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ABSTRACT

Nowadays, Monte Carlo Localization (MCL) is a common
method for self-localization of a mobile robot under the as-
sumption that a map of the environment is known. Original
implementations used range measuring sensors like laser
scanners and sonar as well as camera images. Recently, lo-
calization approaches using omni-vision systems have been
developed with good results. In this paper, we will compare
omni-vision-based and sonar-based MCL in terms of local-
ization accuracy in our specific environment, a large home
store. We can show that both approaches bear certain weak-
nesses and that by combining omni-vision and sonar both
sensors complement each other, the respective localization
errors decrease, and overall accuracy is improved.

1. INTRODUCTION

The ability of self-localization is one of the key require-
ments for a mobile robot. In order to perform sensible goal-
directed autonomous navigation, the robot must have at least
a rough estimate of its current position.

Monte-Carlo-Localization is a method for estimating the
position of the robot by approximating the probability func-
tion for the robot position using a particle filter. The par-
ticle distribution is intialized either as a uniform distribu-
tion over the entire environment or according to some prior
knowledge about the position. With each robot motion, the
particles are moved accordingly, introducing some random-
ness by using a probabilistic motion model. Periodically,
observations from some external sensors are used to eval-
uate the position hypotheses represented by the particles.
This is done by generating a weight for each particle which
is coding the probability of the current observation at the
particle’s location and resampling the particles from the dis-
tribution that is given by the weighted particles.

MCL and similar apporaches also appear in the litera-
ture as particle filters, Condensation algorithms, sampling-
importance resampling (SIR) filters, etc. A wide range of
sensors have been used for localization with MCL, most
commonly laser range sensors and vision sensors (cameras).
Dellaert et al. presented results for sonar and laser data in
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Fig. 1. Learned graph of the operation area, a part of the
home store. The size of the area is 50 by 45m2, the graph
consists of about 2000 reference points (red dots) labeled
with reference observations and odometric data about the
pose of the robot at the moment of node insertion. The total
distance traveled to learn this graph was about 1.000 m.

[1], [2]. The same authors used a camera observing the
hall ceilings in [3]. Gross et al. presented an omnidirec-
tional camera-based approach for large-scale maze-like en-
vironments [4], [5]. Further vision-based approaches are
presented in [6], [7] and [8]. [9], [10] examined sensor fu-
sion in localization, fusing laser and vision data and using
Kalman filters for state estimation.

2. VISUAL MCL

In our long-term research project PERSES/SERROKON1

we are developing an autonomous shopping assistent for a
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home store to provide guidance and companion functions
to customers. The operation area has a size of about 120m
by 100m and is characterized by many similar long hall-
ways (Fig. 1). In contrast to typical indoor environments,
very few flat surfaces exist, instead store-shelfs with various
goods present very finely structured obstacles and walls.

In our application, exact position knowledge is not only
important for secure and efficient coordination of path plan-
ning and motion control of the robot. Since one of the
robot’s tasks is to guide customers to the goods they are
looking for, it should know its relative position to the goods
shelfs as accurate as possible to give precise information
where to find the desired product.

In [4], [5], we presented a visual localization approach.
There, we described a method of splitting an omni-camera
image into several slice segments and extracting the red,
green and blue mean values of the RGB color space for each
segment. Those RGB features are then used as a descrip-
tion of the environment appearance at the respective posi-
tion and stored in a map. The map is a graph of nodes, cov-
ering the two-dimensional environment, where each node
contains the features extracted from the omni-camera image
at the respective position. The nodes are drawn as points in
Fig. 1, connected along the path the robot took during map
building. In the localization phase, the same RGB features
are determined for the current observation, and for each par-
ticle the similarities with nearby nodes are interpolated to
calculate the particle weight. A more detailed description
of the method and experiments is given in [5].

We argued that because of the specific topology of our
operation area with its maze-like structure, visual features
should be superior to range-based features, as they produce
far less ambiguities. We therefore discarded sonar sensors
for MCL and were able to demonstrate that localization is
possible using omni-vision only with good results in accu-
racy and robustness. However, we also experienced that the
precision of self-localization strongly depends on the res-
olution of the underlying graph. In the environment dis-
cussed above, this limitation expresses itself particularly in
the position component that lies perpendicular to the corri-
dor direction: When the robot moves down a corridor, the
changes in the visual observation are far stronger than when
just moving closer or further away from a wall. Therefore,
to achieve equal localization resolution in both directions,
we would need a higher number of reference nodes, par-
ticularly many ”lanes” in each corridor (see Fig 1: So far,
in most hallways the model only consists of one or two
”lanes”).

3. SONAR MCL

In order to improve the localization, we implemented sonar-
based MCL as extension of the vision-based approach. This
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Fig. 2. (Left:) A grid map of the entire home store area
(light: free space, dark: obstacles). (Right:) Applying a ray
casting algorithm, we can calculate a scan expectation for
each position in the map (enlarged view).

section will describe MCL using sonar sensors as standalone
solution while in the next sections, we will compare the
results of both approaches and address the combination of
both modalities.

As explained above, the base of MCL is the incorpora-
tion of sensor observations into the position belief by cal-
culating the probability of an observation provided by the
robot sensors, assuming the robot is located at a specific po-
sition that is given by a particle. In order to estimate that
probability, a map of the environment is required. Further-
more, a sensor model must exist which provides the respec-
tive probability distribution.

In our application, the need for an environment map also
results from the intention to perform autonomous naviga-
tion, which in turn requires the ability of path-planning. To
that purpose, the entire area is modelled as a grid map (Fig.
2 left). During a teaching phase, the grid map is built from
odometry and sonar range data, using a probabilistic update
scheme for each single cell [11]. We employ various odom-
etry correction techniques [12] at that stage in order to en-
sure the accuracy of the map. The basic consideration here
is, that we can put high effort into the one-time process of
generating environment and robot models, while the models
themselves can be used in low complexity algorithms in the
actual application later.

In the MCL context, we can use the grid map as a ref-
erence for expected range scans: By applying a ray casting
algorithm from a certain position within the map, the ex-
pected range measurements in any direction are determined,
which correspond to the ranges an ideal sensor would mea-
sure (Fig. 2 right). Although the resolution is not very high,
as the grid cells in our map have a size of 0.2 by 0.2m, we
will see that this is sufficient for pose estimation with MCL.

Now, in order to calculate the probability of the real sen-
sor measurements at that position, we need a sensor model
(also called observation model) that describes, for a given
expected range, the distribution of real range measurements.
While the B21 has 24 sonar sensors placed around the en-
closure, our model only describes the distribution of one
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Fig. 3. (Left:) Measurement distribution for an expectation
of 1.0m. (Right:) Measurement distribution for an expec-
tation of 2.5m. It is obviously, the variance of these sonar
sensors is higher for long ranges.

range for one expectation and is applied to each of the sen-
sors, implicitly assuming that the behaviour of all sensors is
identical.

The sensor model is generated from real sensor data in
the following way: During the map building as well as other
experiments, we usually store all sensor data in a log file.
By analyzing the log file, we can assign to each scan the re-
spective robot position it was taken from. With the known
grid map, the expected range for each sensor is calculated
using the ray casting algorithm mentioned above. The ex-
pected/real scan pairs are stored in a table. To this purpose,
the range interval 0 - 5 meters (beyond 5 meters scans are
too unreliable, hence not used for localization at all) is dis-
cretized in segments of 0.05 meters width. Each table row
refers to a reference scan range, each column to a real scan
range. For each reference/scan pair, the corresponding cell
is increased by 1. That way, each table row represents the
absolute frequency of real scan ranges for a specific range
expectation (Fig. 3). A probability table is generated after-
wards by normalizing the rows, dividing by the absolute row
sum. Since the model was generated from a large number
of scans all over the application area, it is a good approxi-
mation of the sonar sensor behaviour in that specific home
store environment.

An alternative here would be the approximation of the
sensor model by a parametric model, e.g. a mixture of gaus-
sians or a related function. However, that would raise the
question what function suits the model best and what are
the respective parameters, with the risk of discarding rele-
vant information due to a too simple model. Instead, the
table model contains all relevant information and is reason-
ably small in terms of memory requirement.

We can now use the sensor model to determine a weight
for each particle in the observation update step. To this pur-
pose, an expected observation is calculated at the particle’s
position. Then, for each sonar sensor the respective prob-
ability is found in the normalized model table by reading
the value in the row corresponding to the expectation and
the column corresponding to the actual range measurement.
This provides 24 individual probabilities. In order to assign
the particle a weight, those 24 probabilities must be merged
into one value. One could argue that the individual range

readings are mutually independent and, therefore, the over-
all probability is the product of all values. However, we
found that this overemphasizes outliers and can lead to nu-
merical problems with small particle numbers, as the range
of particle weights often becomes very large (many orders
of magnitude). Instead, averaging over the individual prob-
abilities to calculate the final particle weight leads to much
better robustness in the localization. We are aware that this
is a deviation from theory, but the improved results legiti-
mate this procedure in our opinion.

Because the calculation of expected reference scans by
ray casting in the grid map is quite complex in terms of
computation time and could possibly prevent real-time op-
eration with high particle numbers, one more slight modifi-
cation is needed: Instead of computing the expected obser-
vation anew for each particle in each step, the range mea-
surements are pre-calculated for each valid position in the
map. Of course this is only possible at a discrete resolution.
We found a resolution of 0.1 meters manageable in terms of
memory while not significantly affecting the localization re-
sults. Storing all expectations for the area presented here re-
sults in 200 MB memory allocation. However, for the more
relevant task of position tracking (section 4) it is suitable to
only keep scans in a local vicinity of the current estimation,
that way a few scans must be calculated in each observation
update, but the majority of particles can still operate on the
cache.

To prove the correctness of the sensor model and the
weight calculation, an empirical global localization exper-
iment was conducted. Figure 4 shows the progress of lo-
calization based on 20,000 samples. Initially, the samples
are uniformely distributed over the entire area. As the robot
moves and gathers observations, the samples concentrate in
certain hallways and eventually converge to the true robot
position.

It should be noted that with sonar sensors, global local-
ization needs a denser initial particle distribution than with
visual features. This results from the fact that for range
sensors, the observation changes faster with small position
changes, while in the camera image features are still visible
from a far distance, so the actual change in the observa-
tion is smaller from one position to the next one. On one
hand, this leads to a higher theoretical position resolution
with sonar, on the other hand it also means particles must
not be too wide-spread to avoid missing the globally best
matching position and converging to a sub-optimum.

4. COMPARISON OF VISUAL AND SONAR MCL

In this section, we will compare vision-based and sonar-
based MCL in terms of localization accuracy. To obtain
comparable results, both algorithms were investigated on
the same pre-recorded data. To this purpose, we recorded



Fig. 4. Global localization with 20,000 samples: the MCL
samples are drawn as black points. Initially, samples are dis-
tributed uniformly over the entire map area (top left). After
the robot has obtained a few observations, samples only re-
main in the wider hallways (top right). When the robot turns
around the corner, only few positions remain as valid hy-
potheses (bottom left). After a drive distance of about 30m,
the robot has resolved all ambiguities and found the correct
position as the only possible estimation (bottom right).

a run with a length of approximately 200 meters. By man-
ually marking the robot position at specific reference points
and interpolating between these for odometry correction,
the absolute robot position (ground truth) is known very
well along the entire path. For the visual localization a map
was built from additional data that were also recorded at
the same day. The sonar MCL used a grid map that was
built from different data recorded several months earlier.
Since the coarse structure of the environment remains the
same except for some small shelves and movable objects,
the changes in the grid map usually are much less signifi-
cant than the changes in the camera view over time.

In contrast to the global localization experiment from
the previous section, here we only tested position track-
ing. This is a simpler but in practice more relevant task, as
the robot usually won’t just be deployed anywhere, but will
have at least some approximate knowledge about its startup
position, like a ”homezone”. Therefore, the MCL particles
were initialized as a Gaussian distribution around the known
starting point. 1,000 particles were used in the the experi-
ments described in this section. The interval of observation
updates was the same for sonar-based and visual MCL.

Along the test path the estimated position was compared
to the known reference positions at intervals of about 0.7
meters, resulting in 290 individual position estimations. Be-

Sonar Visual
µ σ max µ σ max

absolute error 0.30 0.18 1.06 0.39 0.25 1.18
dx error 0.17 0.15 1.01 0.32 0.25 1.15
dy error 0.22 0.18 0.87 0.16 0.14 0.83

Table 1. Results of sonar-based and visual MCL on the
same recorded data. The table shows the difference between
the estimated position and the reference position. The first
column for both ”Sonar” and ”Visual” contains the aver-
age error over all reference points, the second column is the
standard deviation and the third column is the maximum er-
ror over the entire test path.

cause of the partially random nature of Monte Carlo Lo-
calization, we executed 10 runs over the same data to re-
ceive significant results. The absolute position errorµ for
sonar-based MCL and vision-based MCL is shown in table
1. Obviously, both methods perform well and the differ-
ence in accuracy is quite small. However, we also examined
the position error in x and y direction individually: As ex-
plained above, the home store environment mainly consists
of many parallel hallways. These hallways are all aligned
in a certain direction, which is defined as y direction in our
coordinate system (Fig. 2), particularly in the top left part
where we conducted the MCL experiments described here.
From these explanations follows that a position difference
in y direction will mostly mean a longitudinal motion along
a hallway, while a position difference in x direction corre-
sponds to a lateral motion between the confining walls or
shelves, across the corridor.

By splitting up the absolute position error into an x (lat-
eral) and y (longitudinal) component, we are able to better
evaluate the two localization methods: for the sonar-based
approach, the error in y direction is slightly higher than the
error in x direction. In contrast to that, for the vision-based
method the error in x direction is two times higher than the
error in y direction. A more detailed illustration of the lo-
calization errors is presented in Fig. 5. These results allow
interpretation that with visual localization the robot is able
to determine its position along the corridor very well, but it
has difficulties finding out if it is close to a wall or in the
middle of the corridor. With sonars, on the other hand, of
course it is far easier to estimate the distance to the lateral
walls, but the position along the corridor is less well de-
fined, as the ranges that are measured by the sensors do not
change much over the length of a hallway, providing little
information about the true position.

5. COMBINATION OF VISUAL AND SONAR MCL

Now that we know that sonar localization achieves higher
accuracies in lateral direction while visual localization leads
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Fig. 5. Error histograms for sonar-based MCL (left) and
visual MCL (right). The plots show the histograms for ab-
solute position error (top), position error in x direction (mid-
dle) and position error in y direction (bottom) over the entire
robot test path (all test points on the path). The histograms
give a more precise impression of the error distribution than
the values in table 1. In each plot, the total number of points
is the same. A stronger concentration on the left side means
more small errors, therefore a smaller average error. In con-
trast, plots stretching out to the right contain more high er-
rors, which corresponds to a higher average (expected) po-
sition error. Comparing the left and right plots, it is clearly
visible that sonar localization is more accurate in x (corridor
lateral) direction, while visual localization behaves better in
y (longitudinal) direction.

to higher accuracy in longitudinal direction, an obvious next
step is to combine both sensors in order to benefit from the
advantages of both, resulting in high position accuracy in
both directions.

Therefore, we must find a way to integrate the position
distributions estimated by the sonar-based and vision-based
MCL into one common distribution. Luckily, this is very
easy with particle filters: Each of the methods calculates
a fit value for each particle in the observation update step,
which is then used as weight in the resampling process. In-
stead of using just one fit value, we can now multiply the
values from sonar and vision and use the product as resam-
pling weight. Since each fit value represents the (relative)
probability of the observation at the respective position, and
sonar and vision observations are mutually independent, the
product of the fit values effectively is the (relative) probabil-

Fig. 6. An example of a grid map overlayed with a visual
map. Only a part of the entire area is displayed here.

ity of the combination of both observations. Furthermore,
with multiplication (in contrast to e.g. averaging) there is
no need to pay attention to the relative magnitude of the in-
dividual fit values.

Overall, the changes from MCL with one sensor to multi-
sensor MCL are marginal: instead of one map there are now
two maps (which share a common reference coordinate sys-
tem, see Fig 6). The motion model and the motion update
step remain unchanged, as well as the particle initialization.
In the observation update, the fit values for both observa-
tions are calculated and multiplied. The resulting weight is
used in the resampling step in the usual way. Actually, it is
possible to integrate an arbitrary number of sensors, as long
as a map (environment model) exists for each sensor with a
common reference frame.

We repeated the experiment from section 4 with the Multi-
Sensor MCL, again with 1000 particles. The results are
shown in table 2 and in Fig. 7. It is clearly visible that
not only the absolute error is 50% smaller than with only
one sensor, but also in x as well as in y direction the error
is smaller than the best single sensor method for each direc-
tion. This confirms our expectation that with the combina-
tion of the two sensor modalities, the resulting localization
method should benefit from the strengths of both and sup-
press the individual weaknesses.

Vision + Sonar
µ σ max

absolute error 0.24 0.17 0.83
dx error 0.16 0.14 0.60
dy error 0.15 0.13 0.77

Table 2. Results of the combination of sonar-based and
vision-based MCL. The average error in x as well as in y
direction is smaller than the minimum of sonar and visual
MCL alone (see Table 1).



Fig. 7. Error histograms for the combination of sonar-based
and vision-based MCL. Clearly, the histogram values are
concentrated stronger on the left side than in the individual
plots in Fig. 5 indicating smaller localization errors.

6. CONCLUSIONS

We have presented two different MCL approaches, one us-
ing omni-camera images for environment observations, the
other one using sonar range sensors. We tested and com-
pared both methods in a localization task taken from our
home store service scenario and found that both perform
reasonably well on their own, with each one having its spe-
cific strength and weakness. We then developed a simple
and very intuitive approach for combination of omni-camera
observations and range measurements. The results show
that the overall accuracy can be significantly improved and
the sensors complement each other very well, each one con-
tributing its own strengths.

We plan to further expand the scope of our approach by
closer examination of situations where the sensors strongly
diverge in the localization or even one sensor fails, like high
occlusion due to crowded environments or radical lighting
changes. Our aim is to identify such situations and tem-
porarily ignore the failing sensor. The inclusion of other
low-cost sensors is also considered in order to improve ro-
bustness and accuracy of the localization.

7. REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte
carlo localization for mobile robots,” inProc. 1999
IEEE Intl. Conf. on Robotics and Automation (ICRA),
1999.

[2] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte
carlo localization: Efficient position estimation for
mobile robots,” inProc. AAAI Natl. Conf. on Artifi-
cal Intelligence, 1999.

[3] F. Dellaert, W. Burgard, D. Fox, and S. Thrun, “Using
the condensation algorithm for robust, vision-based
mobile robot localization,” inIEEE Computer Society
Conf. on Computer Vision and Pattern Recognition (
CVPR’99 ), 1999, pp. 2588–2596.

[4] H.-M. Gross, A. Koenig, H.-J. Boehme, and
C. Schroeter, “Vision-based monte carlo self-
localization for a mobile service robot acting as shop-
ping assistant in a home store.,” inProc. 2002
IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tem, 2002, pp. 265–262.

[5] H.-M. Gross, A. Koenig, C. Schroeter, and H.-
J. Boehme, “Omnivision-based probalistic self-
localization for a mobile shopping assistant contin-
ued.,” in Proc. 2003 IEEE/RSJ Intl. Conf. on Intel-
ligent Robots and System, 2003, pp. 1505–1511.

[6] E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishig-
uro, “Image-based monte carlo localization with om-
nidirectional images,”Robotics and Autonomous Sys-
tems, vol. 48, pp. 17–30, 2004.

[7] M. Jogan and A. Leonardis, “Robust localization us-
ing panoramic view-based recognition,” inProc. 15th
Int. Conf. Pattern Recogn. (ICPR’00), 2000, pp. 136–
139.

[8] N. Winters, J. Gaspar, G. Lacey, and J. Santos-
Victor, “Omnidirectional vision for robot navigation,”
in IEEE Workshop on Omnidirectional Vision (OM-
NIVIS’00), 2000, pp. 21–28.

[9] J. Neira, J.D. Tardos, J. Horn, and G. Schmidt, “Fusing
range and intensity images for mobile robot localiza-
tion,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 1, pp. 76–84, 1999.

[10] K.O. Arras, N. Tomatis, B.T. Jensen, and R. Siegwart,
“Multisensor on-the-fly localization: Precision and re-
liability for applications,” Robotics & Autonomous
Systems, vol. 34, no. 23, pp. 131 – 143, 2001.

[11] H. Moravec, “Sensor fusion in certainty grids for mo-
bile robots,” AI Magazine, vol. 9, no. 2, pp. 61–77,
1988.

[12] C. Schroeter, H.-J. Boehme, and H.-M. Gross, “Ro-
bust map building for an autonomous robot using low-
cost sensors,” inProc. of the 2004 IEEE Conf. Sys-
tems, Man & Cybernetics (SMC2004), 2004, pp. 5398
– 5403.


