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Abstract - This paper describes a novel omnivision-based
Concurrent Map-building and Localization (CML) approach
which is able to robustly localize a mobile robot in a uni-
Sformly structured, maze-like environment with changing ap-
pearances. The presented approach extends and improves
known appearance-based CML techniques in a few essential
aspects. For example, an advanced learning scheme in com-
bination with an active forgetting is introduced to allow a
complexity restricting adaptation of the environment model
to appearance variations of the operation area. Moreover,
a generalized scheme for fusion of localization hypotheses
from several state estimators with different meaning and cer-
tainty and a distributed coding of the current observation by
a weighted set of reference observations is proposed. Finally,
several real-world localization experiments investigating the
stability and localization accuracy of this novel omnivision-
based CML technique for a highly dynamic and populated
operation area, a home store, are presented.

1 Introduction

Self-localization is the task of estimating the pose of a mo-
bile robot given a map of the environment and a history of
sensor readings and executed actions. This includes both the
ability of globally localizing the robot from scratch, as well
as tracking the robot’s position once its location is known.
Many solutions have been presented in the past to realize a
robust self-localization in complex operation areas includ-
ing methods based on feature or landmark extraction and
tracking, and those based on appearance models of the en-
vironment. Robust self-localization also plays a central role
in our long-term research project PERSES (PERsonal SEr-
vice System) which aims to develop an interactive mobile
shopping assistant that can autonomously guide its user, a
customer, to desired articles within a home store realizing
a guidance function, or follow him as an attentive service-
companion [1]. To accommodate the challenges that arise
from the specifics of this interaction-oriented scenario and
the characteristics of the operation area, a regularly struc-
tured, maze-like and populated environment, we placed spe-
cial emphasis on vision-based methods for both human-robot
interaction and robot navigation. In our previous localiza-
tion approach [2], a graph-based representation of the op-

eration area is employed for appearance-based Monte Carlo
Localization. The static environment model is learned on-
the-fly while manually joy-sticking the robot through the op-
eration area. The nodes of the graph are labeled with both
visual observations extracted from the omnidirectional im-
age and information about the pose of the robot at the mo-
ment of node insertion. The main drawback of this and other
appearance-based approaches is, that localization is only pos-
sible in previously mapped areas. The construction of an ap-
pearance map is a supervised process, and the learned map is
only valid as far as no important modifications of the oper-
ation area occur. Because of the characteristics of the home
store as a highly dynamic operation area with a changing ap-
pearance, we were forced to develop an alternative approach
which realizes a Concurrent Map-building and Localization
and can adapt the learned environment model to the changing
environment.

Inspired by the work of Porta and Kroese [4, 5] and con-
tinuing our former work, an alternative technique was de-
veloped, which is able to perform an omnivision-based Con-
current Map-Building and Localization (CML) and to over-
come this drawback. In this new approach, the static, pre-
defined map of the operation area is replaced by an environ-
ment model which is obtained and continuously refined by
the robot as it moves through the operation area. If the robot
re-visits an already explored area, it can use the information
previously stored to reduce the uncertainty of its position and
to adapt its internal model. As extension to [5], our CML ap-
proach proposes improved fusion and learning methods and
uses alternative observations which can be summarized as
follows: i) While the model of Porta and Kroese can learn
new reference views and passively forget the positions of
irrelevant ones to deal with dynamic environments, our ap-
proach is in addition able to actively delete those views no
more relevant for the environment model (e.g., due to perma-
nent appearance changes at certain positions). This active
forgetting is of central importance to keep the complexity
and the number of reference views under control. ii) More-
over, we employ a generalized scheme for fusion of local-
ization hypotheses from several position estimators accord-
ing to their relevance and certainty. This allows us to super-
impose the position hypotheses from very different informa-
tion sources. iii) As observations and reference views, we
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Figure 1: General idea of our Concurrent Map-building and Local-
ization (CML) approach, from the modeling point of view closely
related to [5]. In both approaches, Mixtures of Gaussians (MoG)
are used to represent both the robot’s state & = (z+, Yz, ¢t)T in the
environment (left) and to learn an environment model (right). The
blue highlighted aspects “Fusion”, "Map Update” and ”Weighted
superposition” mark the focus of this paper.

use panoramic 360° images, so-called omniviews, which de-
scribe a certain position in the environment under all possible
heading directions of the robot. Therefore, this type of visual
input is preferred to describe the appearance of a position. iv)
To determine the reference observations taken by the robot in
positions visited earlier, often a crisp 1-of-N mapping from
the current observation to the best fitting internal representa-
tion is used. Our approach, however, employs a distributed
coding, which uses a set of most similar reference observa-
tions to describe the current observation and to model the
position hypothesis by a weighted superposition of the corre-
sponding position estimations.

In the following section, we first introduce the necessary
mathematical background of the CML technique. After that,
we describe specific aspects of our omniview-based CML ap-
proach with direct relevance for active adaptation of the envi-
ronment model. Finally, we present encouraging experimen-
tal results obtained with our CML system during localization
experiments in the home store and conclude summarizing our
work and pointing direction for further experiments.

2 Advanced CML approach

The basic CML approach of Porta and Kroese proposed re-
cently [5] is a promising technique to simultaneously build
an appearance-map of the environment and to use this map,
still under construction, to improve the localization of the
robot. Both in their and our system, the robot’s state x; =
(¢, yt, gbt)T in the environment is represented by a Mixture
of Gaussians (MoG) (see Fig. 1, left). In general, a mixture
X, = {(u},CL,wi)|i € [1, N} is a set of partial hypotheses
in form of single Gaussians with center u! and covariance
matrix C}. The weights w} (0 < w} < 1) provide informa-
tion on the certainty of the partial hypotheses. With that, the

current state of a robot is described as

N
p(wtlmt—17ut7 yt) = p(mt) = szﬁb(ﬂﬂiy C;) (1)
i=1

with x;_; as last state, u; as motion information, and vy,
as current observation. In the following, the conditional
terms are left out, the global localization hypothesis is sim-
ply called p(z;) to simplify matters. The generation of the
current localization hypothesis p(x;) is the result of a fu-
sion of several state hypotheses coded as MoG. Given the
last state hypothesis p(x;_1), the propagation of the mo-
tion data u; by the motion model leads to a first hypothesis
p(xi|ur, i—1) = p(x¢|u,) for the current state. In the fol-
lowing, this hypothesis has to be fused with other state hy-
potheses, e.g. p(x:|y,) which results from the environment
model using the current observation y,, or state hypotheses
from other sources of information p(x:|...) (see Fig. 1 and
2 middle). This requires an advanced fusion scheme in or-
der to allow a weighted superposition of several information
sources with different meaning, considering such aspect like
reliability or stability of the hypotheses.

2.1 Fusion of state hypotheses

To fuse the two hypotheses generated by the motion model
and the environment model (see Fig. 2, a-e), at first corre-
sponding Gaussians in both hypotheses a € p(x:|u;) and
b € p(zx:|y,) representing similar positions are determined.
As proposed by [5], this is done by a simple criterion based
on the Mahalanobis distance in State Space:

D(a,b) = { 1 o =) (Co € (y = ) <
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Figure 2: Advanced fusion of several state hypotheses: state hy-
pothesis generated by the last estimation and moved according to
the motion data and the motion model (top, a-c), new observation-
based state hypothesis from environment model (middle, d-e), and
additional state hypotheses suggested by other position estimators
(bottom) can be superimposed and merged to a new distribution
coding the current state hypothesis (right).
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If D(a,b) = 1, the two corresponding Gaussians are merged
by Covariance Intersection similar to [4]. The objective of
this fusion is to minimize the variance of the resulting distri-
bution. Therefore, the resulting Gaussian gets the following
parameters:

C = (1-a)CotaCy) 3)
po= Cll-a)Cllu,+aCylw] @

The control parameter o determines which Gaussian dom-
inates the merging result. Alternative to [5], we take the
weights w, and w; of both Gaussians into account to real-
ize a weighted fusion:

wy det(Cl)

“= wy det(Cy) + wg det(Ch) )

To determine the new weights w’ of the resulting Gaussians,
a little bit effort is needed because one component can have
more than one corresponding counterpart (e.g. component
d in Fig. 2). For this purpose, for each Gaussian first the
weights of all corresponding Gaussians within the allowed
neighborhood (i.e., all components with D(a,b) = 1) is de-
termined:

ba = D W ©)
JID(ag)=1
o= Y W @

JID(4,b)=1
With that, the weight w' of the Gaussian is given by

; Wy w
W' = we— + wp— ®)
Wq Wy

Gaussians in p(x¢|y,) and p(x;|u,) without a counterpart in
the other distribution (see Fig. 2, components ¢ and e) are
simply copied into the resulting MoG. This way, also com-
pletely new hypotheses can be integrated. After this first fu-
sion, the resulting MoG could be fused again with another
state hypothesis to integrate further information sources (see
Fig. 2 bottom). This has to be done, however, still before
the final weight normalization to preserve a similar influence
of all sources of information. During the final normalization
of the resulting MoG, the weights of all unsupported com-
ponents will be reduced passively. This way, their certainty
is continuously reduced, and after a number of update cycles
they can be deleted. To simplify the resulting MoG, overlap-
ping adjacent Gaussians can be merged to a single Gaussian
similar to the method described in section 2.3.

Afterwards, the resulting MoG coding the new state hy-
pothesis p(x;) (see Fig. 1, bottom left or Fig. 2, right) is used
for updating the environment model. Only unimodal hy-
potheses are employed for this update step, otherwise the re-
construction of states between two consecutive, unimodal hy-
potheses takes place according to [S]. Experiments showed
that this update must be delayed to avoid a positive feed-
back between state estimation and environment model and

vice versa. In this case, the changed p(x;|y,) would directly
influence p(x;) after a short time. Thereto, observation-state
estimation pairs (y,, p(x;)) are stored in a short queue which
is also used to buffer the time-consuming update operations
of the environment model.

2.2 Improved environment model
The purpose of our improved environment model U is to al-
low an estimation of the current state x; under the condition
of the current observation y, in a dynamic operation area
with appearance variations. In our case, y, represents the
omnidirectional view in form of a describing feature vector.
Inspired by the idea of [3], for feature extraction we use a
Fourier transformation over averaged local view-segments of
the omnidirectional image. This way, an efficient determina-
tion of rotation-invariant distances between the current view
and the reference views is possible. The whole Observation
Space is represented by a variable set of reference views y,.
To each y, a learned MoG X in the State Space is assigned.
U={(y;,X;),i=1,...,R} ©)
Each X is coding all those positions in the operation area
the respective observation was captured before.

Xi = {(wij, mijs i, Cij) 17 =1,..., M;} (10)

Every component j in X; has a weight w;; > 0 describing
its certainty and relevance for the fusion operation. In con-
trast to the modeling of p(x) by a Mixture of weighted Gaus-
sians, these weights do not need to sum up to one. Thus, the
term Z]Nil wj; describes the total importance of the respec-
tive reference view y, for the environment model.

In extension to [5], we explicitly want to consider and
model appearance variations and fluctuations occurring at
identical positions within the environment. Therefore, we
had to introduce another control parameter 7;; that counts
the number of observations at a position covered by a single
Gaussian j. This parameter 7);; is necessary for a stable esti-
mation of the distribution X;. If, for example, X is the result
of many fitting previous observations, the respective Gaus-
sian j could accumulate a high 7;; value coding a stabile and
reliable estimation. In this case, a single new position hy-
pothesis will get less influence on the resulting distribution.

Given the current observation y,, the localization hypoth-
esis p(x¢|y,) can be simply generated by finding the most
similar reference-view y; in the model U, as proposed by
[5]. However, to achieve a smoother approximation of the
hypothesis p(x:|y,), in our approach we realize a weighted
superposition of several position hypotheses. To be precise,
we superimpose the position hypotheses X; of all that ref-
erence views y,; most similar to the current observation y,
in the Observation Space. As illustrated in Fig. 3-top left,
only those reference-views are considered in this superposi-
tion whose distance to the current observation is lower than
the limit distance E"%*. Therefore, a similarity measure
S(y,,y;) was introduced which is 1.0 for a perfect match-
ing and continuously decreases to zero up to the EM*_ The

3512



final state hypothesis p(x;|y,) is computed as weighted sum
over all X; whereas the individual weights w;; of the Gaus-
sians are multiplied by the similarity values S(y,,y;) of the
respective reference views.

Because the heading direction of the robot only results in
a rotated omniimage (under the prerequisite the camera is
mounted coaxial to the center of rotation), the comparison of
views is invariant against different directions. Therefore, the
orientation components of the selected MoG X; only have
to be rotated to refer the current view. The best matching
rotation angle can be simply determined by the maximum
cross-correlation between y, and y, over the angle.

2.3 Updating the environment model

While using the model for generation of state hypotheses,
new observations are made that must be integrated. In the
simplest case, the model is only updated by pairs of obser-
vation y, and unimodal state distribution p(x;), i.e. a sin-
gle Gaussian ¢(x|p,, Ct). A dynamic environment and the
arising stability requirements, however, need a more complex
update regime that has to take into consideration the follow-
ing premises: i) one observation can only be generated by
one position in the area and ii) each position does only show
one appearance at a time. Therefore, the update of the envi-
ronment model is typically carried out in three phases.

1) Insertion of a new reference view: If the feature dis-
tance between the current observation and all learned refer-
ence views is larger than the limit distance £"**%, the current
observation y, has to be stored as a new reference view y,,.
Initially, the position estimation X,, of this new reference-
view is empty, in the further course of learning state hypothe-
ses are inserted (see next point).

2) Update of the Mixtures of Gaussians: A new Gaussian
representing the current state hypothesis p(a;) is added to the
already existing Gaussian Mixtures X; using the similarity
values S(y,, y;) mentioned above as gain control. The basic
idea behind this update step is as follows: since each X; is the
result of all former observations, a balanced insertion of new
Gaussians has to be realized. Therefore, if a new component
k has to be inserted into X; with the describing parameters
(Wik, Nik, by, Cy), the initial weight w;y, is set to zero, i.e.
this Gaussian still is without relevance for the MoG at the
beginning. The initial observation counter 7y, is set to a value
describing the ratio between the current similarity value and
the sum over the similarity values of all reference-views:

S(ym yt)

Zlel Sy, ;)

The resulting MoG can be simplified by a merging of similar
components to a single one, where the parameters 1 and w
of the involved Gaussians have to be summed up. If two
Gaussians n and m fulfill the following distance criterion:

(”in - “’z‘m)T(Cin + Cim)_l(llm - Mim) <6 (12)

they are reduced to a single Gaussian & replacing n and m
with the new mean

Nik = QY

it = NinMin + Nim Mim, (13)
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Figure 3: Schematic illustration of the weight updating in the En-
vironment Model in three phases: (Phase 1) given are the old model
and the new observation ¥y, to be inserted (top left) and its current
position estimation p(z:) (bottom right); (Phase 2) at first, sim-
ilarities between the Gaussians in X; and p(x:) are determined;
(Phase 3) the similarity of observation y, and known reference
views y, decides how the certainty weights of the Gaussians have
to be adapted (see equations (16)-(19))

and the new covariance matrix

Cic = 1in(Cin+ (i — i) (B — tiz)")
+ Nim(Cim + (Wi, — tite) (B — ig,) " (14)

The resulting new Gaussian k& approximates the weighted
sum of the two density functions. Because 7, is increased
for each fitting observation, the influence of a single update
step decreases with time, and the MoG stabilizes gradually.

3) Adaptation of the Gaussian’s weights: Now, the cer-
tainty weights w;; of the Gaussians are updated according
to the premises introduced above. For this, first the feature
distances E(y,,vy;) and smilarities S(y,,y,) in the Obser-
vation Space are determined as described earlier (see Fig. 3,
top left). Furthermore, the similarity of each Gaussian j in
X; to the single Gaussian describing the unimodal current
state p(x;) is determined by means of the Mahalanobis dis-
tance (see Fig. 3, bottom left)

Ay ) = (g — pij)" (Co + Cij) "y — pyy)  (15)

Now, the weights w;; of every Gaussian j in all X; are
adapted, if one of the following conditions is fulfilled:

1. Weight increasing: If y, belongs to this reference ob-
servation (E(y,,y,;) < E™%") and the current position
estimation p(x;) resembles the Gaussian currently con-
sidered (d(py, p;;) < d™*) then the weight of this
Gaussian is increased with 3 as learning rate (see Fig. 3,
top right - left Gaussian in X7 ):

wij =B Sy, y;) + (L= 8BSy, y:))wi;  (16)
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2. PFassive forgetting: 1If y, is matching the reference ob-
servation (E(y,,y;) < E™")but the considered Gaus-
sian j of X; does not match to p(ax;) (d(p, p;;) >
d™*), then the weight of the respective Gaussian must
be decreased as follows (see Fig. 3, top right - right
Gaussians in X7 and X5):

wij = (1= BS(y, y;))wi; (17

3. Active forgetting: If reference observation y; doesn’t
match y, (E(y,,y;) >= E™%) but has a com-
ponent j at the same (z,y)-position as p(x;) with
(dFvetidey (g, ;) < d™*) then the respective weight
has to be decreased too, to gradually forget former ob-
servations at this position, which will not appear again
(see Fig. 3, top right - left Gaussian in X3):

(18)

where b is a function of distance, and the variances of
p(x;) determine the speed of forgetting:

dEuklidzy (H“ /J'i) 0
dfor ’

Wi = (1 — b)w”

dgain

b= Bfor ~ma:c{1f

Oy + 0y

To consider uncertainty in the position of the new obser-
vation, the forgetting rate is modulated by the variances
o, and oy. So the forgetting of former hypotheses hap-
pens slower if the new observation influences a wider
spatial area in the State Space. The necessary param-
eters o7 and o, are extracted from the main diagonal
of C;. Parameter d/°" determines the maximum spatial
area within forgetting takes place, while d9%" controls
the dependency of forgetting rate on the variances.

After updating, Gaussians with too low weights are re-
moved in X; and, as consequence of this, all reference views
with empty X; are deleted. This way, the last update rule re-
alizes a limited number of Gaussians in a restricted local area.
Moreover, it guarantees, that old, irrelevant observations at
those positions with variable appearances can be replaced by
new ones. By means of this forgetting, the complexity of the
algorithm, which is determined by the number of reference
views, is linear in the area the robot is operating in. If a for-
mer observation, however, should appear again at the same
position, it can be inserted as a new observation into the en-
vironment model again.

3 Experiments and results

We first investigated the general learning and localization ca-
pabilities of our algorithm in a static operation area, a part of
the home store with a size of 25m by 10m. Figure 6 shows
the localization path determined by our CML approach (blue
curve, 7 laps around goods shelves). Observable is a local-
ization displacement to the reference positions (gray/yellow
curve) growing with distance to the initial position. The rea-
son for this behavior is the erroneous odometry used dur-
ing the first lap for building the initial environment model.

=

Figure 4: Localization results of our vision-based CML approach
in the operation area, a part of the home store. The initial position
lies in the upper part of the left hallway (top left). As reference for
visualization, the gray/yellow path shows the true position (ground
truth), while the dark/blue one depicts the localization estimates.

This is a general problem of this class of CML-approaches,
but in the field we want to apply this technique this prob-
lem is secondary. In our desired application, the autonomous
navigation in a home store, the main task is not to build a
model of a completely unknown area but to continuously
adapt the model learned before to a changing environment.
While building the map for the first time, supplementary lo-
calization information could be given to achieve a higher ini-
tial precision (e.g., by a manual position calibration at the
edges of the operation area).

In the following experiment, the behavior of the actively
forgetting environment model in an operation area showing
highly dynamic effects is examined. To construct such a de-
manding situation, we executed a long-term experiment in
our institute building. Here, we could actively influence the
appearances of local surroundings by switching the lights and
closing the curtains. The results of this experiment clearly
demonstrate the merits of our model (see table 1). Using a
model similar to the one presented in [5], the number of ref-
erence views was growing continuously as long as the envi-
ronment was changed (— CML with passive forgetting). Our
approach (— CML with active forgetting) is able to better
handle the situation by replacing irrelevant reference views
by new ones, leading to a limited number of references for
this restricted operation area. Based on these encouraging
lab results, we then investigated the active adaptation of the
environment model and the resulting localization accuracy
under realistic home store conditions, i.e. with customers and
employees walking through the operation area, rearranged or
cleared out goods shelves, and other dynamic changes (illu-
mination, etc.). To increase the dynamic effects, two data sets

Table 1: Comparison of the number of learned reference views
required for a continuously changing environment (10m x 15m):
CML with passive forgetting (similar to [5]) versus CML with active
forgetting and replacing of irrelevant reference views.

localization steps
2000 | 4000 | 6000 | 8000
CML w. passive forgett. || 1534 | 2835 | 4326 | 5560
CML w. active forgett. 1253 | 1807 | 2096 | 2070
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Figure 5: Histogram of localization errors in a dynamically chang-
ing environment. The diagram shows that the errors arising from
use of a static map are significantly higher (— static), whereby our
dynamic environment model is able to improve the localization ac-
curacy (— dynamic). Higher values on the left side are a result of
more small position errors and correspond to a low average error (.

were recorded with a time difference of four weeks. For that
purpose, the robot was moved about 2,000 meters through the
operation area (50 x 80 meters) by joy-sticking. The driven
test routes typically have a length of about 300 meters. In
the experiment, at first an old” static map was built up off-
line with manually corrected odometric data. Afterwards this
model was used to localize the robot on data recorded four
weeks later. During this time, many locations in the home
store have been rearranged which caused a high average po-
sition error of 111cm in the beginning (see Fig. 5). After
that, the capability of our CML algorithm to adapt the learned
map was activated. As a result, the mean localization error
could be decreased to 58cm by using the adapted map. Due
to the changes in the environment, in the experiment using
the non-adapted map numerous localization failures produce
high maximum localization errors (see Fig. 5) that influence
the average error negatively.

In continuation of the basic experiment described first, the
objective of the last experiment was to concurrently local-
ize the robot and to build up the environment model over a
longer period of operation. The map was built online with-
out corrected odometric data, and the algorithm started with
an empty map. Therefore, it is important that the CML al-
gorithm can recognize already visited areas to create a stable
and consistent map. Figure 6 (left) shows the navigation path
determined by the CML approach for a relatively large local
area. The map was built up and updated while the robot was
driven through the environment on three different days. A re-
markable result is that the average localization error could be
reduced from day to day because of the adapting map (Fig. 6,
right). At the end, an average localization error of 41cm was
achieved. This experiment shows that it is possible to local-
ize and concurrently build up an environment model with the
omnivision-based CML approach. But it is relatively time-
consuming to get a consistent map because of the necessity
of a repeated observation of the same operation area.

4 Conclusion and future work

To better deal with a dynamic environment, we developed a
novel omnivision-based Concurrent Map Building and Lo-
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Figure 6: Results of our long-term localization and learning exper-
iment executed in the home store. (Left) As reference for visual-
ization the goods shelves (grey rectangles), true path (red/light grey
curve), estimated path (blue/dark grey curve) and odometric data
(green/dotted curve) are shown. (Right) The error histogram clari-
fies the improvements made by the CML algorithm with every new
data (from day to day). The average error is improved from 48 cm
to 41 cm, the maximum error could be reduced from 221 to 137cm.

calization (CML) algorithm that allows to better handle ap-
pearance variations in the environment. In this paper, we in-
troduced the essential extensions and improvements of our
approach: a more flexible hypotheses fusion, a distributed
coding of the current observation by a weighted set of refer-
ence observations, and an advanced learning scheme in com-
bination with an active forgetting to better deal with appear-
ance changes. We conducted a number of encouraging local-
ization experiments investigating the impact of these exten-
sions on the stability and localization accuracy of this CML
technique. Based on these results, several long-term experi-
ments are planned for the near future to determine the accu-
racy of the global localization in the complete store, and to
observe the development of the number of reference views
used in the environment model with respect to the model
complexity and long-term stability.
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