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Abstract— In this paper, we present two important aspects
of our human-robot communication interface which is being
developed in the context of our long-term research framework
PERSES dealing with the development of highly interactive mo-
bile robotic assistants. First, we introduce a multi-modal people
detection and tracking system, a fundamental prerequisite for
the observation of a human interaction partner and his non-
verbal instructions given by pointing poses, gestures, head pose
and eye gaze. Based on this detection and tracking system,
we present a hierarchical neural architecture that is capable of
estimating a target point at the floor given a pointing pose, thus
enabling a user to command his mobile robot to a specific target
position in his local surroundings by means of pointing. In this
context, we were especially interested in determining whether
it is possible to accomplish such a target point estimator using
only monocular images of low-cost cameras. Both the tracker
and the target point estimator were implemented and experi-
mentally investigated on our mobile robotic assistant HOROS.
The achieved recognition results presented finally demonstrate
that it is in fact possible to realize a user-independent pointing
pose estimation using monocular images only, but further efforts
are necessary to improve the robustness of this approach for
everyday application.

I. INTRODUCTION

In recent years, a lot of research has been done to develop
mobile robotic assistants that can interact with - and be
controlled by - non-instructed users, making them suitable
for application in everyday life. To achieve this, it is es-
sential to integrate man-machine-interfaces that are naturally
and intuitively to use. In our ongoing long-term research
framework PERSES (PERsonal SErvice Systems) we aim
to develop such highly interactive mobile robotic assistants
for a wide spectrum of demanding everyday life applications,
like shopping assistants for supermarkets or home stores
[3], [4] or mobile information kiosks for public buildings or
areas [8], [9]. From the human-robot interaction (HRI) point
of view, such an interactive mobile service robot must be
able to autonomously observe its operation area, to detect,
localize, and contact potential users, to interact with them
continuously, and to adequately offer its specific services
considering the current status of the ongoing dialog. Specific
service tasks we want to tackle in this research framework are
to interactively guide users to desired areas, rooms or people
within its operation area (guidance function), or to follow
the user as a smart user-oriented mobile assistant that is able
to continuously observe the user and to immediately react
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Fig. 1. Systematic overview of those topics in human-robot communica-
tion with direct relevance for our long-term research framework PERSES
(PERsonal SErvice Systems). The methods presented in this paper can be
assigned to the highlighted topics ”Person detection” and ”Pointing poses”.

on his/her instructions (service companion function). To be
a really smart companion, a robot should be able to analyze
the gender, age, and facial expression of its interaction
partner, to interpret his body/head pose and his movement
trajectory (see Fig. 1), and to continuously adapt its dialog
strategies and presentation modes to that specific user. In
this paper, we will only focus on two important aspects of
HRI, the robust multi-modal people detection and tracking
and the video-based recognition of pointing poses allowing
to command a robot to a specific target position in the local
surroundings of the user. Besides the methodical background
of these techniques, we are presenting results of a series
of experiments obtained with our mobile experimental robot
HOROS (HOme RObot System).

HOROS’ hardware platform is an extended Pioneer II-
based robot from ActiveMedia. It integrates an on-board
PC (Pentium M, 1.6 GHz) and is equipped with a laser-
range-finder and sonar sensors (see Fig. 2). For the purpose
of HRI, the robot was equipped with different interaction-
oriented modalities. This includes a tablet PC for touch-
based interaction, speech recognition and speech generation.
HOROS was further extended by a simple robot face which
integrates an omnidirectional fisheye camera situated in the
center of the head, a camera with a telephoto lens mounted
on a tilting socket on the ”forehead”, and a wide-angle
camera in one of the eyes. Because one objective of the
PERSES-project is the development of a low-cost prototype
of a mobile and interactive robot assistant, we are espe-



Fig. 2. Equipment of the interaction-oriented robot HOROS.

cially interested in vision technologies with a good price-
performance ratio. Therefore, for the two frontal cameras
instead of a stereo-vision system only low-cost cameras
were utilized. This forces us to develop powerful and robust
recognition algorithms allowing to compensate the deficits
of the hardware. In this context, we were interested if it
would be possible to robustly estimate a target position at the
floor from a pointing pose using only inexpensive hardware
and monocular images. A fundamental prerequisite for the
recognition of video-based user instructions is, however, a
stable detection and tracking of the interaction partner in the
local surroundings of the robot. This aspect is described in
the following section.

II. MULTIMODAL PEOPLE DETECTION & TRACKING

Typical approaches use visual cues for face detection,
a laser-range-finder for detection of moving objects, like
legs, or acoustical cues for voice detection. Projects like
EMBASSI [2], which aim to detect only the users’ faces,
usually in front of a stationary system like a PC, typically
use visual cues (skin-color-based approaches, sometimes in
combination with the detection of edge oriented features).
Therefore, these approaches cannot be applied for a mobile
robot which has to deal with moving people with faces not
always perceivable. Other approaches, e.g. TOURBOT [15]
or GRACE [17] trying to perceive the whole person rather
than only the face use laser-range-finders to detect people as
moving objects. Drawbacks of these approaches occur, for
instance, in situations where a person stands near a wall and
cannot be distinguished from the background, in scenarios
with objects yielding leg-like scans, like table- or chair-legs,
or if the laser-range-finder does not cover the whole 360o.

For real-world scenarios, more promising approaches com-
bine more than one sensory channel, like visual cues and
the scan of the laser-range-finder. An example for these
approaches is the SIG robot [10], which combines visual
and auditory cues. People are detected by a face detection
system and tracked by using stereo vision and sound source
detection. Further examples are the EXPO-ROBOTS [16],
where people are detected as moving objects by a laser-

Fig. 3. Exemplary sensory inputs from the laser-range-finder and the sonar
(top) and from the fisheye camera and the frontal camera (bottom) for a
typical situation, where two people were standing in front of HOROS (see
Fig.4, top). In the pictures of the laser and the sonar scan, the robot is located
at the 0,0 coordinate straightened ahead. Together with the exemplary inputs
the used range of each sensory cue to detect people is depicted. As can be
seen, each sensor covers a specific area around the robot. Consequently best
tracking results are to be expected if all sensory cues are used concurrently.

range-finder (resulting from differences from a given static
environment map) firstly. After that, these hypotheses are
verified by visual cues. Other projects like BIRON [1] detect
people by using the laser-range-finder to find leg-profiles and
combine these information with visual and auditory cues. The
essential drawback of most of these approaches is the sequen-
tial integration of the sensory cues. People are detected by
laser information only and are subsequently verified by visual
or auditory cues. These approaches typically fail if the laser-
range-finder yields no information, for instance, in situations
when only the face of a person is perceivable because of leg
occlusion.

Therefore, we recently developed a new approach for
the integration of several sensor modalities and presented a
multi-modal, probability-based people detection and tracking
system and its application using the different sensory systems
of our mobile interaction robot HOROS. This approach can
be characterized by the fact that all used sensory cues are
concurrently processed and integrated into a robot-centered
map using a probabilistic aggregation scheme. The overall
computational complexity of our approach scales very well
with the number of sensors and modalities. Up to now we
utilize the laser-range-finder, the sonar sensors, the omni-
directional and the frontal eye-camera of our experimental
platform HOROS (see Fig. 2). The laser-range-finder is a
very precise but relatively expensive sensor perceiving the
frontal 180o field of HOROS. Because it is mounted on
the robot approximately 30 cm above the ground, it can
only perceive the legs of people (see Fig. 3, top left).
Not least due to this fact and for reasons of cost we’ll
pass on it in future. Furthermore, HOROS has 16 sonar
sensors arranged approximately 20 cm above the ground and
covering the complete 360◦ field of view. As third sensory
cue we use the omnidirectional camera with a fisheye lens
also yielding a 360o view around the robot. An example



Fig. 4. Aggregation example: (Top) real scene from a bird’s eye view -
two people are standing in front of the robot. (Middle) current hypotheses
generated by fisheye camera, frontal camera, laser-range-finder, and sonar
(had to be left out because of technical problems with this sensor system).
No sensor on its own can represent the situation correctly. (Bottom)
aggregated result from the sensors and the previous timestep. This is a
correct and sharpened representation of the current situation.

of an image resulting from this camera is given in Fig. 3
(bottom left). To detect people in the omnidirectional image,
a skin-color-based multi-target-tracker [20] is used. This
tracking system is based on the condensation algorithm [5]
which has been extended to allow the visual tracking of
multiple objects at the same time. As fourth sensory cue
a frontal camera yielding an approximately 90◦ frontal view
is utilized (see Fig. 3, bottom right). To detect people in
this image with a head pose oriented to the robot, we use
the well-known Adaboost-based face detector of VIOLA and
JONES [19]. Similar to the omnidirectional camera, these
monocular images only yield hypotheses about the direction
of a person but not about his/her distance. Therefore, for
these observations we only code the direction of interesting
objects and assume constant distances as hypotheses. A more
detailed discussion of the advantages and drawbacks of the
several sensory modalities is given in [9]. In the nearest
future, the results of the sound-source detector utilized to
localize a calling person in the local surroundings of the
robot and the hypotheses of the head-shoulder detector used
to exactly place the Region-of-interest (ROI) for the pointing
pose estimation (see Section III) will be integrated into
this tracking system. Subsequently, the general idea of the
developed approach for probabilistic aggregation of several
sensory observations in a robot-centered map is presented.

A. Aggregation and Tracking of Object Hypotheses

For the purpose of tracking, the sensor-specific information
about detected human-like objects is converted into Gaussian
distributions φ(µ,C). The mean µ equals the position of

the detection in robot-centered Cartesian coordinates, and
the covariance matrix C represents the uncertainty about
this position. The form of the covariance matrix is sensor-
dependent due to the different sensor characteristics sketched
above and described in detail in [9]. All computation is done
in the robot-centered x, y space. Examples for the resulting
distributions are shown in Fig. 4, middle and bottom. The
laser-range-finder yields the most precise data, hence the
corresponding covariances are small and the distribution
is narrow (see Figure 4, middle). The mean value of the
Gaussian depends on the distance of the detected leg-pair
and both variances are fixed with approximately 0.4 m.
Information from the sonar tends to be very noisy, imprecise
and unreliable. Therefore, the variances are large and the
impact on the certainty of a hypothesis is lower. In contrast
to distance measuring sensors, the cameras can only provide
information about the direction of a detection, but not about
the distance of a person. Therefore, these Gaussians are
modelled with fixed mean distance values - 1.5 m for the
fisheye camera and 2 m for the frontal camera. For the
variance of the distance, a large value of 1.0 m was selected
for the Gaussians of both cameras. The variance in angular
direction was also chosen as fixed for the frontal camera
with a value of 0.6 m. For the fisheye camera, this variance
is directly determined by the angular variance of the particle
distribution generated by the skin-color based multi-person-
tracker yielding the visual detection hypotheses [20].

Tracking based on probabilistic methods attempts to im-
prove the estimate xt of the position of a person at time
t. These estimates xt are part of a local map or model M
that contains all hypotheses around the robot (Fig. 5). This
map is used to aggregate the several hypotheses from the
different sensor systems. Therefore, the movements of the
robot {u1, ..., ut} and the observations of humans {z1, ..., zt}
have to be taken into account. In other words, the poste-
rior p(xt|u1, z1, ..., ut, zt) is estimated. The whole process
is assumed to be Markovian. So, the probability can be
computed from the previous state probability p(xt−1), the
last executed action ut and the current observation zt. This
way the posterior is simplified to p(xt|ut, zt). After applying
the Bayes rule, we get

p(xt|ut, zt) ∝ p(zt|xt)p(xt|ut) (1)

where p(xt|ut) can be updated from p(xt−1|ut−1, zt−1)
using the motion model of the robot and the assumptions
about the typical movements of people. In the map or model,
a Gaussian mixture M = {µi, Ci, wi|i ∈ [1, n]} is used to
represent the positions of people, where each Gaussian i
is the estimate for one person. φi(µi, Ci) is a Gaussian
centered at µi with the covariance matrix Ci. The weight
wi (0 < wi ≤ 1) is coding the probability to represent a
person by the respective Gaussian.

Next, the current sensor-specific hypotheses zt have to be
integrated. If the map M does not contain any elements
at time t, all generated hypotheses from zt are copied to
M . Otherwise data association has to be done to determine



Fig. 5. The architecture of the tracking system: The observations
zomni camera
t,i , zfrontal camera

t,i , zlaser
t,i and zsonar

t,i of the different
sensory cues are combined in a local map Mt that contains a time varying
number n(t) of estimates xt,j around the robot using the Covariance
Intersection rule [7].

which elements from zt and M refer to the same hypothesis.
For that purpose, the Euclidian distance de between the
respective Gaussians φi ∈ zt and φj ∈ M are used as
association criterion. As long as there are distances lower
than a threshold, the sensor hypothesis i and the map
hypothesis j can be merged. This is done by means of the
Covariance Intersection rule [7]. By applying this rule, the
resulting determinant is minimized by preferring the sharper
distribution in the intersection process (see Fig. 4, bottom).
With that, an unreliable sensor hypothesis has only little
influence on the resulting hypothesis. Sensor readings that
do not match with any hypothesis of M are introduced
as new hypothesis in M . The weight wi of a Gaussian is
representing the certainty of the respective map hypothesis.
The more sensors support this hypothesis, the higher this
weight should be. If the weight passes a threshold, the
corresponding hypothesis is considered to be a person. In the
case of an non-matching hypothesis, the weight is decreased.
A person is considered to be lost in the map if tv seconds
passed and no sensor has made a new detection that can be
associated with this hypothesis. Mathematical details of this
probabilistic aggregation scheme are also given in [9].

B. Experimental Results

To evaluate our multi-modal multi-person tracker we ob-
tained data from an experimental setup, where the robot was

Fig. 6. These pictures show an exemplary comparison of the tracker results
(solid line) to the baseline from top-down view (dashed line). The robot was
standing in the middle at 0,0 facing upwards.

standing in a foyer and people moved around it. The envi-
ronment additionally contained numerous distracting objects,
like a pillar and several skin-colored objects. As illustrated in
the aggregation example in Fig. 4 no sensor modality alone
was able to detect the people and their positions correctly.
Only aggregation over several sensor modalities and temporal
integration led to the proper result. The whole experimental
setup was monitored by a top-down camera mounted 3.5 m
above the robot. Because the robot did not move in this
experimental setup, we were able to get a reference of the
positions of the robot and the persons moving around it (see
Fig. 4, top). To determine the performance of the tracker,
first the detection rate was evaluated by searching for a
tracker hypothesis for each known person position in an
image of the top-down camera. Taking into account the noise
in the top-down reference, a person was counted as a correct
detection if the distance between tracker hypothesis and top-
down position was below 50 cm. To get an impression up to
what range the tracker is able to find people, the detection
rate has been evaluated for different distances of people to
the robot. Up to a distance of 2.4 m nearly 80% of all
persons in the top-down image have been detected correctly,
taking into account that the maximum range of the used
sensors to detect people is 3 m. In further experiments the
average position error of the trajectories was evaluated. Three
typical plots of estimated trajectories with a length above a
minimum threshold and the respective top-down trajectories
are shown in Fig. 6. The high similarity between ground truth
and estimated trajectories with only local displacements is
obvious. The position error is typically below 0.5 m, which
is sufficient for many subsequent tasks, like the pointing
pose estimation, that only require coarse hypotheses where
a potential user could be in the local surroundings of the
robot. By turning the robot towards the hypothesis with the
largest weight (defined, e.g., by the distance to the robot),
the potential user can be directly localized in front of the
robot allowing the frontal cameras to evaluate if that person
could be willing to interact with the robot. As a very simple
criterion, we assume that a tracked person may be considered
to be a user willing to interact if his upper part of the body
is oriented towards the robot. This decision is also taken
by means of a Viola & Jones detector - in this case a head-
shoulder detector. If this proves to be true, in the next step the
robot can try to recognize the user’s current state or his given
instructions. In the case presented here, we are interested in
estimating the target position of a pointing pose triggered
by a preceding voice command, like the call ”HOROS!”, to
attract the robot’s attention.

III. RECOGNITION OF POINTING POSES - THE
MONOCULAR TARGET POINT ESTIMATOR

Gestures and poses are a very important aspect of non-
verbal inter-human communication. In particular, pointing
poses simplify communication by linking speech to objects
in the environment in a well-defined way. Therefore, a
lot of work has been done in recent years focussing on
integrating gesture recognition into man-machine-interfaces.



Fig. 7. Configuration used for recording the ground truth training and test
data. Here, for reasons of clarity only one of the marked positions in front
of the robot to generate pointing poses to predefined target points is shown.

However, most of this work concentrates on distinguishable
gestures, creating a ”command alphabet” for robot control.
Rogalla et al [14], for example, used fourier descriptors of
an extracted hand contour and a model database to classify
different hand postures. Triesch and v.d. Malsburg [18]
detected and classified hand postures by using compound
bunch graphs and developed a system that can cope with
highly complex backgrounds. Up to now, there are only
a few authors who tried to actually estimate a pointing
direction out of a deictic gesture. Jojic et al. [6] did so
by detecting a person using dense disparity maps and color
information. In their approach, a simple Gaussian mixture
model is fitted to the person and the pointing direction is
determined from the largest principal component of the ”arm-
blob”. Noelker and Ritter [12] used a Local Linear Map
(LLM) classifier to detect 2D features in the images of two
cameras. A Parametrized Self-Organizing Map (PSOM) then
estimates the 3D coordinates of these features, making it
possible to calculate a pointing direction. The approach is
used to control a Virtual-Reality-System and therefore the
working conditions for their system can be very restrictive.
Nickel and Stiefelhagen [11] classified dynamic gestures by
means of Hidden Markov Models (HMM) and estimated
the pointing direction of a pointing gesture by calculating
the connecting line between the center of the head and the
hand. However, they also used a stereo camera system. With
our approach, we were interested to determine whether it is
possible to accomplish a pointing position estimator using
only monocular images of low-cost cameras as input data.
Our goal was to implement that approach on our mobile
robot HOROS and make it navigate to specified targets,
thus enabling a user to control the robot only by means of
pointing. To the best of our knowledge, there are no other
low-cost oriented approaches that are comparable to the one
presented here.

A. System Overview

1) Pointing Area and Ground Truth Data: We code the
target points at the floor as (r, φ) coordinates in a user-
centered polar coordinate system. This requires a transfor-
mation of the target estimate into the robot’s coordinate
system (by simple trigonometry), but the estimation task
becomes independent of the distance between user and robot.
Moreover, we limited the valid area for targets to the half

space in front of the robot with a value range for r from 1 to
3 m and a value range for φ from −120◦ to +120◦. The 0◦

direction is defined as user-robot-axis, negative angles are on
the user’s left side. With respect to a predefined maximum
user distance of 2 m, this spans a valid pointing area of
approximately 6 by 3 m. Fig. 7 shows the configuration we
chose for recording the training data. There are three markers
(distance 1, 1.5 and 2 m from the robot) specifying different
user positions. Around each marker, three concentric circles
with radii of 1, 2 and 3 m are drawn, being marked every
15◦. Positions outside the specified pointing area are not
considered. The subjects were asked to point to the markers
on the circles in a defined order and an image was recorded
each time (see Fig. 8, right). Pointing was performed as a
defined pose, with outstretched arm and the user fixating the
target point. All captured images are labelled with distance,
radius and angle, thus representing the ground truth used
for training. This way, we collected a total of 900 images
of 10 different interaction partners. During preprocessing,
the data were slightly varied to receive nine samples per
training image, resulting in a training sample database of
8,100 labelled images.

2) Preprocessing and Feature Extraction: Since the users
standing in front of the camera can have different height
and distance, an algorithm had to be developed that can
calculate a ”normalized” region of interest (ROI), resulting
in similar subimages for subsequent processing. We use a
combination of head-shoulder-detection (based on the Viola
& Jones Detector cascade [19] mentioned above), empiric
factors, and the distance measurement from the multi-modal
person tracker (see Section II) to determine the ROI (Fig. 8).
The head-shoulder detector provides a starting point and
implicitly includes the user’s height into the calculation. For
different people, the maximum distances between the center
of detection and the tip of the pointing arm in both x and
y direction were determined before. These distances were
divided by the y-coordinate of the head-shoulder-detection,
yielding a factor specifying the size of the ROI. Thus, the
size of the extracted image region implicitly depends on the
users height. Assuming that the ratio between height and
arm length is approximately the same for most humans, this
results in an extracted image region that is very similar in

Fig. 8. Example for an image provided by the low-cost eye-webcam.
Moreover, this figure sketches how the region of interest (ROI) in the camera
image is determined: a combination of empiric factors, head coordinates of
the head-shoulder-detector and distance estimation given by the multi-modal
tracker (see Section II) is used to achieve a normalized ROI (right).



Fig. 10. System overview of the target point estimator cascade. The Gabor-filtered subimage is first fed into a left/right - classifier. The result of this
classifier enables it to extract the finer image ROIs shown in Fig. 9, bottom. In the following stage, the final pointing radius r is estimated, and the input
is classified into one of three radius classes. For each class, a coarse angle estimator is trained, yielding a classification into one of three angle classes.
The last stage yields the final angle estimate φ.

Fig. 9. (Top) Captured ROIs extracted with the described normalization
algorithm for three instructors with different height (from 1.65 to 2 m) all
performing the same pose. (Middle) Extracted ROIs for different distances
person-robot ranging from 1-2 m. (Bottom) Examples for sub-images
extracted from the ROIs containing both the pointing arm and the head
pose. By using these samples as input data for the target point estimator,
the head pose is integrated as additional information.

most cases. Finally, the distance estimation from the tracking
system allows a simple scaling of the respective ROI. Typical
ROIs captured this way are shown in Fig. 9. The found
ROI is scaled to 81x81 pixels, and then an illumination
correction and histogram equalization is applied. After this,
this preprocessed image is Gabor-filtered (4 frequencies with
8 orientations each, absolute values of filter responses) using
an equidistant 4x5 grid to extract a pose-describing feature
vector as input for the first stage of the pointing estimator.
For later stages, the ROI is modified again to create two sub-

images, one of them containing the pointing arm, the other
one the head (Fig. 9, bottom). By doing this, the head pose
of the instructor is directly integrated into the pointing pose
estimation as additional information.

3) Architecture of the Classifier Cascade: Experiments
showed that it is not possible to tackle the function approx-
imation problem with a single neural network estimating
both radius and angle in one step. It also became clear,
that while the radius estimation works quite well, it is more
difficult to robustly estimate the angle. Therefore we decided
to use a cascade of neural classifiers and function approx-
imators (typically three-layered MLPs trained by means of
the RPROP learning rule [13]). Fig. 10 gives an overview
over the architecture of the developed target point estimator
cascade.

After extracting and preprocessing the ROI, a left/right
MLP classifier (topology: ((8x4)x(4x5))-40-20-2) first de-
termines whether the person is pointing to the left or to
the right. Knowing this, that half of the input image that
does not contain the pointing arm can be discarded. This
way the ”finer” ROIs containing the head and body-arm
regions (see Fig. 9 (bottom)) can be extracted. Each of
these two input images is also Gabor-filtered (4 frequencies
with 8 orientations, absolute values of filter responses) using
an equidistant 5x5 grid resulting in 1,600 input features
describing the head and arm pose sub-images. If the person is
pointing to the left, the image is simply flipped. This allows
to use the same classifier for both directions. In the following
cascade stage the value for the pointing radius r is estimated
by means of a first MLP function approximator (topology:
1600-30-20-1) with a single output neuron linearly coding
the range from 1 to 3 m (output interval: 0 ...1.0). Since
the estimation of φ is less accurate and prone to errors, this
estimation is done later in the cascade, so it can be given as



much supporting and simplifying information as possible. To
that purpose, the arm and head ROIs are first classified into
one of three coarse radius classes (see Fig. 10, bottom left).
For each of these classes, there is a specialized MLP classifier
assigning the input to a coarse angle class (topology: 1600-
30-20-10-3). Finally, within the respective coarse class, a
finer estimation of φ is determined by a last MLP function
approximator (with slightly different topologies for the 9 sub-
classes, typically 1600-20-10-5-1) leading to the final target
estimation [r, φ]. The cascade contains a total of 14 MLP
networks (1x left/right, 1x radius, 3x coarse angles, 9x fine
angles), but, due to the hierarchical architecture only four
of these classifiers have to be activated during one pass.
Calculating all four MLPs takes less than 100 milliseconds
on HOROS’s onboard computer.

B. Experimental Results

1) Estimation Results of Human Viewers: In order to
get a reference value for the recognition performance of
the estimator, in particular experiments we determined how
accurate a human viewer could estimate the referred target
point from a monocular image. Therefore, the images from
the training and test data sets were presented to test viewers
in random order using the graphical user interface shown in
Fig. 11. The valid area for the pointing targets is specified
by a circle segment. Subjects were told beforehand that the
targets can only lie within this area. The circle segment is
skewed perspectively to create a 3D impression and adapted
in size according to the distance between the person in the
image and the camera. The test person marked a guessed
target point by clicking with the mouse pointer on the
interface. The found coordinates were then transformed
according to the given perspective and the distance of the
person, yielding the estimated target coordinates r and φ.
The estimates were then compared with the known image
labels. These comparing experiments were performed with
8 test viewers resulting in 885 target estimates altogether.
The achieved estimation accuracy is shown in Fig. 12. On
the top, the mean values and standard deviations of the
angle estimates are shown over the correct angle. Obviously,
perfect estimates would lie on a straight line depicted by

Fig. 11. Graphical user interface for experiments with human viewers. The
valid target area is shown by the circle segment.

Fig. 12. Estimate results of human viewers. (Top) Mean values and standard
deviations of the angle estimate over the correct angle. (Bottom) Average
errors of the radius and angle estimates over the correct angle.

the dotted red (gray) line in the image. The mean values
of the estimates deviate slightly from this ideal case. It
is noticeable that angle estimates between (+/-) 45◦ and
90◦ are persistently too large in magnitude. What’s more,
the standard deviations (depicted by the vertical lines) for
these angles are significantly higher. So, it seems to be
quite difficult for a human viewer to precisely estimate φ
from the monocular images in this area. At the bottom of
Fig. 12, the average errors for the estimates of r and φ over
the correct angle are shown. For the radius r, the errors
are significantly higher for small angle values compared
to large angle values. The errors for φ behave inversely,
being small for small angle values, then getting bigger
with increasing angle value. This trends can be easily
explained geometrically. For angles greater than 90◦, the
errors decrease again. This is due to the fact that pointing
to a target behind ones position results in a significant
change of the body pose: The shoulder and the face are
turned backwards, which is clearly visible in the sub-
images. Overall, in 50.1% of all cases, the human viewers
estimated φ correctly within a tolerance of 10◦. For r,
76.3% of all trials were within a tolerance of 50 cm. These
results give a hint for valuating the following results of our
neural estimator, keeping in mind that the presented data, the
distorted monocular images, are very unfamiliar for a human.

2) Results of the Neural Estimator Cascade: In the fol-
lowing experiment, the correct face position was labelled
manually in all test images. By means of this step, the



Fig. 13. Classification results of the different stages of the estimator cascade
for 3 test subjects. (From left to right:) left/right classifier, radius classifier
(radius classes), radius estimate (tolerance 50cm), coarse angle classifier,
angle estimate (tolerance 10◦)

Fig. 14. (Top) Mean values and standard deviations of the angle estimate
over the correct angle determined on hand-placed ROIs (off-line estimation).
The ideal case is depicted by the dotted line. (Bottom) Average errors for
radius and angle estimate over the correct angle.

negative influence of positioning errors possibly generated by
the automatic head-shoulder-detection could be completely
eliminated. This way, the performance and properties of the
developed ROI extraction algorithm and the neural estimator
cascade could be analyzed without impairments by deficits
of preceding subsystems. Fig.13 shows the classification
results of each cascade stage for three test persons. For
comparison, person P2 is taken from the training data set.
All results mentioned in the following passages refer to the
two remaining subjects not included in the training data. The
left/right classifier yields classification rates of almost 100%
for all subjects. This is especially important since further
processing of the input image depends on the results of this
stage, and misclassifications will lead to a totally erroneous

Fig. 15. Online classification results of the different stages of the estimator
cascade for two test subjects. In these experiments the head-shoulder-
detector was activated for positioning of the ROI.

target estimate. The radius estimator stage shows a good
overall performance, with 84.4% and 98.9% of the samples
within the 50 cm tolerance and classified into the correct
radius class. Compared to this, the angle estimator stages
perform poorly: While the performance of the coarse angle
classifier stage is very good for all subjects, the fine angle
estimate is not so good, with only 66.7/80% of the samples
within the 10◦ tolerance. These results show that the angle
estimate is the major problem, limiting the performance and
accuracy of the developed pointing direction estimator. For
comparison with Fig. 12, the diagram for the mean values
and standard deviations of the angle estimate is given in Fig.
14 (top). The results are close to the optimal straight line with
small standard deviations for most angles. Fig. 14 (bottom)
shows the average errors of the angle and radius estimates.
The behavior of the angle estimate is quite similar to that
observed in Fig. 12. The radius estimate behaves almost
inversely to that observed before, apart from the large errors
for 0◦. Looking at Fig. 13 again, it can be seen that the
neural estimator achieved a classification rate of 66.7% and
80% respectively for the fine angle estimate with a tolerance
of 10◦, and 84.4% and 98.9% for the radius estimate with
a tolerance of 50 cm. This is significantly better than the
results achieved by human viewers (50.1 / 76.3%). But of
course, the latter are more reliable in the sense that they
don’t produce outliers and large errors. When interpreting
this results, we have to keep in mind that they were achieved
off-line with a perfect head detection. Therefore, Fig. 15
demonstrates the performance of the classifier stages for the
two test persons when the Viola & Jones detector is activated
and used online for head-shoulder-detection. In this case the
recognition rate for the coarse radius becomes about 20%
lower for person P0 and stays constant for P1, while the fine
angle estimates (with a tolerance of 10◦) get significantly
worse for both persons (only 45%). This clarifies that of
all possible error sources, the head-shoulder detection is the
most crucial: misplacements of a few pixels from the optimal
position may already lead to greater errors in the final target
estimate.

To determine the overall online performance and precision
of the presented target point estimator while operating on the
mobile robot HOROS, a random target pointing experiment
was conducted finally: Standing at many different positions
within the operation area, the instructor pointed to randomly
selected target positions in his local surroundings, and the



robot had to navigate from its current rest position to the
estimated target position. From a total of 72 trials, only six
(8.3%) were totally erroneous outliers. The remaining trials
yielded an average position error of 59 cm. 28 (38.9%) were
within 50 cm, 31 (43.1%) within 1 meter, and 7 (9.7%) within
1-2 m from the target point. For a correct interpretation of
these results it should be taken into account that in this
experiment all possible disturbances and localization errors
did superimpose: an imperfect person tracking and head-
shoulder detection resulting in non-optimal placed ROIs, an
erroneous target point estimation with many different reasons
(changing background, badly executed pointing poses, image
disturbances, etc.), and insufficiencies in the robot’s navi-
gation system resulting, for example, in an imperfect self-
localization and motion planning to the given target points.

IV. SUMMARY AND OUTLOOK

In the first part of the paper, we presented a multi-
modal probability-based approach for detecting and tracking
people. It is implemented on our mobile interactive robot
HOROS and is working in real-time (7-10 update cycles per
second). Because of the sensor fusion and the probabilistic
aggregation scheme, its detection and tracking results are
significantly improved compared to known single sensor
tracking approaches. In our future work, we will extend
our multi-modal tracking system with additional cues to
further increase robustness and reliability for real-world
environments. For example, we are currently integrating the
voice command triggering the pointing pose estimation to
allow a voice-driven speaker localization, too.

In addition to this multi-modal people tracking approach,
we developed a neural classifier cascade for appearance-
based estimation of a referred target point at the floor out
of a pointing pose. Although we only use monocular image
data of relatively poor quality, the system accomplishes a
good target point estimation, achieving an accuracy better
than that of a human viewer on the same data. The achieved
performance rates demonstrate that it is in fact possible to
realize a user-independent pointing pose estimation using
monocular images only, but further efforts are necessary
to improve the robustness of this approach for everyday
application.

There are several possible improvements to our system
that need to be investigated in the near future: First, the used
feature extraction (Gabor filtering using an equidistant grid)
seems to be too simple. Several more sophisticated methods
for feature extraction and representation are imaginable that
may lead to better results. For instance, a foreground extrac-
tion routine, e.g. based on active contours or shapes, could be
applied, segmenting the pointing person from the background
and thus limiting disturbing background influences. Second,
further efforts are necessary to improve the accuracy of the
head-shoulder detection preceding the target point estimation.
Possibly this can be achieved by combination with the active
contours allowing to compensate the deficits of a simple
input-driven detector. Moreover, so far we only evaluated the
performance of our target point estimator on single images

of the final pointing pose. An interesting question is whether
the dynamic movement of the pointing arm to the final pose
contains additional information that could be exploited to
enhance the precision of the estimator. In a first experiment,
we utilized a Kalman filtering algorithm with a very simple
system model. The results suggest that this could indeed
improve the estimator performance, especially the accuracy
of the angle estimate. However, further investigations are
required on this topic.
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