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Abstract. Dealing with methods of human-robot interaction and using
a real mobile robot, stable methods for people detection and tracking are
fundamental features of such a system and require information from dif-
ferent sensory. In this paper, we discuss a new approach for integrating
several sensor modalities and we present a multimodal people detec-
tion and tracking system and its application using the different sensory
systems of our mobile interaction robot Horos working in a real office
environment. These include a laser-range-finder, a sonar system, and a
fisheye-based omnidirectional camera. For each of these sensory informa-
tion, a separate Gaussian probability distribution is generated to model
the belief of the observation of a person. These probability distributions
are further combined using a flexible probabilistic aggregation scheme.
The main advantages of this approach are a simple integration of further
sensory channels, even with different update frequencies and the usabil-
ity in real-world environments. Finally, promising experimental results
achieved in a real office environment will be presented.

1 Introduction

Dealing with Human-Robot-Interaction (HRI) in real-world environments, one of
the general tasks is the realization of a stable people detection and the respective
tracking functions. Depending on the specific application that integrates a person
detection, different approaches are possible. Typical approaches use visual cues
for face detection, a laser-range-finder for detection of moving objects, like legs,
or acoustical cues for sound source detection.

Projects like Embassi [1], which aim to detect only the users’ faces, usu-
ally in front of a stationary station like a PC, typically use visual cues (skin-
color-based approaches, sometimes in combination with the detection of edge
oriented features). Therefore, these approaches cannot be applied for a mobile
robot which has to deal with moving people with faces not always perceivable.
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and a HWP-Grant to A. Scheidig



In [2] a skin-color-based approach for a mobile robot is presented using an ex-
tension of particle filters to generate object configurations which represent more
then one person in the image.

Other approaches trying to perceive the whole person rather than only her
face use laser-range-finders to detect people as moving objects or directly by their
legs, e.g. Grace [3] or Tourbot [4]. In [5] a approach based on particle repre-
sentations in joint probabilistic data association filters is presented. Drawbacks
of these approaches occur, for instance, in situations where a person stands near
a wall and cannot be distinguished, in scenarios with objects yielding leg-like
scans, like table-legs or chair-legs, or if the laser-range-finder does not cover 360
degrees of the robot space.

For real-world scenarios, more promising approaches combine more than one
sensory channel,like visual cues and the scan of the laser-range-finder. An exam-
ple for these approaches is the Sig robot [6], which combines visual and auditory
cues. People are detected by a face detection system and tracked by using stereo
vision and sound source detection. This approach is especially useful for sce-
narios like face-to-face interaction. Further examples are the Expo-Robots [7],
where people are detected as moving objects by a laser-range-finder (resulting
from differences from a given static environment map) firstly. After that, these
hypotheses are verified by visual cues. Other projects like Biron [8] detect peo-
ple by using the laser-range-finder for detecting leg-profiles and combine these
information with visual and auditory cues (anchoring). The essential drawback
of these approaches is the sequential processing of the sensory cues. People are
detected by laser information only and are subsequently verified by visual cues.
These approaches fail, if the laser-range-finder yields no information, for in-
stance, in situations when only the face of a person is perceivable because of leg
occlusions.

Therefore, we propose a multimodal approach to realize a robust detection
and tracking of people. Compared to other approaches, all used sensory cues are
concurrently processed using a probabilistic aggregation scheme, that scales very
well with the number of sensors and modalities used in terms of computational
complexity. This way people are not only detected by only one feature. They
can be detected by their legs and their faces or by only one of this features,
respectively. The main advantage of our approach is the simple expandability
by integrating further sensory channels, like sound sources, because of the used
aggregation scheme.

The structure of this paper is as follows: first we present the employed differ-
ent sensory modalities of our mobile robot for people detection and tracking: the
omnidirectional camera, the laser-range-finder and the sonar sensors (section 2).
Using these modalities, we generate specific probability-based hypotheses about
the positions of detected people and combine these probability distributions by
covariance intersection (section 3). Respective experimental results are presented
in section 4 followed by a short summary and an outlook in section 5.



2 Mobile Interaction Robot Horos

To investigate respective methods, we use the mobile interaction robot Horos as
an information system for employees, students, and guests of our institute. The
system’s task includes that Horos autonomously moves in the institute, detects
people as possible interaction partners and interacts with them, for example, to
answer questions like the current whereabouts of specific people.
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Fig. 1. Sensory and motory modalities of the mobile interaction robot Horos (HOme
RObot System).

The hardware platform of Horos is an extended Pioneer-based robot from
ActiveMedia. It integrates an on-board PC (Pentium M, 1.6 GHz, 512MB) and
is equipped with a laser-range-finder (Sick) and sonar sensors. For the purpose
of HRI, this platform was mounted with different interaction-oriented modalities
(see Figure 1).

This includes a tablet PC (Pentium M, 1.1 GHz, 256MB) running under Win-
dows XP for pen-based interaction, speech recognition and speech generation. It
was further extended by a robot face which includes an omnidirectional fisheye
camera and two microphones. Moreover, we integrated two frontal webcams for
the visual analysis of dialog-relevant user features (e.g. age, gender, emotions).



Subsequently, only the omnidirectional camera, the laser-range-finder and the
sonar sensors are discussed in the context of the people detection and tracking
task.

2.1 Laser-based Information

The laser-range-finder of Horos is a very precise sensor with a resolution of one
degree, perceiving the frontal 180 degree field of Horos (see Figure 2, left). It
is fixed on the robot approximately 30 cm above the ground. Therefore, it can
only perceive the legs of people (see Figure 2, right).

Based on the approach presented in [9], we also analyze the scan of the
laser-range-finder for leg-pairs using a heuristic method. The measurements are
segmented into local groups of similar distance values. Then each segment is
checked for different conditions like width, deviation and others that are common
for legs. The distance between segments classified as legs is pairwise computed
to determine whether this could be a human pair of legs. For each pair found,
the distance and direction is extracted.
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Fig. 2. Left: Top view of the schematic Horos. The sensory range of the laser-range-
finder used to detect people is depicted grey. Right: Real scan of the laser-range-finder,
depicted in polar coordinate system. In this situation, the robot is standing in a door
directed to the top, perceiving a wall in front of it and the opened door to its right.
Further, it senses a pair of legs in front of it (at 70◦) and another one to its left (at
155◦).

This yields very good results for distances of people which stand less than
3 meters away. In a greater distance legs will be missed due to the limited
resolution of the laser-range-finder1. The strongest disadvantage of this approach
is its false-positive classification detecting table-legs, chair-legs and also waste-
paper baskets as legs. Also people standing sideway to the robot or wearing long

1 At a distance of 3 meters the laser beams have a gap of more than 5cm between
each other. In greater distances some legs are missed.



skirts do not yield appropriate values of the laser-range sensor to detect their
legs.

2.2 Sonar Information

Horos is equipped with 16 sonar sensors, arranged at the Pioneer platform
approximately 20 cm above the ground. The sound cones have an aperture angle
of about 15 degrees. Because of this, a person detection using the sonar sensors
does only work by analyzing the sonar scan for leg profiles (see Figure 3 right).

The disadvantage of these sonar sensors is their high inaccuracy. The mea-
surement depends not only on the distance to an object, but also on the object’s
material, the direction of the reflecting surface, crosstalk effects when using sev-
eral sonar sensors, and the absorption of the broadcasted sound. Because of these
disadvantages, only distances of at most 2 meters can be considered for person
detection using these sonar sensors (see Figure 3, left). This means the sonar
sensors yield pretty unreliable and inaccurate values, a fact which has to be con-
sidered in the generation of a hypothesis of a person detection. For the purpose
of a very simple person detection, we assume that all measurements less than
2 meters could be hypotheses for a person. These hypotheses could be further
refined by comparing the position of each hypothesis with a given map of the
environment. If the hypothesis would correspond to an obstacle in the map, it
could be dismissed. The disadvantage of this refinement is, that people standing
near by an obstacle would not be considered as a valid hypothesis.
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Fig. 3. Left: Top view of the schematic Horos. The sensoric range of the sonar sensors
used to detect people is depicted grey. Right: Real values of the sonar sensors. In this
case, the robot is standing in the middle of a floor directed to the top, sensing walls to
the left and to the right and a person directly behind it. The distance values in front
of the robot (dashed curve) are the result of our range limitation to a maximum of 2
meters.



2.3 Fisheye Camera

As third sensory system, we use an omnidirectional camera with a fisheye lens
yielding a 360 degree view around the robot (see Figure 4 left). Because of the
task of person detection, the usage of such a camera requires that the position
of this camera is lower than the position of the faces. An example of an image
resulting from the camera is depicted in Figure 4 (right). To detect people in
the omnidirectional camera image, a skin-color-based multi-target-tracker [10] is
used. This tracker is based on the condensation algorithm [11] which has been
extended, so that the visual tracking of multiple people at the same time is now
possible. The particle clouds used to estimate the probability of people in the
omnidirectional image will concentrate on the different skin-colored objects. A
problem is the possible detection and tracking of non-human skin-color-based
objects, like wooden objects or cork pinboards. An essential advantage of this
simple approach is, however, that it is much faster than subsampling the whole
image trying to find regions of interest and its resistance to minor interferences,
like partial occlusions.

A person detection using omnidirectional camera images yields good hy-
potheses about the direction of a person but not about his distance. Therefore,
the integration of the different information from the camera with the data from
the laser-range-finder and the sonar sensors should result in a more powerful
and robust people detection and tracking system. Subsequently, the developed
method for the combination of the several sensory systems will be introduced
and discussed.
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Fig. 4. Left: Top view of the schematic Horos. The sensoric range of the omnidi-
rectional camera used to detect people is depicted grey. Right: Real image of the
omnidirectional camera with a fisheye lens. A person to be detected is standing in
front of the robot and can be seen at the bottom of the image.



3 The Multi-Modal Aggregation Scheme

At first, a suitable data representation for the aggregation of the multimodal
hypotheses had to be choosen. The possibilities ranged from simple central point
representation to probability distributions approximated by particles. The used
aggregation scheme is based on Gaussian distributions, see section 3.1. Because of
the unknown correlations between the different sensor readings, a Kalman Filter

based approach was not used to combine these hypotheses. Instead Covariance

Intersection is applied (section 3.2).

3.1 User Modeling Considering the Different Sensor Information

For the purpose of tracking, the information about detected humans is converted
into Gaussian distributions φ(µ, C). The mean µ equals the position of the detec-
tion in polar coordinates and the covariance matrix C represents the uncertainty
about this position. The form of the covariance matrix is sensor-dependent due
to the different sensor characteristics described in section 2. Furthermore, the
sensors have different error rates of misdetections that have to be taken into
account. All computation is done in the defolded cartesian r, ϕ space, see Figure
5. Examples for the resulting distributions are shown in Fig. 6.
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Fig. 5. Left: Two Gaussian hypotheses shown in a Cartesian r, ϕ system. Right: The
same hypotheses in polar r,ϕ coordinates, the center indicates the position of the robot
(Remark: computation is done in the cartesian space, while the polar r, ϕ space is used
for better illustration).

Laser-based Information: Laser-range-finders yield a very precise measure,
hence the corresponding covariances are small and the distribution is narrow
(see Figure 6 left). The radial variance is fixed for all possible positions, but
the variance of the angular coordinate is distance dependent. A sideways step



of a person standing directly in front of the robot changes the angle more than
the same movement in a distance of 2 meters. The smaller the distance of the
detection the larger the variance has to be. The probability of a misdetection
is the lowest of all used sensors, but the laser-range-finder only covers the front
area of the robot due to sensor arrangement.
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Fig. 6. Examples for generated hypotheses. The center of each plot represents the
robot. Left: Hypothesis generated by laser showing a person left in front of the ro-
bot. Middle: Sonar-based information showing a hypothesis behind the robot. Right:

Camera-based hypothesis without depth information showing the same person as in
the left figure.

Sonar Information: Information from the sonar tends to be very noisy, im-
precise und unreliable. Therefore, the variances are large and the impact on the
certainty of a hypothesis is minimal (see Figure 6 middle). Nevertheless, the
sonar is included to support people tracking behind the robot. So we are able to
form an estimate of the distance in vision-based hypotheses.

Fisheye Camera: In contrast to the other sensors, the camera can only provide
information about the angle of a detection, but not about the distance of a
person. Therefore, for the radial variance of the distance coordinate a very large
value was selected, with a fixed mean value (see Figure 6 right). The angular
variance is determined by the angular variance of the particle distribution used
in the visual skin-color based person tracker (see Section 2.3). The information
content of a detection in the image of the fisheye camera is controlled by the
position of the detection. In the front area of the robot, the influence is lower,
because of the available laser as reliable sensor. Behind the robot, the image is
the only source to get information about the presence of a person, the sonar
has only supporting character. Thus, the relative weight of a visual hypothesis
should be higher behind the robot.



The modeling and integration of additional sensor modalities, like sound local-
ization or other features from the camera image, could be done in a similar way
as described above.

3.2 Multi-Hypotheses Tracking Using Covariance Intersection

Tracking based on probabilistic methods attempts to improve the estimate xt of
the position of the people at time t. These estimates xt are part of a local map M

that contains all hypotheses around the robot. This map is used to aggregate the
sensor hypotheses. Therefore, the movements of the robot {u1, ..., ut} and the
observations about humans {z1, ..., zt} have to be taken into account. In other
words, the posterior p(xt|u1, z1, ..., ut, zt) is estimated. This process is assumed
to be Markovian. Then the probability can be computed from the previous state
probability p(xt−1), the last executed action ut and the current observation zt.
The posterior is simplified to p(xt|ut, zt). After applying the Bayes rule, we get

p(xt|ut, zt) ∝ p(zt|xt)p(xt|ut) . (1)

where p(xt|ut) can be updated from p(xt−1|ut−1, zt−1) using the motion
model of the robot and the assumptions about typical movements of people.

A Gaussian mixture M = {µi, Ci, wi|i ∈ [1, n]} is used to represent the po-
sitions of people, where each Gaussian is the estimate for one person. φi(µi, Ci)
is a Gaussian centered at µi with the covariance matrix Ci. The weight wi

(0 < wi ≤ 1) contains information about the contribution of the corresponding
Gaussian to the total estimate.

Next, the current sensor readings zt have to be integrated, after they have
been preprocessed as described earlier. If M does not contain any element at time
t, all generated hypotheses from zt are copied to M . Otherwise data association
has to be done to determine which elements from zt and M refer to the same
hypothesis. The Mahalanobis distance dm between two Gaussians φi ∈ zt and
φj ∈ M is used as association criterion.

µ = µi − µj

C = Ci + Cj

dm = µC−1µT

(2)

This distance is compared to a threshold. As long as there are distances lower
than the threshold, the sensor reading i and the hypothesis j with the minimum
distance are merged. The problem of merging hypotheses in case two people
pass near each other has to be tackled seperatly, confer e.g. [12]. The update is
done via the Covariance Intersection rule (see [13] and [14]), a technique very
similar to the Kalman Filter. As an advantage of this approach, the unknown
correlations between the different sensor readings can be integrated, since this
data fusion algorithm does not use any information about the cross-correlation
of the inputs. A non-linear convex combination of the means and covariances is
computed as follows

C−1

new = (1 − ω)C−1

i + ωC−1

j .

µ−1

new = Cnew

[

(1 − ω)C−1

i µi + ωC−1

j µj

]

.
(3)



The weight ω is chosen to minimize the determinant as

ω =
|Ci|

|Ci| + |Cj |
. (4)

The more reliable distribution (that with the smaller determinant of the covari-
ance matrix) is weighted higher in the update. If the current sensor reading is
more certain than the current one, the resulting covariance of the hypothesis in
M is reduced.

Sensor readings not matching with a hypothesis of M are introduced as new
hypothesis in M . The weight wi is representing the certainty of the corresponding
Gaussian. The more sensors support a hypothesis, the higher its weight should
be. If the weight passes a threshold, the corresponding hypothesis is considered
to be a person. The weight is increased as

wi(t + 1) = wi(t) + α(1 − wi(t)) , (5)

if that hypothesis has been matched with a sensor reading. The time constant
α ∈ [0, 1] is chosen with respect to the certainty of the current sensor (see
section 3.1); the more reliable the sensor, the higher the α-weight is. In the case
of an unmatched hypothesis, the weight has to be decreased.

wi(t + 1) = wi(t) − (1 − θ)
tnew − told

tv
. (6)

The term tnew is the current point of time and told the moment the last
sensory input was processed. A person is considered to be lost if tv seconds
passed and no sensor has made a new detection that can be associated with this
hypothesis. This temporal control regime is sensor dependent, too. Hypotheses
with a weight lower than the threshold θ are deleted.

4 Application

The presented system is in use on the Horos robot in a real-world office envi-
ronment. The fact of a changing illumination in different rooms and numerous
distractions in form of chairs and tables is quite challenging.

Figure 7 shows a typical aggregation example. In this experiment, the robot
was standing in the middle of an office room and did not move. Up to three people
were moving around the robot. The enviroment contained several distracting
objects, like table legs and skin-colored objects. No sensor modality was able to
detect the people correctly. Only aggregation over sensors modalities and time
led to the proper result.

The system was able to track multiple people correctly with an accuracy of
93 percent in the experiment. In most cases false negative detections occured
behind the robot. The rate of false positive detections is higher, about every
forth hypothesis was a misdetection. This is due to the simple cues integrated
into the system. But for the intended task of Horos, the interactive office robot,



it is considered to be more important not to miss to many people than finding
to many. But there are ways to reduce the amount of false positive detections.
Most misdetections are static in the environment, so based on the movement
trajectories created by the tracker they can be identified (see section 4.1).

real scene
result

fisheye camera

laser-range-finder

sonar

Fig. 7. Aggregation example. The left picture shows the real office scene from a
bird’s eye view. Three people are surrounding the robot, standing in the middle. The
three figures in the middle show the current hypotheses generated by fisheye camera,
laser-range-finder, and sonar from top to bottom. No sensor on its own can represent
the scene correctly. The final picture displays the aggregated result from the sensors
and the previous timestep. This is a correct and sharpened representation of the current
situation.

Overall, the presented system improved the performance in the area behind
the robot only slightly compared to a simple skin-color tracker. This is, because
the sonar-based sensors do not provide many useful information for the track-
ing task. The main contribution of the sonar sensors is the addition of distance
information to existing hypotheses extracted from the fisheye camera and pre-
venting a precipitate extinction of hypotheses in cases of sudden changes in the
illumination. In this case, the skin-color tracker will presumably fail, but if the
sonar-based information still confirms the presence of the person at the respec-
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Fig. 8. Trajectory generation. The first row shows the real scene for four discrete
time steps from a bird’s eye view. In the second row the corresponding results of the
tracking system are displayed. In the bottom row the generated trajectories are shown.

tive position, the hypothesis will not be deleted until the skin-color tracker has
recovered.

In the front area of the robot, the system clearly outperforms single sensor-
based tracking. Here the influence of the sonar on the result is not observable,
because in most cases the laser-range-finder generates hypotheses more precisely.
The laser reduces the deficiency of the skin-color tracker, while the skin-color
based information compensates the shortcomings of the laser. These results are
observable in Fig. 7. This leads to the assumption that the inclusion of addi-
tional sensory systems generating hypotheses about people (e.g. sound source
hypotheses) will further improve the performance of this tracking system.

4.1 Trajectory Generation

The system was practically tested in the context of a survey task. Horos was
standing in a hallway in our institute building. His task was to attract attention
of people that came by. As soon as the system recognized a person near him,
the robot addressed the visitor to come nearer. He then offered to participate
in a survey about desired future functionality of Horos. The people tracking
module was used to detect break offs, thus if the user was leaving before finishing



the survey. The robot tried to fetch them back and finalize the survey. After the
successfull completion of the interaction or a defined time interval with no person
coming back, the cycle began again with Horos waiting for the next interaction
partner. The experiment was made in the absence of any visible staff members,
so the people could interact more unbiased.

These efforts are repeated from time to time to gather more information, and
there is a second, not obvious, intention. The tracking module was used to gen-
erate typical movement trajectories of the users. Figure 8 shows the generation
of such trajectories. In our future work, we will attempt to classify the path of
movement to gain more knowledge about the potential user. In the context of
adaptive robot behavior and user models, it is an important issue to assess the
interaction partner. The users’ movements and the positions relative to the robot
are a fundamental step in this direction. If the robot can distinguish between
people who are curious, but don’t have the heart to step nearer, people who are
in a rush and those how just want to interact with the robot, an appropriate
reaction can be learned. The use of a multi-person-tracker is a prerequisite, since
the experiments show visitors often appearing in groups of two or more people.

Examples for different trajectories are shown in Fig. 9. The most challenging
aspects for a classification of trajectories are in our opinion the varying speed of
the people and the search for typical movement schemes describing the interest
of potential users. Based on the trajectories longtime immovable hypotheses can
be discarded with respect to position and interaction status as a false detection.
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Fig. 9. Left: A trajectory showing a person coming straight towards the robot. Right:

The person is crossing from left to right. In doing so, the robot is avoided. The varying
time intervals between the movements aren’t visible in the figure.



4.2 Guiding and Following

Another application of the tracking system in the context of our office scenario
is the guidance function. The robot can guide visitors from the entrance of the
building to the rooms of staff members. If the visitor is leaving sensor range, the
robot stops and asks him to return. As soon as the tracker confirms the presence
of the user the tour is continued. For this task, a multi-person-tracker is not
mandatory, but it allows additional functionality, e.g., a group of people who are
unintentionally blocking the robots’ path can be detetected and can be asked to
clear the path.

The system is able to master the inverted situation, to follow a person, too.
This task is not difficult if the user faces the robot. In this case, however, the user
has to move backwards, which is unnatural and possibly dangerous. Therefore,
the task includes following the person even if the user turns around and no more
skin-color is observable by the robot. Without the helpful information of the
skin-color tracker, the system successfully follows the user using the hypotheses
based on laser and sonar data.

5 Summary and Outlook

We presented a flexible multimodal probability-based approach for detecting
and tracking people. It is implemented on our mobile office robot Horos and is
functioning in real-time. Because of the sensor fusion and the probabilistic aggre-
gation, its results are significantly improved compared to a single sensor tracking
system. It can be easily extended with other sensors, because there is only the
need for a new preprocessing module that produces appropriate Gaussian distri-
butions based on the new sensor readings and an adaption of the weights that
model the respective sensor characteristics. The system is able to aggregate data
from input modalities with different update frequencies.

In our future work, we will extend the system with additional cues to further
increase robustness and reliability for real-world environments. Currently, we are
working on the integration of an audio-based speaker localization. In addition, it
will be investigated if the face detector by Viola and Jones (see [15] and [16]) can
be used for the verification of hypotheses (see [2]) and if it could be integrated
into the aggregation scheme itself as an additional cue. Furthermore, we will
study the behavior of our system compared to other known approaches and
investigate the localization accuracy using labeled data of reference movement
trajectories.
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