in: Artificial Neural Networks: Formal Models and Their Applications
- ICANN 2005, LNCS 3697, Part II, pp. 929-934, Springer 2005

Neural Architecture for Concurrent Map
Building and Localization using Adaptive
Appearance Maps*

St. Mueller, A. Koenig, and H.-M. Gross

Department of Neuroinformatics and Cognitive Robotics
Ilmenau Technical University
98684 Ilmenau, Germany
Steffen.Mueller@tu-ilmenau.de

Abstract. This paper describes a novel omnivision-based Concurrent
Map-building and Localization (CML) approach which is able to local-
ize a mobile robot in complex and dynamic environments. The approach
extends or improves known CML techniques in essential aspects. For ex-
ample, a more flexible model of the environment is used to represent
experienced observations. By applying an improved learning regime, ob-
servations which are not longer of importance for the localization task
are actively forgotten to limit complexity. Furthermore, a generalized
scheme for hypotheses fusion is presented that enables the integration of
further multi-sensory position estimators.

1 Introduction

Robust self-localization plays a central role in our long-term research project
PERSES (PERsonal SErvice System) which aims to develop an interactive mo-
bile shopping assistant which can autonomously guide its user within a home
store [1]. To accommodate the challenges that arise from the specifics of this
scenario and the characteristics of the operation area, a regularly structured,
maze-like and populated environment, we placed special emphasis on vision-
based methods for robot navigation. In our previous approach [1], we have em-
ployed a static graph representation as map of the environment, which is build up
manually. The nodes of the graph are labeled with visual observations extracted
from omnidirectional images and corresponding position information. Given this
map, localization was realized employing a Particle Filter to estimate the robot’s
state. The main drawback of this and other appearance-based approaches for lo-
calization published in recent years is, however, that localization is only possible
in manually mapped areas. Furthermore, the learned map is only valid as far as
no important modifications of the operation area occur. Therefore, we developed
an alternative technique which is able to perform an omnivision-based Concur-
rent Map-building and Localization (CML) to overcome this drawback. Inspired

* This work is partially supported by TMWFK-Grant # B509-03007 to H.-M. Gross

by former approaches like [5] but especially the work of Porta and Kroese [2]
and continuing our former work, we present a neural architecture (see Fig. 1),
which is able to track multiple state hypotheses (position and orientation of a
mobile robot) in a short-term memory (STM) using odometry data and previous
state estimations, while building up a kind of long-term memory (LTM) used for
associating omnidirectional views to already observed and learned states. This
appearance map afterwards directly influences the tracked state hypotheses in
the STM to reduce their uncertainty.

Main advantage of this approach is the advanced learning scheme used in
the LTM. The network is able to actively forget information about observations
that became irrelevant because of changes in the environment. This guarantees
that the complexity remains limited for a given operation area and independent
from working time, which is of fundamental importance for a continuous duty.

2 Neural Architecture for Probabilistic Localization

update update

p(x,)

t
//\‘\
Ve T Ve z

N/ N\
Y, @ Wk...
bpodb e 012 -

_ LTM (long-term memory) J _ STM (short-term memory) J

~

Fig. 1. Architcture of our probabilistic localization system: last known state hypothesis
(position x,y and orientation ¢ of the robot) from STM (right) and a hypothesis from
LTM (left) resulting from current observation y, become merged and approximated by
a Mixture of Gaussians p(x:). Afterwards, this resulting distribution (top) is used to
adapt STM again and to teach the observation-state associations in LTM. During the
next step, hypotheses in STM will be updated using odometry data u,; and a motion
model, then the output p(x:) can be estimated again.

Our architecture consists of three main components, the short-term memory
(STM), the long-term memory (LTM), and the fusion subsystem shown in Fig.
1. The STM is responsible for representing the distribution of possible states the
robot might currently be in. By placing linear RBF-neurons in the State Space
S (z,y,¢) and summing up their weighted outputs, this structure represents
a Mixture of Gaussians (MoG) characterizing one hypothesis for the current

state estimation. The resulting activity A7 at the STM-output node can be
determined as follows:

RSTM (@) = wid(|py, Cr) (1)
k

whereby ¢ is a Gaussian with mean p;, and covariance matrix C}, and wy is
the weight of the respective connection to the output node. The LTM (Fig.
1, left) consists of a layer of nodes representing prototypes y, of observations
and performing a clustering of the Observation Space. Each node in this layer I
receives the current observation y, and a weighted sum of activity from layer II,
which consists of linear RBF-neurons connected to exactly one prototype node
of layer I. Experiments showed that connections to more than one prototype
nodes destabilize the state estimation. While layer II nodes are representing
positions in State Space, layer I combines them considering the similarity between
the respective reference observation y, and the current observation y,, whereby
S(y;,y,;) is a similarity function delivering a maximum (1.0) for identical views
and decreasing continuously to zero up to a minimum similarity. As a result, the
activity h*TM at the LTM-output node is given by:

WM (@ly,) = (S W ys) - Zwij(b(w“’/jvcj)) (2)

K2

The LTM-output node integrates the activation over all reference nodes, such
that the resulting output characterizes the distribution of possible states under
the given observation. The sum of activation characterizes the certainty of this
hypothesis resulting from more or less similarity between observation y, and
the learned prototypes. Concerning this, the output is not a true probability
distribution because weights do not sum up to one.

The last component, that receives the two hypotheses h and ALTM is
responsible for their fusion. In this module, a kind of probabilistic inference takes
place, which leads to a probability distribution of the robot’s current state.

STM

2.1 Fusion of Hypotheses

The fusion module has to evaluate the activity distribution of different sources
of information in the State Space, in the case shown here of hXT™ (z;|y,) and
RSTM (), but hypotheses from further state estimators can be integrated. To
simplify the fusion process, inputs are given in form of a weighted sum of Gaus-
sians, whereas different to a mixture probability the sum of the weights w® needs
not to be one. First, in this pool of Gaussians one has to decide which Gaussians
are representing the same hypothesis. Therefore, a spatial distance criterion is
applied, similar to [2] the Mahalanobis distance is employed. So the inference
can realize a logic AND for all the combinations of Gaussians within a maximum
spatial distance. This is done by Covariance Intersection similar to [2] and [4].
However, in our approach the weights w’ are explicitly considered to take the
reliability of the different Gaussians into account. Gaussians that have no corre-
sponding counterpart, are taken into account in form of a logic OR. This way,

single hypothesis can be transfered into the resulting set of Gaussians, too. Final
step is to normalize the weights such that the weighted sum can be interpreted as
a probability distribution p(x;). Further on, the resulting MoG can be simplified
if two or more Gaussians resemble each other. This is done by approximating the
overlapping Gaussians by a single one. Also components with too small weights
can be removed. At this point, we want to place emphasis on the necessity of
the inference realizing an AND. Without the reduction of uncertainty by means
of Covariance Intersection, a convergence of the whole model cannot be forced
and variances of the participating Gaussians would grow over time.

2.2 Short-term Memory (STM)

Main part for tracking the state hypotheses is the STM. After computation of
the localization distribution p(x;), the weights and parameters of the RBF nodes
in the STM have to be adapted to represent the new hypothesis. This is done
by transferring the weights of the MoG p(x;) to wy and setting up the mean
values p;, and covariance matrices C}, according to the MoG components, while
the number of nodes is adapted to the number of components in p(«;). An other
kind of STM-update takes place if a motion u; is measured by odometry. Then
a motion model is applied to each partial hypothesis represented by one RBF
node. This results in new parameters p; and C}. Concurrently a new visual
observation y, is captured and a new estimation of p(x;) will be initiated.

2.3 Long-term Memory (LTM) - Adaptive Environment Model

The LTM is performing a mapping from observations y, to a distribution of
states the robot has already been in while receiving a similar observation. Un-
like to our former model [1], this mapping is learned and adapted online while
using it for localization. Therefore, pairs of observation y, and related estimated
state hypotheses p(x;) serve as teach value. To speed up convergence and to
reduce faulty entries in the LTM, principles similar to [2] are employed. So an
update takes place only if p(2;) is unimodal. In all other cases, the updates will
be delayed until p(x;) reaches unimodality again. Then disambiguated former
positions can be reconstructed by using stored motion information (see [3]). Once
given an update request, the structure and parameters of LTM are changed in
three steps.

First, the clustering of Observation Space in layer I is updated. Therefore, if
similarity of y, to each prototype y, falls below a threshold, a new node repre-
senting the current observation vy, is inserted. During this operation, similarities
S(y,,y,;) of all layer I prototypes have to be computed.

Second step: In this phase, the parameters of the RBF nodes in layer II are
updated. For that, first the output (merged hypotheses) p(x;) is back-propagated
to each RBF node by multiplying the weights of the MoG components by
S(y,,y;) according to that prototype y, the layer II node is connected to. If
this is done, a single Gaussian ¢(x|u;, C) with a weight w; = S(y,;, y;) Wp(,) is
given for updating all layer II nodes that are connected to the prototype node y,.

This update is done by introducing a new RBF node, representing the new ob-
servation. Finaly, nodes with nearly similar Gaussians become merged, to reduce
redundancy.

Third step: In this step the connections w;; from layer II to layer I are
adapted. Here, relevanceweights w;; of layer II hypotheses will be increased with
a learning rate [if layer I is activated by a high similarity S(y,,vy;) and layer
IT is activated by a low spatial distance to the Gaussian in p(x;).

wij = BS(Yis Y) Wp(zy) + (1= BS(Ysr Yp) Wp(ay,)) Wi (3)

To reach a stabilizing behavior (and for solving the kidnapped robot problem
while building up the internal representation), on the other hand connections
to inactive layer IT nodes have to be reduced if the respective layer I node is

activated.

wij = (1= B5(Y;, Yy) Wp(ay)) Wi (4)
So long, only new information were captured and the complexity of the LTM
increases continuously. But it is also necessary to delete information, because
the operation area is extremely dynamic. So situations that will not be observed
again can be forgotten, if there is a new observation at the same position. For
this purpose, similarity D(t,j) in State Space between p(x;) and the Gaussian
represented by each RBF node has to be evaluated. So connections from activated
RBF nodes to deactivated prototype nodes in layer I will be decreased,

wij = (1= f(D(t,5),|C])) wi (5)

and if these weights reach a lower bound, the respective RBF node can be deleted.
If no layer II node is connected any longer to a certain prototype node in layer
I, this prototype node is deleted, too. The forgetting function f decreases with
growing spatial distance D and growing variance of the new Gaussian, which is
contained in the determinant of its covariance matrix. Only by means of this
third rule, a limitation of the number of nodes, responsible for a restricted area,
can be reached.

3 Experimental Results and Conclusion

First, the algorithm was analyzed in a part of the home store with low changes
and dynamic modifications. In these preliminary experiments, a mean localiza-
tion error of about 0.6m in an area of about 25m by 10m could be reached.
Observable was a localization error growing with distance to the initial position.
The reason for this behavior is the erroneous odometry data used during the
first lap for building the initial model. So the LTM represents correct spatial
relations of the world in an internal coordinate system, which typically can be
rotated to world space. Binding the model at absolute world coordinates is a
general problem of this class of CML approaches.

In our desired application, the main task is not to build a model of a com-
pletely unknown area but to continuously adapt the model learned before to

a changing environment, so this problem is secondary. Therefore, further long-
term experiments were done in the home store. After building up an initial
model similar to the first experiment, the representation in LTM was rotated
and translated to fit the absolute world coordinates by means of minimizing the
error between the true path and the estimation of the localization system. Af-
terwards the experiment was continued for several days. The result is a model of
a 30m by 30m area that allows a localization with an average absolute error of
less than 0.45m, built up without any a priori information. The long-term exper-
iments also clearly demonstrates the merits of our model. Using a model similar
to the one presented in [2], the number of layer I nodes in LTM was growing
continuously as long as the environment changed. The method presented here
handles the situation by replacing irrelevant prototype views by new ones, fi-
nally leading to a limited number of nodes for this restricted operation area.
The presented approach, thus realizes an applicable long-term localization in a
continuously changing environment based on an adaptive statistical distribution

with different time-scales.

0.25 :
P - first day
s Y 0.2t A | sepond day mean, = 0.48 |
20{ " 3 015 (. L —thirdday max, = 2.21
" § ' . mean,, = 0.44
i g 0.1 v max,, = 1.08 .
= A _‘ mean,, = 0.41
8 0.05 max, = 1.37 }
4 0)
0 0 0.5 1 1.5 2
error [m]

20 2 46 81012m

Fig. 2. Results of the long-term experiment in the home store: localization test after
three days of operation (left): real path (red/grey), estimated path (blue/solid) and
odometric data (green/dotted), histograms of the localization error for three trials
(right) the development of means and the rising concentration on small errors visualize
the convergence of the approach

References

1. H.-M. Gross, A. Koenig, Chr. Schroeter and H.-J. Boehme, ”Omnivision-based
Probabilistic Self-localization for a Mobile Shopping Assistant Continued”, in: Proc.
IEEE-IROS 2003, pp. 1505-1511

2. J. M. Porta and B. J.A. Kroese, ” Appearance-based Concurrent Map Building and
Localization using a Multi-Hypotheses Tracker”, in: Proc. IEEE-IROS 2004, pp.
3424-3429

3. S. H. G. ten Hagen and B. J. A. Kroese, ”"Trajectory reconstruction for self-
localization and map building”, in: Proc. IEEE-ICRA 2002, pp. 1796-1801

4. J. K. Uhlmann, S. Julier and M. Csorba,” Nondivergent Simultaneous Map Build-
ing and Localization using Covariance Intersection” in Proc. of the SPIE Aerosense
Conference, 3087, 4/1997

5. T. Duckett and U. Nehmzow, ” Experiments in Evidence-Based Localisation for a
Mobile Robot”, in AISB-97, Technical Report Series UMCS-97-4-1,1996

