for increased
reliability and accuracy.

References

[1] J. Borenstein and L. Feng. Measurement and cor-
rection of systematic odometry errors in mobile
robots. IEEE Trans. on Robotics and Automation,
12(5), 1996.

[2] D. Fox, W. Burgard, F. Dellert, and S. Thrun.
Monte carlo localization: Efficient position estima-
tion for mobile robots. In Proc. of the AAAI Nat.
Conf. on Artifical Intelligence, 1999.

[3] D. Fox, W. Burgard, and S. Thrun. Markov local-
ization for mobile robots in dynamic environments.
Journal of Art. Intelligence Research, 11, 1999.

[4] H-M. Gross, A. Koenig, H.-J. Boehme,
C. Schroeter. Vision-based monte carlo self-
localization for a mobile service robot acting as
shopping assistant in a home store. In Proc. of the
2002 IEEE/RSJ Intl. Conf. on Intelligent Robots
and System, pp. 265-262, 2002.

[5] J.-Ste. Gutmann and C. Schlegel. Com-
parison of scan matching approaches for self-
localization in indoor environments. In Proc. of
the 1st Furomicro Workshop on Advanced Mobile
Robots (EUROBOT ’96), 1996.

and

Amos:

[6] A.Martinelli. The odometry error of a mobile robot
with a synchronous drive system. IEEE Trans.
on Robotics and Automation, 18(3):399-405, June
2002.

[7] P.S. Maybeck. The Kalman filter: An Introduction
to Concepts. In 1. Cox and G. Wilfong, editors,
Autonomous Robot Vehicles, pp. 194-204. Springer-
Verlag, 1990.

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Weg-
breit. FastSLAM:A factored solution to the si-
multaneous localization and mapping problem. In
Proc. of the AAAI Natl. Conf. on Artificial Intel-
ligence, 2002.

[9] C. Schroeter, H.-J. Boehme, and H.-M. Gross.
Extracting of orientation from floor structure for
odometry correction in mobile robotics. In Proc. of
the 25th Pattern Recognition Symposium (DAGM
2003, 2003.

[10] R. Smith, M. Self, and P. Cheeseman. A stochastic
map for uncertain spatial relationships. In 4th Intl.
Symposium on Robotic Research. MIT Press, 1987.

