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Abstract. The hierarchical non-negative matrix factorization (HNMF)
is a multilayer generative network for decomposing strictly positive data
into strictly positive activations and base vectors in a hierarchical man-
ner. However, the standard hierarchical NMF is not suited for overcom-
plete representations and does not code efficiently for transformations in
the input data. Therefore we extend the standard HNMF by sparsity con-
ditions and transformation-invariance in a natural, straightforward way.
The idea is to factorize the input data into several hierarchical layers of
activations, base vectors and transformations under sparsity constraints,
leading to a less redundant and sparse encoding of the input data.

1 Introduction

The NMF has been introduced by Lee and Seung [1,2] as an efficient factor-
ization method for decomposing multivariant data under the constraint of non-
negativity. This results in a parts-based representation, because it allows only
additive combination of components. While the standard NMF makes no fur-
ther assumption on the input data, even so it is often used on inputs containing
particular transformation properties, e.g. input images presented at different po-
sitions, scales and rotations. The resulting base vectors of the standard NMF
then encode each transformation implicitly, which leads to a large amount of
redundancy in the base vectors.

Ahn et al. developed a hierarchical multilayered variant of the NMF [3] by
stacking multiple layers of NMF networks. This way a hierarchical represen-
tation of the input can be learned, where higher layers of the hierarchy code
for more complex features composed of less complex features from lower layers.
One can interprete this as a more and more abstract representation of the input
with increasing hierarchy levels. Despite the interesting property of increasing
abstraction in the layers of the network, the main problem of the NMF, the
implicit coding of transformations in the base vectors, remains.

By assuming transformation properties in the input data we introduce, based
on the work of Eggert et al. [4,5], a hierarchical, sparse and transformation-
invariant version of the NMF. It has been shown that the proposed separation
of the input data into activations, base vectors and transformations leads to
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a sparser and less redundant representation of the input than in the standard
NMF. Extending the approach of Eggert et al. in a hierarchical way, we combine
the advantage of sparsity and reduced redundancy in the representation with
the advantage of growing abstraction in the hierarchical network of Ahn et al.

In Sect. 2 we extend the energy term formulations of [4,5] and derive the
update rules for the activations and base vectors. Afterwards we discuss two
possible update schemes in Sect. 2.3 and finally present simulation results using
the new algorithm in Sect. 3. A short discussion finalizes the paper.

2 Hierarchical Extension to the Sparse,
Transformation-Invariant NMF Framework

2.1 Sparse and Transformation-Invariant NMF

First we look at the sparse and transformation-invariant NMF, which serves
as the base for our hierarchical extension. The energy term of the sparse and
transformation-invariant NMF is defined as the Euclidian distance between the
i-th input Vi and its reconstruction Ri plus the sparsity term λH · gH (H)

F (H, Ŵ ) =
1
2

∑

i

||Vi − Ri||2 + λH · gH (H) (1)

where gH(H) is a sparsity function and λH is used to control the sparsity in the
activations Hi. The reconstruction Ri itself is gained by linearly overlapping the
normalized base vectors Ŵj transformed by the operators T m, weighted by the
activation Hj,m

i

Ri =
∑

j

∑

m

Hj,m
i T mŴj . (2)

To avoid the scaling problem described in [4] the base vectors have to be normal-
ized. Now one can calculate the derivation of the energy function with respect to
Hj,m

i and Wj and update them according to the standard NMF update rules:
1. Calculate the reconstruction Ri according to (2).
2. Update the activations according to 1

Hj,m
i ← Hj,m

i �

(
T mŴj

)T

Vi

(
T mŴj

)T

Ri + λH · g′H
(
Hj,m

i

) . (3)

3. Calculate the reconstruction Ri using the new activations according to (2).
4. Update the non-transformed base vectors according to

Wj ← Wj�

∑
m

[
(T m)T

V
(
Hj,m

)T +
[(

Ŵj

)T

(T m)T
R

(
Hj,m

)T

]
∇Wj

(
Ŵj

)]

∑
m

[
(T m)T

R (Hj,m)T +
[(

Ŵj

)T

(T m)T
V (Hj,m)T

]
∇Wj

(
Ŵj

)] .

( ) (4)
1 Where � denotes componentwise multiplication as C = A � B := Ci = Ai · Bi, ∀i .
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5. Return to 1 until convergence.

The terms for updating the activations and base vectors can be found in [4],
in addition the transformation matrix T m from [5] is already included to make
the sparse NMF transformation-invariant. Based on the update rules above we
formulate the hierarchical energy equation and the corresponding update rules.

2.2 Sparse and Transformation-Invariant Hierarchical NMF

The sparse and transformation-invariant HNMF can be seen, similar as suggested
in [3], as a network composed of multiple sparse and transformation-invariant
NMF layers. This leads to the following Euclidian energy formulation2:

F (H(L), W (1), . . . , W (L)) =
1
2

∑

i

∣∣∣
∣∣∣Vi − R

(1)
i

∣∣∣
∣∣∣
2

, (5)

where L denotes the topmost layer of the network. The reconstruction R(l) of the
layer l in the hierarchy serves as the activation of the layer (l-1) and is calculated
according to the transformation-invariant NMF

R(l),ml−1
i := H(l−1),ml−1

i =
∑

ml

H(l),ml

i T (l),mlW (l),ml−1 . (6)

This recursive definition reveals that the reconstruction of the input data de-
pends only on the highest layer activations H(L) and all base vectors. Having a
closer look at (6) we see that the transformation information ml−1 is propagated
down the hierarchy.

As [5] shows, sparsity is absolutely necessary in a transformation-invariant
NMF network to avoid trivial solutions for the base vectors. Therefore we have
to include at least sparsity in the activations. In contrast to the activations of all
other layers, which are defined through down-propagation, the activations H(L)

are independent. The extended energy formulation reads as

F =
1
2

∑

i

∣∣∣
∣∣∣Vi − R

(1)
i

∣∣∣
∣∣∣
2
+ λH · gH

(
H(L)

)
. (7)

This step additionally requires the normalization of all base vectors Ŵ (1),
. . . , Ŵ (L). We choose the normalization function for the base vectors as

Ŵ(l),ml−1
jl

=
W(l),ml−1

jl∑
a

∑
b

W
(l),a,b
jl

, (8)

which normalizes the length of each base vector to one. This leads to

R(l),ml−1
i := H(l−1),ml−1

i =
∑

ml

H(l),ml

i T (l),mlŴ (l),ml−1 . (9)

2 Denoted as F from now on for convenience.



Sparse and Transformation-Invariant Hierarchical NMF 897

To be able to control the arrangement in the base vectors it is useful to include
sparsity in the base vectors as well. Therefore we add another sparsity term to
the energy function, which is now composed of three elements

F =
1
2

∑

i

∣∣∣
∣∣∣Vi − R

(1)
i

∣∣∣
∣∣∣
2

︸ ︷︷ ︸
Reconstruction error

+ λH · gH

(
H(L)

)

︸ ︷︷ ︸
Activation sparsity

+
∑

l

λ
(l)
W · gW

(
Ŵ (l)

)

︸ ︷︷ ︸
Base vector sparsity

. (10)

The sparsity terms for the activations and base vectors are chosen as

gH

(
H(L)

)
=

∑

i

∑

jL

∑

mL

H
(L),jL,mL

i (11)

gW

(
Ŵ (l)

)
=

∑

jl

∑

jl−1

∑

ml−1

Ŵ
(l),jl−1,ml−1
jl

. (12)

Starting from the functions above we calculate the gradients with respect to the
activations H(L) and base vectors W (l).

In order to formulate the multiplicative update rule we split the remaining
two gradient terms into the positive part ∇+ and the negative part ∇−.3 For
the highest layer activations we get the following update rule

H(L),mL

i ← H(L),mL

i �

∑
mL−1

(
T (L),mLŴ (L),mL−1

)T

V(L),mL−1
i

∑
mL−1

(
T (L),mLŴ (L),mL−1

)T

R(L),mL−1
i + λH

(13)

with the substitutions

V(l+1),ml

i =
∑

ml−1

(
T (l),mlŴ (l),ml−1

)T

V(l),ml−1
i (14)

R(l+1),ml

i =
∑

ml−1

(
T (l),mlŴ (l),ml−1

)T

R(l),ml−1
i . (15)

The reconstruction error is propagated from the bottom to the top layer of the hi-
erarchy and is then used to adjust the activations of the highest layer. The
sparsity term itself is an additional constraint which is independent of the recon-
struction quality of the network. As a consequence the sparse and transformation-
invariantHNMF network has to find a tradeoffbetween reconstruction quality and
sparsity, controlled by the sparsity parameter λH .

Performing the same steps for the gradient with respect to W (l), we get

W(l),ml−1
jl

← W(l),ml−1
jl

�
∇−

W (l)F

∇+
W (l)F

. (16)

3 This is possible due to the non-negative character of all elements in the equation.
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The gradient of the sparsity term gH

(
H(L)

)
for the highest layer activations is

zero, because H(L) is independent of the base vectors. For the two parts of the
gradient of (16) we get

∇−
W (l)F = WV

(l),ml−1
jl

+
∑

k

[(
Ŵ(l),k

jl

)T [
WR

(l),k
jl

+ λ
(l)
W

]]
Ŵ(l),ml−1

jl
(17)

∇+
W (l)F = WR

(l),ml−1
jl

+
∑

k

[(
Ŵ(l),k

jl

)T

WV
(l),k
jl

]
Ŵ(l),ml−1

jl
+ λ

(l)
W (18)

with the substitutions

WR
(l),ml−1
jl

=
∑

ml

[(
T (l),ml

)T

R(l),ml−1

(
H(l),jl,ml

)T
]

(19)

WV
(l),ml−1
jl

=
∑

ml

[(
T (l),ml

)T

V (l),ml−1

(
H(l),jl,ml

)T
]

. (20)

Similar to the substitutions for the activations we see an upwards propagation of
the reconstruction error. The sparsity constraint on the base vectors, controlled
by the parameter λ

(l)
W , can also be seen in the update function (17) and (18).

The normalization of the base vectors which is required by the sparsity in the
activations leads to an additional term in the update rule for W (l).

In the next section we discuss two possible update schemes, starting from the
update rules (13) to (20).

2.3 Possible Update Schemes

With the extension of the NMF to a hierarchical network new possibilities to
update the whole network come along.

1. Update the network by iterating layer by layer
2. Update the whole network by propagating through all layers

In the following we discuss the pro and contra of the two methods.

Update Network Layer by Layer
In this scheme each layer is learned separately, beginning from the lowest layer,
as shown in Fig. 1a. The goal is to reconstruct the activations of the layer
below as a linear combination of base vectors. Afterwards the layer above is
adapted and so on. This means that the activations of each layer are adapted
sequentially and are therefore mutually independent. In this sense you get a stack
of separate transformation-invariant, sparse NMF networks. A big advantage
of this independent relaxation is the fact that all parameters of one layer are
independent from the parameters of the other layers, which makes the parameter
setting much easier. Another advantage is the extensibility of the framework.
After the convergence of the network you can add another layer on top of the
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Fig. 1. The graphics above show two possible update sequences for the HNMF.
a) In this scheme each layer is iterated independently. First 1-4 is iterated until con-
vergence, then 5-8 is iterated, trying to reconstruct H1.
b) In this scheme the whole network is iterated in a combined manner by first calcu-
lating 1 followed by the reconstruction R, then 2, the reconstruction R, 3 and finally
the reconstruction R until convergence.

existing layers and learn the new one. All other layers can be left untouched.
The big disadvantage is that each layer only minimizes the local energy function
on the activations of the lower layer. This leads to a smaller number of minima
in the energy function, but has the disadvantage that in most cases the global
minimum of the whole network is not found (see [3]).

Update Network as a Whole
Contrary to the independent relaxation, in this scheme we learn the base vec-
tors and the highest layer activations simultaneously as shown in Fig. 1b. The
sequence of updating is the following:

1. Calculate the reconstruction of the lowest layer by propagating down the
highest layer activations through the base vectors by applying (9) iteratively.

2. Propagate the reconstruction error between R(1) and the input V (1) to the
highest layer using (14) and (15).

3. Adapt the activations of the highest layer as described in (13).
4. Execute step 1 using the updated activations H(L).
5. Adapt the base vectors of the lowest layer W (1) using (16).
6. Execute step 1 using the updated base vectors.
7. Propagate the reconstruction error between R(1) and the input V (1) to the

next higher layer using (14) and (15).
8. Adapt the base vectors of the next higher layer W (l+1) using (16).
9. Repeat step 6 to 8 until the base vectors of all layers are updated.

10. Repeat beginning with step 1 until convergence.

The advantage of this combined relaxation is the minimization of the overall
energy function, which leads to a better reconstruction and a sparser repre-
sentation. One drawback is the introduction of relations between the sparsity
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parameters by combined relaxation, which makes the selection of the parame-
ters more difficult. Because of the better reconstruction results, we choose the
combined update scheme for the experiments we present in the next section.

3 Results

For the following experiments we set up a two layer, sparse and translation-
invariant hierarchical network. We use only translation for T (l) because this
transformation can be coded very efficiently using correlations. The learning of
the base vectors is performed with the combined relaxation scheme discussed in
Sect. 2.3. The used dataset (see examples in Fig. 2) consists of 162 bar images
of 4x4 pixel size. Each of the images is a superposition of up to four horizontal
and vertical bars. The horizontal bar can be applied at four different horizontal
positions; the vertical bar at four different vertical positions. A complete overlap
of two bars is not allowed.

Fig. 2. These are 24 examples for the input dataset, which consists of 162 images. Each
image has a size of 4x4 pixel and is a superposition of horizontal and vertical bars.

The task for the network is to find a set of base vectors that encodes the input
under a given sparsity constraint. In Fig. 3 the two lower layer base vectors of
the translation-invariant, sparse HNMF network are shown. One can see that
the network finds the two original bars (one horizontal, one vertical). Based on
these vectors, the 64 upper layer base vectors compose more complex structures
in order to satisfy the sparsity constraint.

Figure 4 shows the base vectors of the upper layer projected to the input space.
The vectors themselves consist of very sparse, sporadic peaks. By increasing
the sparsity constraint in the activations, the base vectors get more and more
complex, whereas the sparsity in the base vectors leads to a reallocation of the
information between the different layers. As a result, the sparsity settings for
the network are essential to force a meaningful distribution of the information
within the hierarchy.
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Fig. 3. Here the two base vectors of the lower layer, which are nearly perfect recon-
structions of the original vectors, are shown

Fig. 4. This shows the 16 resulting base vectors of the upper layer projected into the
input space. As you can see the set also contains the two vectors of the layer below.

If we have a look at the energy function depicted in Fig. 5 we see three
phases in the relaxation process. In the first phase, which comprises the steps 0
to 380, the overall energy decreases very slowly. This is mainly a result of the
reconstruction error optimization done by the network. As one can see clearly
the minimization of the reconstruction error is taking place in the lower base
vectors, because in this phase the higher layer vectors are not changed signif-
icantly. In the second phase, including the steps 380 to 600, a minimization
of the sparsity penalization is taking place, where large changes in the higher
layer base vectors can be seen. We can observe a reorganization in the HNMF
network, where the information stored in the upper layer base vectors is trans-
ferred down to lower layer vectors. Along with the transfer of information, the
base vectors in the upper layer get sparser. This has a major effect on the en-
ergy function. The following third phase, starting at step 600, is characterized
by using the reorganized structure of the network to optimize both the recon-
struction error and the sparsity. This is achieved by modifying the lower layer
base vectors and the activations, leaving the upper layer base vectors mostly
unchanged.

Through the whole relaxation process the energy function is steadily decreas-
ing with a jump at the beginning of the reorganization phase. This leads to
the conclusion that during the process the focus of what should be minimized
is shifted between reconstruction and sparsity according to the chosen param-
eter set. When choosing extreme settings for the sparsity parameters the focus
switches to sparsity maximization whereas the minimization of the reconstruc-
tion error does not play a role anymore and vice versa.
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Fig. 5. These plots show the three phases of a two-layer HNMF network relaxation
process for (from top to bottom) the energy function, the reconstruction error and the
sparsity measure in the base vectors. The phases are: minimization of the reconstruc-
tion error, reorganization within the network to meet the sparsity constraint and the
combined minimization of the reconstruction error and the sparsity penalization.
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4 Conclusion

In this paper we propose the extension of the sparse Overlapping NMF intro-
duced in [4] and [5] to a hierarchical, sparse and transformation-invariant net-
work. This extension was done in a straightforward manner by defining the
activations of each layer as a reconstruction of the layer above (see (6)). While
other hierarchical approaches as in [3] store input transformations implicitly in
the base vectors, our approach encodes the transformations explicitly. This ex-
plicit encoding leads to a reduction of redundancy in the base vectors, making
the representation sparser and more efficient.

In Sect. 2.3 we discussed two different update schemes and concluded that
only a combined relaxation of the whole network leads to a minimization of the
overall energy function and is therefore preferable. Using the combined relax-
ation scheme on bar stimuli, we achieved the results depicted in Sect. 3, which
show that the transformation-invariant and sparse HNMF is able to decompose
the stimuli into the original parts. In this process the basic parts of the data set
are stored in the lowest layer base vectors, whereas the higher layer base vec-
tors compose a more complex and more abstract representation of the input by
combining lower layer vectors. The resulting decomposition is a sparse represen-
tation of the input, having also very good reconstruction properties. By adapting
the sparsity parameters, the network solution can be steered towards a perfect
reconstruction or towards a sparse representation, where extreme settings will
lead to insensible or trivial solutions.

As a final interesting point we want to mention that the proposed algorithm
includes all previous approaches as special cases. To emulate [3] we just set all
transformation matrices to unity matrices (no transformation), for [4,5] we take
a single layer network and choose the sparsity parameters accordingly. So the
transformation-invariant and sparse hierarchical NMF can be seen as a unifica-
tion of the three mentioned NMF approaches.
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