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ABSTRACT

A very important component of each mobile robot is a
good control architecture, which controls the whole robot.
Besides the integration of modules for navigation and the
Human-Robot Interaction skills, an often underestimated
component is the application itself. Without an useful ap-
plication the robot itself doesn’t make sense. This paper
describes a new architecture, which provides programming
users a modular, extensible, transparent and portable sys-
tems and which allows a fast development of robotic ap-
plications even for non-programming users. Therefore we
propose a four layer architecture, which strictly separates
the application from the robot specific skill. We have imple-
mented and successfully tested our proposed architecture on
two totally different robots for to different applications.

1. INTRODUCTION

To develop an interactive mobile robot, each researcher has
to deal with a lot of different classic robotic problems, like a
precise localization, a collision-free navigation and a robust
Human-Robot Interaction (HRI) interface. Furthermore, an-
other very important component of an interactive mobile
robot is the application itself. Without an useful application
the robot itself doesn’t make sense.

That means, that each developer has to design a specific
application to give this robot an useful task. We will de-
scribe a new robot control architecture, which on the one
side gives programming users a very flexible system, which
is modular, extensible, transparent and portable for different
robot platforms, and on the other side allows a fast develop-
ment of robotic applications, and which is easy to under-
stand and use for newcomers or non-programming users.

We have implemented and tested our proposed architec-
ture on our robots HOROS and PERSES.

A standardized control architecture for mobile robots is
still an open question today. But there are a wide range of
academical and also commerical (like ERSP [1]) work.

This paper is organized as follows: In section 2 we will
give a short overview over existing control architectures for
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interactive mobile robots. In section 3, our new architecture
will be explained in detail. Section 4 is dedicated to two ex-
amples of applications, which were realizied with our archi-
tecture. The paper closes with a summary and conclusions
in section 5.

2. STATE OF THE ART

The most modern control architectures are heterogeneous
and are called hybrid. They contain reactive as well as de-
liberative components.

Over the last years, many different robot system archi-
tectures were developed and introduced. A good overview
is given in [2]. On the one hand, there are some architec-
tures consisting of up to three layers (like 3T, CLARAty
[3] or OROCOS), which are basically designed to deal with
navigation problems and on the other hand there are some
low-level architectures (like Player/Stage [4]), which only
describe a kind of a robotic programming interface. Fur-
thermore, there are existing systems in-between (like CAR-
MEN [5]), which consist of a simple architecture and a full
programming interface.

The major problem of all theses systems is, that they
are basically designed to connect and control the different
modules and methods (the skills) of a robot, but they are
typically not designed to build a concrete robotic applica-
tion. In most shown examples, mainly a few modules for
collision avoidance, path planning, self localization, and
other navigation skills are implemented. As far as we know,
none of theses systems was tested or used with methods for
Human-Robot Interaction. Furthermore, none of theses sys-
tems provides a possibility to integrate modules, which are
required to build a real interactive mobile robot, like ele-
ments for a graphical user interface or a dialog management
system. The only way to create an application for an inter-
active mobile robot based on the systems mentioned above
seems to be to create a step-by-step program, which controls
the whole system. Typically this can exclusively be done by
a developer or programmer, which knows the whole system
and desired application in detail.

This way, in the last years, several interactive mobile
robots with specific architectures were built and introduced.



One of theses robots is GRACE (Graduate Robot Attend-
ing a ConferencE) [6], which was build to tackle the AAAI
Robot Challenge in 2003. The robot’s software consists
of many programs communicating via IPC (Inter Process
Communication) and CARMEN [5]. The different programs
exchange messages, e.g. sensor information, commands, or
events. Each program provides one skill of the robot. This
distribution guarantees the reuseability and the modularity
of this system. But if someone wants to realize a new appli-
cation with such an architecture, he has to know the whole
system and all programs in detail.

The humanoid robot HERMES [7] is controlled by a
behavior-based system [8], which uses a situation module
(situation assessment and behavior selection) as core of the
whole system. Around this core a set of skills is used to
control the robot. The skills and the situation module are
communicating via events and messages. The architecture
for HERMES was designed to be reusable, but as far as we
know, it was never used for another robot.

The robot MOBSY [9] uses two levels for the software
integration. The most abstract level is the task level, where
the overall behavior of the system is determined. The sec-
ond level contains the robot-specific methods, which pro-
vide the different skills of the robot. The skills will be used
in the task level to execute the behaviors. The architecture
of MOBSY seems to be specially designed for the appropri-
ate task and is not reusable for other applications.

The Care-O-bot [10] uses a hybrid architecture. The
four most important components of the robot are the Man-
Machine-Interaction module, a symbolic planner, a fact man-
ager, and an execution module. Furthermore, the robot uses
a database which contains all necessary information about
the environment. Although this architecture contains ex-
plicit a Man-Machine-Interaction module and is used for
different (but similar) robots, it seems not to be easy to cre-
ate new applications, because some important parts (like to
symbolic planner and the fact manager) have to be modified
for each new task.

3. CONTROL ARCHITECTURE FOR MOBILE
INTERACTION-ROBOTS

In the following section, we will define our requirements
to a control architecture for mobile interaction-robots and
introduce our system in detail.

3.1. Requirements

A modern robot control architecture has to fulfill the follow-
ing common demands:

• Modularity: The different modules of the architecture
must be functional independent and exchangeable.

• Extensibility: The architecture must be easily exten-
sible with new modules.

• Transparency: An exchange or a modification of a
single module must be transparent to the other mod-
ules.

• Portability: The architecture should be able to run on
different robot platforms.

• Efficiency: The architecture must be able to run in
real-time on the underlying robot.

Based on the introduced problems with existing control
architectures, we derived the following additional demands
on a control architecture for a mobile interaction robot:

• Rapid Application Development: quickly generation
of a new application

• Customizability: easy generation of new applications
also by non-programming users and

• Reusability: easy reuse of a generated application by
different robot systems with different hardware com-
ponents.

3.2. Basic Structure of the Architecture

To build a real robotic application which can fulfill all these
demands, it is necessary to separate the robot-specific meth-
ods and skills (e.g. collision avoidance or people detection)
from the application itself (e.g. a robot as an office guide
or a robot as a shopping assistant). Doing this way, the
demands Customizability and Reusability can be easily ful-
filled. To bring these different parts together, an abstraction
layer in-between is necessary. As the result, our developed
architecture consists of four layers (see figure 1 and 2.).

Fig. 1. The four layers of the architecture. The Abstrac-
tion Layer L2 separates the methods from the application.

The layer L0 (Hardware Layer) encloses the robot hard-
ware (sensors and actuators), the operating system, and the
low-level interface to the hardware. The low-level sensor
information will be processed in the next higher level to pro-
vide different skills, which will be executed in L0.

In the next layer L1 (Skill Layer) all required classical
robotic-specific methods are located. Typically, these are



modules for collision avoidance, localization and naviga-
tion, speech recognition, speech synthesis, a people- or ob-
ject tracking and so on. These different robot-specific meth-
ods and skills are reusable for numerous different applica-
tions. The functionality and complexity of layer L1 depends
on the underlying robot.

Fig. 2. The main components of the architecture: the
method-level with robot-specific methods, the application-
level with a robot-independent application and a robot-
specific interface to adapt the current application to the cur-
rently used robot.

The layer L2 (Abstraction Layer) generalizes from the
robot-specific skills of L1 and provides a high-level inter-
face to the capabilities of the robot. The skills (like naviga-
tion and people tracking) are combined in this layer to a set
of high-level Behaviors (like people guidance). To control
the skills of L1 and to get a feedback about the execution of
the different skills the so called Skill Status is used.

The highest layer L3 (Application Layer) provides el-
ements, which are required for a specific application of a
mobile interactive robot.

An important fact is, that all layers are only communi-
cating with their immediate neighbours. This guarantees the
transparency between the different layers.

By using this strict separation, for a new application or
for the usage of an alternative robot system only the applica-

tion layer L3 or the abstraction layer L2 have to be changed
rather than the whole system. Thus, the introduced demands
Rapid-Application-Development, Portability and Reusabil-
ity can be fulfilled. Furthermore, to allow the generation of
an application also by a non-programming user (Customiz-
ability), we use parameterizable elements in the application
layer (the state graph and the dialog manager). In the fol-
lowing section, we discuss the specific components of the
control architecture in detail.

3.3. Specific Elements of the Architecture

As shown in figures 1-3 our control architecture incorpo-
rates a Skill Layer L1 and an Application Layer L3, which
are connected by an Abstraction Layer L2.

Fig. 3. The four layers in detail. Specific elements of the
four layers of the control architecture.

The Skill Layer consists of two main components: The
robot-specific and application-independent methods and a
Blackboard System. In the context of a mobile interaction-
robot the methods should include at least a navigation strat-
egy, a people detection module, a speech recognition and
a speech generation (see figure 3). The realization of such
methods mainly depends on the hardware components (the
Hardware Layer) of the underlying robot system. For in-
stance, a robot which is equipped with sonar sensors will



use a different navigation method than a robot equipped
with a laser-range-finder.

Furthermore, for the communication between all dif-
ferent methods we use a Blackboard System [11]. With
the blackboard it is possible to share all required informa-
tion between the different methods. Therefore, the black-
board can be considered as general shared data memory.
The blackboard structure makes it easy for the programming
users to integrate new modules or to make modifications on
existing modules. The programmer only must ensure, that
the interface from his module to the blackboard keeps con-
sistent. Therefore, with a blackboard system the demands
Modularity, Extensibility and Transparency can be easily
fulfilled.

The available robot-specific methods of L1 will be com-
bined in the Abstraction Layer to a set of high-level macro-
behaviors. Each of these behaviors uses a set of available
skills of L1. Typically, the available behaviors are exclu-
sive, i.e., only one behavior can be executed at a time. As
a result, the layer L2 provides a set of high-level macro-
behaviors, which can be executed without knowledge about
the underlying skills of L1. Thus, it is very easy for non-
programming users to use the robot. For instance, in a state
”Create Attention” the desired behavior could be defined
as ”Face the current user”. Depending on the used robot
a specific system could activate the (robot-specific) person
tracker and track a person by moving the pan-and-tilt cam-
era unit. Another system without a pan-and-tilt camera unit
could also track the perceived person by moving the whole
robot body. So the Behaviors and Skill Status translate the
application-specific behaviors in the robot-specific methods.
The Skill Status is also used to get a feedback of the execu-
tion of the underlying robot-specific method. For instance,
if a navigation task can not be fulfilled (because the way is
blocked), the state machine or the dialog manager can react
in an application-depended way and solve the conflict.

Depending on the general application which has to be
realized, the available behaviors of L2 will be combined in
the Application Layer. This means, creating a new applica-
tion means to combine the available macro-behaviors in a
new kind. In praxis, this process of combination is mostly
large-scaled and requires a lot of new programming which
can be typically done only by people knowing the underly-
ing robot-specific methods and their realizations. In order to
simplify this, we propose the separate application-level de-
picted in figure 3. The elements of the Application Layer in-
clude a state graph (interpreted by a state machine), a dialog
manager, the user (as the interaction partner of the robot),
and a database, which contains the information about the
environment. Thereby, the state graph incorporates the prin-
ciple states of the application. For instance, the application
”information system” could be defined by the states ”Wait”
(when no user is perceivable), ”Create Attention” (when a
user is perceived) and ”Dialog” (when the user wants to
interact) (see section 4.2 for details). Further, each state

also defines a principle behavior which will be executed
if the system is in this specific state. Each state is con-
nected with at least one other state. These connections de-
fine specific conditions that have to be fulfilled to get into a
state. Thereby, the conditions result from the robot-specific
methods (via the Skill Status) or from the user (via the di-
alog manager). The resulting whole definition of a state
graph is based on a XML-file. So an application is more
configurable than programmable, and in the consequence
pretty easy to generate also by non-programming people.
By defining only this state graph in the application-level, al-
ready a whole application can be generated. Therefore, the
mentioned demands Rapid-Application-Development, Cus-
tomizability and also Reuseability are fulfilled.

3.4. The State Machine and the Dialog Manager

In our proposed architecture, the robot will be controlled by
the state machine and the dialog manager. The state ma-
chine makes a suggestion, which default behaviour should
be executed in L2 in the current state. The dialog manager
can simply send this behavior to the Abstraction Layer or
select another behavior. By doing so, the desired behaviors
in each state can be be chosen more flexibly. For instance,
in the state ”Create Attention” the state graph defines a prin-
ciple behavior which will be executed if no other behaviors
are defined in the dialog manager. Thus, the dialog manager
could also define, e.g., numerous different speech outputs
to attract the user’s attention in this state. Furthermore, the
dialog manager can also realize, that in the context of the
current application the most promising behavior among all
possible behaviors in a specific state can be learned. In the
next version of the control architecture, the dialog manager
will also be configurable like the state graph. In the current
version the dialog manager is still to program.

4. APPLICATIONS

We use the proposed control architecture for our mobile
interaction-robot HOROS (see section 4.1), and we are also
currently engaged to transfer this architecture to our robot
PERSES, a shopping assistant robot (see section 4.3). Sub-
sequently, we discuss one part of the task of HOROS, to be
an office information and guiding system for employees,
students, and guests of our institute, in the context of the
proposed control architecture.

4.1. Robot System HOROS

The hardware platform for HOROS is a Pioneer-II-based
robot from ActiveMedia. It integrates an on-board PC (Pen-
tium M, 1.6 GHz, 512MB) and is equipped with a laser-
range-finder and sonar sensors. For the purpose of HRI,
this platform was extended with different modalities (see
Figure 4).



color camera
(fish eye)

robot face

speeker

microphones

touch screen
PC (Windows)

PC (Linux)

sonar sensors

180° laser-
range-finder

wheels

bumper

frontal cameras
(webcams)

Fig. 4. The HOme RObot System. Sensory and motory
modalities of the mobile interaction robot HOROS.

This includes a tablet PC (Pentium M, 1.1 GHz, 256MB)
for touch-based interaction, speech recognition and speech
generation. It was further extended by a robot face which in-
cludes an omnidirectional fisheye camera, two microphones
and two frontal webcams for the visual analysis of dialog-
relevant user features (e.g. age, gender, emotions).

4.2. The Control Architecture in the Context of a Sur-
vey Task

The office application of HOROS includes a survey task,
which will be discussed in the context of the control archi-
tecture. Thereby, HOROS is standing in a hallway in our de-
partment. His task is to attract attention of people that came
by. As soon as the system recognized a person near him, the
robot addresses the visitor to come nearer. He then offers to
participate in a survey about the desired future functionality
of HOROS. Further, a people tracking module is used to de-
tect break offs, thus if the user is leaving before finishing to
survey, the robot tries to make them came back and finalize
the survey. After the successful completion of the interac-
tion or a defined time interval with no person coming back,
the cycle begins again with HOROS waiting for the next in-
teraction partner. The experiment was made in the absence
of any visible staff members, so the people could interact
more unbiased. The respective state graph as an element of
the Application Layer L3 is shown in figure 5.

Each state of the state graph has also some defined input
conditions. So if the specific input conditions of a state are
fulfilled the application will get into this state. In each state,
all outgoing conditions must be consistent. Exemplary, the
incoming and outgoing conditions for the state ”Create At-
tention” are depicted in figure 6. This state can be reached

Create

Attention


Wait


Interaction


User

Disappeared


Fig. 5. State graph for the survey task. The state graph
consists of only four states which already define the princi-
ple application.

only from the state ”Wait” (see figure 5) by the following in-
coming conditions: the application was longer than 30 sec-
onds in the state ”Wait” (the last interaction partner of the
robot left the surroundings of the robot) and at least one new
user is perceived. In figure 6, two outgoing conditions are
also depicted. These are as well the incoming conditions
for the state ”Wait” (the perceived user left the surround-
ings without an interaction or the perceived user came not
closer to the robot within 15 seconds) and for the state ”In-
teraction” (at least one perceived user came closer than 0.75
meters to the robot).

FaceUser


Create Attention


person_number < 1 ||

Timeout > 15s


person_number > 0 &&

Timeout > 30s


person_number>=1 &&

distance[?] <= 0,75m


Fig. 6. State ”Create Attention”. There is one incoming
condition and two outgoing conditions in the state ”Create
Attention”. Further, when this state will be reached the gen-
eral behavior ”Face User” will also be activated.

The state ”Create Attention” is also defined by a general
behavior ”Face User”, that will be executed if the applica-
tion reaches this state via fulfilled input conditions. This
behavior will be routed to the dialog manager next. If there
are no other defined behaviors for this state in the dialog
manager, ”Face User” will be sent back to the Abstraction
Layer L2, then to the Skill Layer L1 and subsequently will
be executed by the Hardware L0.

Simultaneously to these processes, the robot permanently
perceives its environment in the Hardware Layer L0. Us-
ing the respective sensor readings in the Skill Layer L1 the
used methods and Blackboard variables are updated. Con-
sequently these Blackboard variables can also result in an
updated Skill Status in the Skill Layer L2 and subsequently
in a newly activated state of the state graph. State transitions
in the state graph can also be caused by user inputs, e.g. via
the GUI in the dialog manager.

Another application of HOROS based on our control ar-



chitecture is a guidance function also in the context of our
office scenario as described in [12]. The robot can guide vis-
itors from the entrance of the building to the rooms of staff
members and give information about the possible where-
abouts of staff members.

4.3. The Control Architecture in Context of a Shopping
Assistant

Another of our robots is PERSES, which works as an in-
teractive mobile shopping assistant [13]. At the moment
we are working on the Abstraction Layer for PERSES. As
soon as this work is finished, it will be quite easy to cre-
ate the shopping assistant application in our architecture, al-
though PERSES (a B21r robot) is totally different to HOROS

(a Pioneer-II-based robot).
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Interaction


Look for User
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Fig. 7. Basic state graph for the shopping assistant.

Figure 7 shows the possible basic structure of a state
graph, which is necessary for PERSES. Of course, this graph
has to be completed with different sub-graphs and condi-
tions in the individual states. Using such a state graph, a
simple dialog manager and an appropriate database, PERSES

will be able to work as a shopping assistant.

5. SUMMARY AND CONCLUSIONS

In this paper, we described a control architecture for mobile
interactive robots. Our architecture fulfills the demands on
modern architectures, like modularity, extensibility, porta-
bility and efficiency. Based on our architecture, it is very
easy for programming users to integrate new modules or to
modify existing parts. Furthermore, our architecture also is
designed to allow non-programming users to develop robot
applications. It guarantees the rapid application develop-
ment and the reusability of existing applications. We illus-
trated the usability of this concept in two typically applica-
tions (the survey task and the shopping assistant).

In the future we will extend our architecture with a con-
figurable and adaptive dialog manager, which will it make
still easier for non-programming user to develop new robotic
applications.
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