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Abstract. We propose a method for combining geometric and real-
aperture methods for monocular 3D reconstruction of static scenes at
absolute scales. Our algorithm relies on a sequence of images of the ob-
ject acquired by a monocular camera of fixed focal setting from differ-
ent viewpoints. Object features are tracked over a range of distances
from the camera with a small depth of field, leading to a varying degree
of defocus for each feature. Information on absolute depth is obtained
based on a Depth-from-Defocus approach. The parameters of the point
spread functions estimated by Depth-from-Defocus are used as a regular-
isation term for Structure-from-Motion. The reprojection error obtained
from Bundle Adjustment and the absolute depth error obtained from
Depth-from-Defocus are simultaneously minimised for all tracked object
features. The proposed method yields absolutely scaled 3D coordinates
of the scene points without any prior knowledge about the structure of
the scene. Evaluating the algorithm on real-world data we demonstrate
that it yields typical relative errors between 2 and 3 percent. Possible
applications of our approach are self-localisation and mapping for mobile
robotic systems and pose estimation in industrial machine vision.

1 Introduction

The knowledge of three-dimensional structure plays an important role in many
fields of research such as navigation, obstacle avoidance, and object detection.
Depth-from-Stereo [1] was one of the first methods for recovering depth infor-
mation as it is inspired by human vision. Hereby the known geometry of the
cameras is used to triangulate the spatial position of corresponding points from
two images that are acquired from different viewpoints. The disadvantage of
stereo vision is its need for a pair of precisely calibrated cameras, making it
complex and costly for many applications. Therefore spatial scene reconstruction
using monocular camera systems is often a preferrable solution. Structure-from-
Motion is such an alternative: From corresponding points in at least two images
acquired sequentially at different camera positions the spatial positions of the
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points are recovered. The problem is that the scene can be reconstructed only
up to a scaling factor as long as the camera positions are unknown.

Methods to establish point correspondences from different images require the
detection and assignment of salient object features. In [2] image features are pro-
posed that serve well for tracking algorithms. Widely used methods are SIFT fea-
tures [3], involving the extraction of scale invariant features using a staged filter-
ing approach, or the Kanade-Lucas-Tomasi (KLT) feature detector described in [4]
which is based on the Harris corner detector and takes into account affine motion.

A different approach to scene reconstruction utilises position variant appear-
ance, e.g. Shape-from-Shading [5], Depth-from-Defocus [6], and Depth-from-
Focus [7]. Depth-from-Defocus methods rely on the fact that a real lens blurs
the observed scene before the imaging device records it. The amount of blurring
depends on the actual lens, but also on the distance of the observed object to the
lens. In [8] this property is used to estimate depth simultaneously for all scene
points from only one or two images. Depth information is extracted out of a sin-
gle image showing sharp discontinuities (edges) [9]. A survey of existing methods
is given in [6]. In [10] a method is proposed that computes Depth-from-Defocus
in real-time using structured lighting. Depth-from-Focus uses images taken by
a single camera at different focus settings to compute depth. The focus settings
for the image depicting a point with minimal blurring are used to compute the
absolute depth [11]. Further work in this field includes Shape-from-Focus [12]
and Inverse Optics [13].

So far, no attempt has been made to combine the precise relative scene recon-
struction of Structure-from-Motion with the absolute depth data of Depth-from-
Defocus. A work related to this paper was published in [14], where a method
to recover affine motion and defocus simultaneously is proposed. However, the
spatial extent of the scene is not reconstructed in [14], since planar objects are
a requirement for the described method.

The main contribution of this paper consists of a novel combination of
Structure-from-Motion (a geometric method) with Depth-from-Defocus (a real-
aperture method). We will show that the combination of these methods yields a
3D scene reconstruction at absolute scales based on an image sequence acquired
with a monocular camera.

2 Structure-from-Motion and Depth-from-Defocus

Structure-from-Motion recovers the spatial scene structure using a monocular
camera. A pre-requisite for Structure-from-Motion is the geometric calibration
of the camera in terms of estimating the internal parameters such as focal length,
distortion parameters, etc. [15]. Subsequently, salient feature points are extracted
and tracked across the sequence. The motion of these features relative to the
camera is then used to minimise the Bundle Adjustment [16] error term

ESfM ({Tj}, {Xi}) =
N∑

i=1

M∑

j=1

[P (TjXi) − xij ]
2 (1)
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with respect to the M camera transforms Tj and the N scene points Xi. Here, xij

denotes the 2D pixel coordinates of feature i in image j. The function P denotes
the projection of 3D scene points to image coordinates and Tj the transform
of the camera coordinate system of image j with respect to an arbitrary world
coordinate system. To facilitate the integration of defocus information into the
Structure-from-Motion framework, the image sequences are acquired such that
the object is blurred in the first image of the sequence, becoming increasingly
focused in the middle and blurred again in the last images. The focal settings of
the camera are adjusted according to the maximal and minimal distance of the
object. It may be necessary to fully open the aperture in order to obtain a small
depth of field.

Depth-from-Defocus directly recovers the spatial scene structure using a
monocular camera. The depth D of the tracked feature points is calculated by
measuring the amount of defocus, expressed e.g. by the standard deviation σ
of the Gaussian-shaped point spread function (PSF) that blurs the image. An
exact description of the PSF due to diffraction of light at a circular aperture is
given by the radially symmetric Airy pattern A(r) ∝ [J1(r)/r]2, where J1(r) is
a Bessel function of the first kind [17]. For practical purposes, however, when
a variety of additional lens-specific influencing quantities (e.g. chromatic aber-
ration) is involved, the Gaussian function is a reasonable approximation to the
PSF [6]. In the following, σ will be referred to as the “radius” of the PSF.

Measuring σ is the most important part of the depth estimation. The classical
Depth-from-Defocus approach uses two images of the same object taken at two
different focal settings [6]. In [9] it is shown that a-priori information about the
image intensity distribution, e.g. the presence of sharp discontinuities (edges),
allows the computation of the PSF radius σ based on a single image. This is
achieved by estimating the value of σ that generates the observed intensity dis-
tribution from the known ideal intensity distribution. Since in our scenario no
such a-priori information is available, we suggest the emprirical determination
of the so-called Depth-Defocus-Function, expressing the standard deviation σ of
the Gaussian PSF as a function of depth D, based on a calibration procedure.

3 Spatial Scene Reconstruction by Combining
Structure-from-Motion and Depth-from-Defocus

3.1 The Depth-Defocus-Function and Its Calibration

The Depth-Defocus-Function S(D) = σ expresses the radius σ of the Gaussian
PSF as a function of depth D, i.e. the distance between the object and the
lens plane. It is based upon the lens law v−1 + D−1 = f−1 [17]. An object at
distance D is focused if the distance between lens and image plane is v, with f
denoting the focal length of the lens. Varying the image plane distance v by a
small amount Δv causes the object to be defocused as the light rays intersect
before or behind the image plane. In the geometric optics approximation, a point
in the scene is transformed into a so-called circle of confusion of diameter |Δv|/κ



610 A. Kuhl et al.

in the image plane, where κ is the f-stop number expressing the focal length in
terms of the aperture diameter. Empirically, we found that for small |Δv| the
resulting amount F of defocus can be modelled by a zero-mean Gaussian, which
is symmetric in Δv:

F (Δv) =
1
φ1

e−
1

φ2
Δv2

+ φ3 . (2)

Here, the amount of defocus is described in terms of the radius σ of the Gaussian
PSF. But since the Depth-Defocus-Function expresses the relation between the
depth of an object and its defocus, the image plane is assumed to be fixed while
the distance D of the object varies by the amount ΔD, such that ΔD = 0 refers
to an object that is well focused. But since neither D nor ΔD are known, the
functional relation needs to be modelled with respect to Δv:

1
v + Δv

+
1
D

=
1
f

. (3)

A value of Δv �= 0 refers to a defocused object point. Solving Eq. (3) for Δv and
inserting Δv in Eq. (2) yields the Depth-Defocus-Function

S(D) =
1
φ1

e
− 1

φ2
( fD

D−f −v)2

+ φ3 . (4)

Calibrating the Depth-Defocus-Function S(D) for a given lens corresponds to
determining the parameters φ1, φ2, and φ3 in Eq. (4). This is achieved by ob-
taining a large set of measured (σ, D) data points and perform a least mean
squares fit to Eq. (4), where D is the distance from the camera and σ the ra-
dius of the Gaussian PSF G used to blur the well focused image according to
Iij = G(σ) ∗ Iifi . Here, Iifi represents a small region of interest (ROI) around
feature i in the image fi in which this feature is best focused, and Iij a ROI of
equal size around feature i in image j.

For calibration, an image sequence is acquired while the camera approaches
at uniform speed a calibration rig displaying a checker board. The sharp black-
and-white corners of the checker board are robustly and precisely detectable [15]
even in defocused images. Small ROIs around each corner allow the estimation
of defocus using their greyvalue variance χ. The better focused the corner, the
higher is the variance χ. We found experimentally that the parameterised defocus
model according to Eq. (4) is also a reasonable description of the dependence of
χ on the depth D. For our calibration sequence the camera motion is uniform
and the image index j is strongly correlated with the object distance D. Hence,
Eq. (4) is fitted to the measured (χ, j) data points for each corner i, such that
the location of the maximum of S yields the index fi of the image in which the
ROI around corner i is best focused. This ROI corresponds to Iifi . The fitting
procedure is applied to introduce robustness with respect to pixel noise. For non-
uniform camera motion the index fi can be obtained by a parabolic fit to the
values of χ around the maximum or by directly selecting the ROI with maximal
χ. The depth D of each corner is reconstructed from the pose of the complete
rig according to [18].



Monocular 3D Scene Reconstruction at Absolute Scales 611

0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

depth [m]

si
gm

a 
[p

ix
el

]

0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

depth [m]

si
gm

a 
[p

ix
el

]

Fig. 1. Depth-Defocus-Functions of two lenses with f = 12 mm (left) and f = 20 mm
(right), fitted to the measured data points according to Eq. (4), respectively

For each tracked corner i, we compute for each ROI Iij the amount of defocus,
i.e. the σ value relative to the previously determined best focused ROI Iifi . By
employing the bisection method, we determine the value of σ for which the root
mean square deviation between G(σ)∗Iifi and Iij becomes minimal. The Depth-
Defocus-Function is then obtained by a least mean squares fit to all determined
(σ, D) data points. Two examples are shown in Fig. 1 for lenses with focal lengths
of 12 mm and 20 mm and f-stop numbers of 1.4 and 2.4, respectively. Objects
at a distance of about 0.8 m and 0.6 m, respectively, are in focus, corresponding
to the minimum of the curve.

3.2 Combining Motion, Structure, and Defocus

The Structure-from-Motion analysis involves the extraction of salient features
from the image sequence which are tracked using the KLT technique [4]. To
facilitate the integration of defocus information, a ROI of constant size is ex-
tracted around each feature point at each time step. For each tracked feature,
the best focused image has to be identified in order to obtain the increase of
defocus for the other images. We found that the greyvalue variance as a mea-
sure for defocus does not perform well on features other than black-and-white
corners. Instead we make use of the amplitude spectrum |FI (ω)| of the ROI
extracted around the feature position. High-frequency components of the am-
plitude spectrum denote sharp details, whereas low-frequency components refer
to large-scale features. Hence, the integral over the high-frequency components
serves as a measure for the sharpness of a certain tracked feature. However, since
the highest-frequency components are considerably affected by pixel noise and
defocus has no perceivable effect on the low-frequency components, a frequency

band between ω0 and ω1 is taken into account according to H =
ω1∫
ω0

|FI (ω) |dω

with ω0 = 1
4ωmax and ω1 = 3

4ωmax, where ωmax is the maximum frequency. The
amount of defocus increases with decreasing value of H . The defocus measure H
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Fig. 2. From the left: Image index vs. defocus measure H for a tracked image feature;
image index vs. PSF radius σ; image index vs. inferred depth D

is used to determine the index of the best focused ROI for each tracked feature
in the same manner as the greyvalue variance χ in Section 3.1. The value of H
cannot be used for comparing the amount of defocus among different feature
points since the maximum value of H depends on the image content. The same
is true for the greyvalue variance. Hence, both the integral H of the amplitude
spectrum as well as the greyvalue variance are merely used for determining the
index of the image in which a certain feature is best focused.

The defocus, i.e. the radius σ of the Gaussian PSF, is then computed relative
to the best focused ROI according to Section 3.1. The depth D is obtained by
inverting the Depth-Defocus-Function S(D) according to Eq. (4). The encoun-
tered two-fold ambiguity is resolved by using information about the direction
of camera motion, which is obtained either based on a-priori knowledge or by
performing a Structure-from-Motion analysis according to Eq. (1), yielding in-
formation about the path of the camera. If the estimated value of σ is smaller
than the minimum of S(D), the depth is set to the value at which S(D) is
minimal. For an example feature, the calculated defocus and the inferred depth
values are shown in Fig. 2.

A general property of the KLT algorithm is that the accuracy of the feature
tracker decreases with increasing defocus of the reference pattern. Hence, the
feature positions are refined by repeating the tracking procedure for all features,
starting from the “sharpest” image located near the middle of the sequence which
displays the largest value of H averaged over all features, proceeding towards
either end of the sequence and using the ROIs extracted from this image as
reference patterns. The 3D coordinates Xi of the scene points are then computed
by searching for the minimum of the combined error term

Ecomb ({Tj}, {Xi}) =
N∑

i=1

M∑

j=1

[
(P (TjXi) − xij)

2 + α
(S([TjXi]z) − σij

)2
]

(5)

with respect to the M camera transforms Tj and the N scene points Xi. The
value of σij corresponds to the estimated PSF radius for feature i in image j, α is
a weighting factor, S the Depth-Defocus-Function that calculates the expected
defocus of feature i in image j, and [·]z the z coordinate, i.e. the depth D, of a
scene point. The correspondingly estimated radii σij of the Gaussian PSFs define
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Fig. 3. True (dots) and reconstructed (crosses) 3D pose of the checker board (α = 0.42)

a regularisation term in Eq. (5), such that absolutely scaled 3D coordinates Xi

of the scene points are obtained. The values of Xi are initialised according to the
depth values estimated based on the Depth-from-Defocus approach. To increase
the accuracy of the reconstructed 3D scene points, we only make use of feature
positions extracted from images in which the feature is not strongly blurred.
To minimise the error term Ecomb the Levenberg-Marquardt algorithm [19] is
employed.

4 Experimental Evaluation

In order to validate our approach we first reconstructed a planar object with
known ground truth, using a Baumer 1032× 776 pixels CCD camera. A checker
board as shown in Fig. 3 with 10× 8 squares of size 15 × 15 mm2, respectively,
was used. The 99 corners serve as features and are extracted in every image
using the method described in [15] to assure sub-pixel accuracy. The true pose
of the checker board is obtained according to [18] based on the given size of
the squares. Note that in [18] the true pose of the checker board is determined
by applying a least mean squares fit on a single image, whereas the proposed
algorithm estimates the 3D structure of a scene by means of a least mean squares
fit applied to the whole image sequence. Comparing the obtained results with
the determined true pose of the object is actually a comparison between two
methods conducting different least mean squares fits.

The deviation Erec of the reconstructed 3D scene point coordinates Xi from

the ground truth values Xtrue
i is given by Erec =

[
1
N

∑N
i=1 (Xi − Xtrue

i )2
]1/2

.
To determine an appropriate weight parameter α we computed Erec for different
α values in the range between 0 and 1. For α = 0 the global minimisation
is equivalent to Structure-from-Motion initialised with the calculated Depth-
from-Defocus values. One must keep in mind, however, that the absolute scaling
factor is then part of the gauge freedom of the Bundle Adjustment method,
resulting in a corresponding “flatness” of the error function. Small α values lead
to an instable convergence. The value of Erec levels off to 16 mm for α ≈ 0.3
and obtains its minimum value of 7 mm for α = 0.42. The root mean square
deviation of the reconstructed size of the squares from the true value of 15 mm
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Fig. 4. Dependence of Erec (left diagram), Erepr (right diagram, dashed curve, left
axis), and Edef (right diagram, solid curve, right axis) on the weight parameter α

then amounts to 0.2 mm or 1.3%. The most accurate scene reconstruction results
are obtained with α between 0.3 and 0.5. The reconstructed 3D scene points Xi

for α = 0.42 are illustrated in Fig. 3, the dependence of Erec on α in Fig. 4 (left).
In addition to the reconstruction error Erec, a further important error measure

is the reprojection error Erepr =
[

1
MN

∑N
i=1

∑M
j=1 (P (TjXi) − xij)

2
]1/2

denot-
ing the root-mean-square deviation between the measured 2D feature positions
xij and the reconstructed 3D scene points Xi reprojected into the images using
the reconstructed camera transforms Tj . The defocus error denotes the root-
mean-square deviation between measured and expected radii σij of the Gaus-

sian PSFs according to Edef =
[

1
NM

∑N
i=1

∑M
j=1

(S([TjXi]z) − σij

)2
]1/2

. Fig. 4
(right) shows the relation between the weight parameter α, the reprojection error
Erepr, and the defocus error Edef . For α > 0.3 the defocus error stabilises to 0.58
pixels per feature. Larger α values lead to a stronger influence of the Depth-from-
Defocus values on the optimisation result, leading to an increasing reprojection
error Erepr due to the inaccuracy of the estimated σij values. Although the depth
values derived by Depth-from-Defocus are noisy, they are sufficient to establish
a reasonably accurate absolute scale. Hence, this first evaluation shows that the
combined approach is able to reconstruct scenes at absolute scales without prior
knowledge. For constant f-stop number, pixel size, and relative accuracy of the
inferred depth D, it can be shown that the required focal length and aperture
of the lens are largely proportional to

√
D (proof omitted here). Hence, our ap-

proach is restricted to the close-range domain (D ∼ 1 m) as long as standard
video cameras and lenses are used.

In order to demonstrate the performance of our approach on a non-planar test
object of known dimensions we applied our method to the cuboid-shaped object
shown in Fig. 5. This object displays a sufficient amount of texture to generate
“good features to track” [4]. In addition, black markers on white background with
known mutual distances are placed near the edges of the cuboid. As described in
Section 3.2, feature points are extracted and tracked using the KLT algorithm,
and the 3D coordinates of the scene points are obtained by minimising the error
term Ecomb according to Eq. (5).

The reprojection error Erepr for α = 0.5 amounts to 4.99 pixels. After remov-
ing tracking outliers (detected by their associated very large reprojection errors
of more than 3Erepr) the value of Erepr drops to 1.08 pixels while Edef amounts
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Fig. 5. 3D reconstruction of a cuboid and a lava stone (α = 0.5)

to 0.24 pixels. In order to verify the absolute scale, we compared for α = 0.5
the reconstructed pairwise distances between the black markers on the object
(as seen e.g. in the top right corner of the front side) to the corresponding true
distances. For this comparison we utilised a set of three pairs of markers with
an average true distance of 23.3 mm. The corresponding reconstructed average
distance amounts to 23.9 mm, which is 2.6% larger than the ground truth value.

As a real-world object, we examined the lava stone shown in Fig. 5. The result-
ing reprojection error Erepr amounts to 2.77 pixels. After outlier rejection, Erepr

decreases to 0.96 pixels while Edef amounts to 0.19 pixels. The reconstructed
shape of the lava stone was again obtained with α = 0.5. The reconstruction is
approximately 2.3% larger than the real object.

In all examples, the fact that the reconstructed absolute scale of the scene ap-
pears to be systematically somewhat too large is likely due to a slight deadjust-
ment of the camera lens after calibration, which may readily occur for standard
video lenses as a consequence e.g. of vibrations or variable ambient temperature.

5 Summary and Conclusion

We have described a method for combining geometric and real-aperture meth-
ods for monocular 3D reconstruction of static scenes at absolute scales. The
proposed algorithm is based on a sequence of images of the object acquired by
a monocular camera of fixed focal setting from different viewpoints. Feature
points are tracked over a range of distances from the camera, resulting in a vary-
ing degree of defocus for each tracked feature point. After determining the best
focused image of the sequence, we obtain information about absolute depth by
a Depth-from-Defocus approach. The inferred PSF radii for the corresponding
scene points are utilised to compute a regularisation term for an extended Bun-
dle Adjustment algorithm that simultaneously optimises the reprojection error
and the absolute depth error for all feature points tracked across the image se-
quence. The proposed method yields absolutely scaled 3D coordinates of the
object feature points without any prior knowledge about the scene structure.
We have demonstrated experimentally that the proposed algorithm yields ab-
solutely scaled 3D coordinates of the feature points with typical relative errors
between 2 and 3 percent. Possible application scenarios of our approach are in
the domains of self-localisation and mapping for mobile robotic systems as well
as pose estimation in the context of industrial machine vision tasks.
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