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ABSTRACT
Today the appearance-based robot localization in static en-
vironments is not really challenging. A number of methods,
as for example Monte Carlo Localization, can solve this
task more or less good. In this paper, we present a novel
omnivision-based Concurrent Map-building and Localiza-
tion (CML) approach which is able to localize a mobile
robot in complex and dynamic environments and to adapt
its environment model. From the modeling point of view,
our method is closely related to the technique of Porta and
Kroese [1] which also use a Gaussian-based multi-hypothe-
ses tracker. We can show that our novel dynamic approach
achieves localization results which are comparable to those
of our previous particle-based localization approach. Fur-
thermore, we demonstrate the problem of localization in
changing environments with a static map and our solution
for that. First results of home store experiments to build up
a map while concurrently localize the robot are presented at
the end of the paper.

1. INTRODUCTION AND MOTIVATION

Robust self-localization plays a central role in our long-
term research project PERSES (PERsonal SErvice System)
which aims to develop an interactive mobile shopping assis-
tant which can autonomously guide its user within a home
store [2]. To accommodate the challenges that arise from
the specifics of this scenario and the characteristics of the
operation area, a regularly structured, maze-like and pop-
ulated environment, special emphasis is placed on vision-
based methods for robot navigation. In our previous ap-
proach [3] (appearance-based Monte Carlo Localization),
a static representation as map of the environment was de-
veloped, which was built up manually. The nodes of this
map are labeled with visual observations extracted from the
omnidirectional image and position information. Given this
map, localization was realized by employing a Particle Fil-
ter to estimate the robot’s state. The main drawback of this
and other appearance-based approaches published for years

is, however, that localization is only possible in manually
mapped areas. Furthermore, the learned map is only valid
as far as no important modifications of the operation area
occur (bad assumption in a home store).

In recent years, more and more approaches were intro-
duced, which are able to build up a map of environment and
localize the robot concurrently. This also means, the robot
continuously adapts its map if the operation area changes
its appearance. As a consequence, a dynamic map for rep-
resentation of a dynamic environment is necessary. There-
fore, inspired by the work of Porta and Kroese [1],[4] and
continuing our former work, an alternative technique was
developed, which is able to perform an omnivision-based
Concurrent Map-Building and Localization (CML) and to
overcome this drawback. In this new approach, the static,
pre-defined map of the operation area is replaced by an envi-
ronment model which is obtained and continuously refined
by the robot as it moves through the operation area. If the
robot re-visits an already explored area, it can use the in-
formation previously stored to reduce the uncertainty of its
position and to adapt its internal model. As extension to [1]
and [4], our CML approach proposes improved fusion and
learning methods and uses alternative observations which
can be summarized as follows:

i) As observations and reference views, panoramic360o

images are used, so-called omniviews, which describe a cer-
tain position in the environment under all possible heading
directions of the robot. Therefore, this type of visual input
is preferred to describe the appearance of a position.

ii) To determine the reference observations taken by the
robot in positions visited earlier, often a crisp 1-of-N map-
ping from the current observation to the best fitting internal
representation is used. Here, the new approach, however,
employs a distributed coding, which uses a set of most sim-
ilar reference observations to describe the current observa-
tion and to model the observation driven position hypothesis
by a weighted superposition of the corresponding position
estimations.

iii) While the model of Porta and Kroese can acquire
new reference views and passively forget the positions of
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Fig. 1. General idea of our Concurrent Map-building and Local-
ization (CML) approach from the modeling point of view closely
related to [1],[4]. In both approaches, Mixtures of Gaussians
(MoG) are used to represent both the belief of the robot’s state
xt = (xt, yt, φt)

T in the environment (left) and the environment
model (right).

irrelevant ones to deal with dynamic effects, this new ap-
proach is in addition able to actively delete those views no
more relevant for the environment model, e.g. due to per-
manent appearance changes at certain positions in the envi-
ronment. This active forgetting is of central importance to
keep the number of reference views under control.

The remainder of the paper is organized as follows: In
section 2 the original CML and alternative or improved as-
pects of our omniview-based CML approach are explained.
Section 2.4 describes the feature extraction from the omni-
camera. Section 3 demonstrates CML’s capability to local-
ize the robot and to build up and adapt correct maps of the
operation area. Localization results achieved with our static
MCL [3] approach and this CML technique are discussed
comparatively. At the end, the results are summarized and
an outlook is given.

2. BASIC IDEA OF THE LOCALIZATION
APPROACH

The basic CML approach of Porta and Kroese proposed re-
cently [1],[4] is a promising technique to simultaneously
build up an appearance-map of the environment and to use
this map, still under construction, to improve the localiza-
tion of the robot. In contrast to our previous MCL approach
based on particle filters [3], the robot’s statext is repre-
sented by a Mixture of Gaussians (MoG) (see Fig. 1, left).
In general, a mixtureXt = {(µi

t,C
i
t, w

i
t)|i ∈ [1, N ]} is a

set of partial hypotheses in form of single Gaussians with
centerµi

t and covariance matrixCi
t. Here, the weightswi

t

(0 < wi
t ≤ 1) provide information on the certainty of the

partial hypotheses. With that, the Belief of a robot’s state is
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Fig. 2. Advanced fusion of several state hypotheses: state hy-
pothesis generated by the last estimation and moved according to
the motion data and the motion model (top, a-c), new observation-
based state hypothesis from environment model (middle, d-e), and
additional state hypotheses suggested by other position estimators
(bottom) can be superimposed and merged to a new distribution
coding the current state hypothesis (right). Mathematical details
of this weighted merging are given in the text.

described as

p(xt) = p(xt|xt−1,ut,yt) =
N∑

i=1

wi
tφ(x|µi

t,C
i
t) (1)

with xt−1 as last state,ut as motion information, andyt

as current observation. The current localization hypothe-
sisp(xt) is generated by a fusion of several state hypothe-
ses coded as MoG. Given the last state hypothesisp(xt−1),
the propagation of the motion dataut by the motion model
leads to a first hypothesisp(xt|ut,xt−1) = p(xt|ut) for
the new state. In the following, this hypothesis has to be
fused with another hypothesis,p(xt|yt) which results from
the environment model using the current observationyt (or
other state hypotheses from other source of information
p(xt| . . .), see Fig. 1 and 2 middle). This requires an ad-
vanced fusion scheme in order to allow a weighted superpo-
sition of several information sources with different mean-
ing, considering such aspect like reliability or stability of
the hypotheses.

2.1. Generalized Scheme for Fusion of State Hypotheses

To fuse the two hypotheses generated by the motion model
and the environment model (see Fig. 2, components a-e in
the middle part), at first corresponding Gaussians in both
hypothesesa ∈ p(xt|ut) and b ∈ p(xt|yt) representing
similar positions are determined. As proposed by [4], this
is done by a simple criterion based on the Mahalanobis dis-



tance inState Space:

D(a, b) =
{

1 : (µa − µb) (Ca + Cb)
−1 (µa − µb) < γ

0 : else
(2)

If D(a, b) = 1, the two corresponding Gaussians are merged
by Covariance Intersection. The objective of this fusion is to
minimize the variance of the resulting distribution. There-
fore, the resulting Gaussian gets the following parameters:

Ci =
(
(1− α)C−1

a + α C−1
b

)−1
(3)

µ = Ci
[
(1− α)C−1

a µa + α C−1
b µb

]
(4)

The control parameterα determines which Gaussian dom-
inates the merging result. Alternative to [4], we take the
weightswa andwb of both Gaussians into account to real-
ize a weighted fusion:

α =
wb det(Ca)

wb det(Ca) + wa det(Cb)
(5)

To determine the new weightswi of the resulting Gaussians,
a little bit effort is needed because one component can have
more than one corresponding counterpart (e.g. component
d in Fig. 2). For this purpose, for each Gaussian first the
weights of all corresponding Gaussians within the allowed
neighborhood (i.e., all components withD(a, b) = 1) are
determined:

ŵa =
∑

j|D(a,j)=1

wj
p(x|y) (6)

ŵb =
∑

j|D(j,b)=1

wj
p(x|u) (7)

With that, the weightwi of the Gaussianis given by

wi = wa
wb

ŵa
+ wb

wa

ŵb
(8)

Gaussians inp(xt|yt) andp(xt|ut) without a counterpart
in the other distribution (see Fig. 2, components c and e)
are simply copied into the resulting MoG. This way, also
completely new hypotheses can be integrated. During the
final normalization of the resulting MoG, the weights of
all unsupported components will be passively decreased.
This way, their certainty is continuously reduced, and af-
ter a number of update cycles they can be deleted. To sim-
plify the resulting MoG, overlapping adjacent Gaussians are
merged to a single Gaussian.

Afterwards, the resulting MoG coding the new state hy-
pothesisp(xt) (see Fig. 1, bottom left or Fig. 2, right) is
used for updating the environment model. Only unimodal
hypotheses are employed for this update step, otherwise the
reconstruction of states between two consecutive unimodal
hypotheses takes place according to [4]. Experiments showed

that this update must be delayed to avoid a positive feedback
between state estimation and environment model and vice
versa. For example, the changedp(xt|yt) would directly
influencep(xt) after a short time, thereto, observation-state
estimation pairs(yt, p(xt)) are stored in a short queue which
is also used to buffer the time-consuming update operations
of the environment model.

2.2. Improved Environment Model

The purpose of our improved environment modelU is to al-
low an estimation of the current statext under the condition
of the current observationyt in a dynamic operation area
with appearance variations. In our case,yt represents the
omnidirectional view in form of a describing feature vector
(see 2.4). The wholeObservation SpaceO is represented
by a variable set of reference viewsyi. To eachyi a learned
MoG Xi in theState Spaceis assigned.

U = {(yi, Xi) , i = 1, . . . , R} (9)

EachXi is coding all those positions in the operation area
the respective observation was captured before.

Xi = {(wij , ηij , µij ,Cij) |j = 1, . . . ,Mi} (10)

Every componentj in Xi has a weightwij > 0 describing
its relevance all over the model and for the fusion operation.

In extension to [4], we explicitly want to consider and
model appearance variations and fluctuations occurring at
identical positions within the environment. Therefore, we
had to introduce another control parameterηij that counts
the number of observations covered by a single Gaussianj
in Xi.

Given the current observationyt, the localization hy-
pothesisp(xt|yt) can be simply generated by finding the
most similar reference-viewyi in the modelU , as proposed
by [4]. However, to achieve a smoother approximation of
the hypothesisp(xt|yt), in our approach we realize a
weighted superposition of several position hypotheses. To
be precise, we superimpose the position hypothesesXi of
all that reference viewsyi which are similar to the current
observationyt to minimum degree. As illustrated in Fig. 3-
top left, only those reference-views are considered in this
superposition whose distance to the current observation is
lower than the limit distanceEmax. Therefore, a similarity
measureS(yt,yi) was introduced which is 1.0 for a per-
fect matching and continuously decreases to zero up to the
Emax. The final state hypothesisp(xt|yt) is computed as
weighted sum over allXi whereas the individual weights
wij of the Gaussians are multiplied by the similarity values
S(yt,yi) of the respective reference views.
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Fig. 3. Schematic illustration of the weight updating in the Envi-
ronment Model in three phases: (Phase 1) given are the old model
and the new observationyt to be inserted (top left) and its current
position estimationp(xt) (bottom right); (Phase 2) at first, sim-
ilarities between the Gaussians inXi andp(xt) are determined;
(Phase 3) the similarity of observationyt and known reference
views yi decides in what way the certainty weightswij of the
Gaussians have to be adapted.

2.3. Updating the Environment Model

While using the model for generation of state hypotheses,
new observations are made that must be integrated. In the
simplest case, the model is only updated by pairs of obser-
vationyt and unimodal state distributionp(xt), i.e. a sin-
gle Gaussianφ(x|µt,Ct). A dynamic environment and the
arising stability requirements, however, need a more com-
plex update regime that has to take into consideration the
following premises: i) one observation should only be gen-
erated by one position in the area and ii) each position does
only show one appearance at a time. Therefore, the update
of the environment model is typically carried out in three
phases.

1) Insertion of a new reference view:If the feature dis-
tance between the current observation and all learned refer-
ence views is larger than the limit distanceEmin, the cur-
rent observationyt has to be stored as a new reference view
yn.

2) Update of the Mixtures of Gaussians:A new Gaus-
sian representing the current state hypothesisp(xt) is added
to the already existing Gaussian MixturesXi using the sim-
ilarity valuesS(yt,yi) mentioned above as gain control.
The basic idea behind this update step is as follows: since
eachXi is the result of all former observations, a balanced
insertion of new Gaussians has to be realized. Therefore, if

a new componentk has to be inserted intoXi, the ηij of
the already existing components need to be taken into ac-
count. The resulting new Gaussiank approximates the sum
of the two density functionsXi andp(xt) weighted byηij .
Becauseηik is increased for each fitting component, the in-
fluence of a single update step decreases with time, and the
MoG stabilizes gradually.

3) Adaptation of the Gaussian’s weights:Now, the cer-
tainty weightswij of the Gaussians are updated according
to the premises introduced above. For this, first the feature
similaritiesS(yt,yi) in theObservation SpaceO are deter-
mined (see Fig. 3 - top left). Furthermore, the similarity of
each Gaussianj in Xi to the single Gaussian describing the
unimodal current statep(xt) is determined by means of the
Mahalanobis distance (see Fig. 3 bottom left).

Now, the weightswij of every Gaussianj in eachXi

are adapted, if one of the following conditions is fulfilled:

1. Weight increasing:If yt equalsyi and the current
position estimationp(xt) resembles the Gaussianj
then the weightwij of this Gaussian is increased (see
Fig. 3, top right - left Gaussian inX1).

2. Passive forgetting:If yt is matching reference obser-
vation yi but the considered Gaussianj of Xi does
not match top(xt), then the weight of the respective
Gaussian has to be decreased (see Fig. 3, top right -
right Gaussians inX1 andX2).

3. Active forgetting:If reference observationyi doesn’t
matchyt but has a component at the same(x, y)-
position asp(xt) then the respective weightwij has
to be decreased too, to gradually forget former obser-
vations at this position, which will not appear again
(see Fig. 3, top right - left Gaussian inX3).

After updating, Gaussians with too low weights are re-
moved inXi and, as consequence of this, all reference views
with emptyXi are deleted. This way, the last update rule
realizes a limited number of Gaussians in a restricted lo-
cal area. Moreover, it guarantees, that old, irrelevant obser-
vations at those positions with variable appearances can be
replaced by new ones. By means of this forgetting, the com-
plexity of the algorithm, which is determined by the number
of reference views, is linear in the area the robot is operating
in. If a former observation, however, should appear again at
the same position, it can be inserted as a new observation
into the environment model again.

2.4. Extraction of Omni-Features

To allow a comparison of images, besides the image repre-
sentationy, a similarity-functionS(y1,y2) must be given.
This quantifies the differences between the two imagesy1

andy2. So, similar omniviews should result in aS-value



near one, while differing views deliver low similarities. For
robust and exact localization, there are different aspects,
which characterize a good feature representation and sim-
ilarity-function. Another important aspect is, that the CML
approach for the activation of the position hypotheses uses
a rotation invariant comparison of images (see below), but
for the estimation of the robot’s orientation the rotation an-
gle between the current observation and the respective ref-
erence observation is required.

For the last point, according to our former MCL ap-
proach [3] a RGB-based representation of the omniview was
used to get comparable experimental results between CML
and MCL localization. Therefore, by means of subdividing
the omnidirectional image into radial segments (usually 36
sections), the mean RGB-value of pixels inside each seg-
ment is used as a set of features (see [2]). Given these fea-
tures, two views can be directly compared by using the sum
of absolute differences of intensities in each segment and
each channel as an similarity-value. To determine a rota-
tion invariant similarity all possible orientations have to be
considered, and the maximum similarity is used. This oper-
ation is needed to find similar observations in the map. The
other important part is the compution of the rotation angle
between two images which is determined by a cross correla-
tion. To compute this more efficiently, the operation is done
in the frequency domain. This operation is required to cor-
rect the orientation component of participating distributions
while extracting the hypothesisp(x|y).

In the next section, our CML approach will be investi-
gated in several localization experiments. At first, the gen-
eral capability to globally localize the robot has to be shown.
After that, the CML localization approach is examined in
view of adapting/non-adapting the map under varying ap-
pearance of the environment (dynamic changes). Finally, a
map will be built up without any kind of position reference
information i.e. the map building starts with an empty map.

3. OPERATION AREA AND EXPERIMENTS

In our test environment, a typical home store, many dy-
namic effects occur. All data for the analysis were recorded
in the home store under realistic conditions, i.e. customer
and employees walked through the operation area, good shel-
ves were rearranged, and other dynamic changes (illumina-
tion, ...) happened.The data contain the images and motion
commands the robot has obtained while it moved through
the home store. The main part of the data was used to build
up both a CML and MCL map and the remainder to carry
out the localization experiments. To increase the dynamic
effects, two data sets with a time difference of four weeks
were recorded, which were used for the second experiment.
Each data set contains more than 100,000 images and odo-
metric data. For this, the robot was moved about 2,000 me-

ters through the operation area by joysticking. The maps
have a size of 50 x 80 meters. The driven test routes typi-
cally have a length of about 300 meters.
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Fig. 4. Experimental results for the CML and MCL localization
approaches in a static environment illustrated as histogram of er-
rors. The histogram gives a more precise impression of the error
distribution than absolute valuesµ andσ. A stronger concentra-
tion on the left side means more small errors, therefore a smaller
average errorµ. In contrast, plots stretching out to the right contain
more high errors, which corresponds to a higher average position
error. Both localization algorithms achieve a comparable accuracy
in a static environments.

The first experiment was carried out to determine the ca-
pability of CML approach to track the robot in a static envi-
ronment. At the beginning, the robot’s state was initialized
at a known position, but with uncertainty. More than 3,000
state estimations were made by the localization approach
along the test routes. Based on this, the mean localization
errorµ(e), the variance of the errorσ(e) and the maximum
error were computed. In Figure 4 the results for the CML
and our previous localization method [3], the omnivision-
based Monte Carlo Localization, are shown. The mean lo-
calization error for the MCL approach is 38cm. The ac-
curacy for CML is at an average of 29cm. It can be seen
that both localization methods produce a satisfying posi-
tion estimation on a static ”perfect” map, this means, the
maps were built up off-line with ”perfect” corrected odo-
metric data. Despite the different coding principle, the new
MoG-based approach presented here, shows a similar accu-
racy as the particle-based algorithm (MCL). But, the com-
putation time for a estimation step is clearly higher than a
step of a particle-based approach. With some practical im-
provements (using only local parts of environment map), an
estimation step needs about 1 second on a 2GHz CPU.

The next experiment was executed to show, that dy-
namic environments require a dynamic map, i.e. a map
which can be adapted. At first, the ”old” predefined map
based on the first experiment was used to localize the robot
on data recorded four weeks later. During this time, many
locations in the home store were rearranged which caused
an higher localization error (see Fig. 5). Here, the average
error was 111cm. After that, the capability of the CML al-
gorithm to adapt the learned map was activated. Now, the



mean localization error could be decreased to 58cm by us-
ing the adapted map. Due to the changes in the environment,
in the experiment using the none-adapted map numerous lo-
calization failures produce high maximum localization er-
rors (see Fig. 5) that influence the average error negatively.
The failures happened if the current observation was sim-
ilar to more than one reference observation with different
positions in the map. Therefore, the localization hypothe-
sis sometimes jumped to another location. The experiment
clearly illustrates that an adapting map is necessary in dy-
namic environments.
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Fig. 5. Experimental results for the CML localization in a chang-
ing environment. The diagram shows that the localization error
based on a static map in a dynamic environment is significantly
higher (→ static), whereby a dynamic map is able to improve the
localization (→ dynamic). A stronger concentration on the left
side means more small errors, and therefore a smaller average er-
ror µ.

In the last experiment, it was tried to concurrently lo-
calize the robot and to build up the map. In contrast to
the first experiment, the map was built online and without
”perfect” odometric data and the algorithm started with an
empty map. Therefore, it is important that the CML algo-
rithm can recognize already visited areas to create a sta-
ble and consistent map. Figure 6 (left) shows the naviga-
tion path determined by the CML approach for a local area.
The robot built up the map while it was driven on three
days through the environment. In this area of about 30m
by 30m, the average localization error and also the environ-
ment model was improved with every day (see Fig. 6, right).
The end, an average localization error of about 40 cm was
achieved. This experiment shows that it is possible to local-
ize and to build up a map concurrently with the omnivision-
based CML approach. But it is relatively time-consuming to
get a consistent map because of the necessity of a repeated
observation of the same operation area. For this map, the
robot covered a distance of about 7,000 meters.

4. CONCLUSION AND FUTURE WORK

It could be shown that the MoG-based CML algorithm be-
haves as good as the well known particle-based MCL ap-
proach. Furthermore, the necessity for an adapting map to
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Fig. 6. Experimental results of our long term experiment
in the home store. (Left) As reference for visualization good
shelves (grey rectangles), true path (red/light grey), estimated path
(blue/dark grey) and odometric data (green/dotted) are shown.
(Right) The error histogram clarified the improvements made by
the CML algorithm with every new data (from day to day). The
average error is improved from 48 cm to 41 cm (maximal error 221
cm to 137 cm)

represent changing environments could be demonstrated by
the second experiment, where the localization error could be
decreased. The third experiment showed first encouraging
results to online build up a map of a large operation area.
In future experiments, we plan to build larger maps (more
hallways and shelves) over a longer period to show that a
stable and consistent map with converging localization er-
rors is possible, what could be at test partially demonstrated
by the last experiment.

5. REFERENCES

[1] J. M. Porta and B. J. A. Kroese, “Appearance-based
concurrent map building and localization,” inInt. Conf.
on Intelligent Autonomous Systems, 2004, p. 10221029.

[2] H.-M. Gross, A. Koenig, H.-J. Boehme, and
C. Schroeter, “Vision-based monte carlo self-
localization for a mobile service robot acting as
shopping assistant in a home store,” inProceedings
of IROS’2002, IEEE/RSJ International Conference
on Intelligent Robots and Systems, EPFL, Lausanne,
Switzerland, October 2002, pp. 256–262.

[3] H.-M. Gross, C. Koenig, A. Schroeter, and H.-
J. Boehme, “Omnivision-based probabilistic self-
localization for a mobile shopping assistant continued,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, 2003, pp. 1505–1511.

[4] J. M. Porta and B. J.A. Kroese, “Appearance-based
Concurrent Map Building and Localization using a
Multi-Hypotheses Tracker,” inIEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2004, pp. 3424–3429.


