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Abstract— Simultaneous Localization And Mapping (SLAM)
has been an important field of research in the robotics community
in recent years. A successful class of SLAM algorithms are
Rao-Blackwellized Particle Filters (RBPF), where the particles
approximate the pose belief distribution, while each particle
contains a separate map. So far, RBPF with landmark based
environment representations as well as gridmaps have been
shown to work. Existing gridmap approaches typically used laser
range scanners, because the high accuracy of that sensor keeps
the state uncertainty low and allows for efficient solutions. In
this paper, we present a combination of our previous work on
map-matching with RBPF, which enable us to solve the SLAM
problem also with low-resolution sonar range sensors. Further-
more, we introduce a simple and fast but very efficient shared
representation of gridmaps which reduces the memory cost
overhead caused by inherent redundancy between the particles.
An experimental comparison to a plain gridmap implementation
shows the effective limitation of memory in loop-wise exploration.

Index Terms— SLAM, Rao-Blackwellized Particle Filter, Oc-
cupancy Map

I. INTRODUCTION AND RELATED WORK

In order to navigate autonomously, a basic requirement
for a mobile robot is the ability to build a map of the
environment. Because mapping depends on a good estimate
of the robot’s pose w.r.t. the environment, while localization
needs a consistent map, the localization and mapping problems
are coupled in applications where an unknown area has to
be explored without an external position reference like GPS.
The term Simultaneous Localization And Mapping (SLAM)
has been coined for this problem [1]. The mutual dependency
between pose and map estimates requires to model the state
of the robot in a high-dimensional space, consisting of a
combination of the pose and map state. SLAM can be seen as
a generalization of the map building problem, as it describes
the objective of aquiring a map of the environment without
assuming any additional position information apart from those
that can be derived from the mapping process itself. Therefore,
in recent literature, SLAM is sometimes also referred to just
as mapping.

There are two main criteria that can be used to categorize
existing SLAM techniques: the kind of model used to describe
the robot and environment state and the algorithm that is
utilized to estimate the state belief.
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In many SLAM approaches, the map representation is as-
sumed to be a vector of point-like feature positions [2]. These
features correspond to landmarks in the environment which
can be extracted by adequate feature-extraction algorithms.
The attractiveness of feature/landmark-based representations
for SLAM lies in their compactness. However, they rely on
a priori knowledge about the structure of the environment
to identify and distinguish potential landmarks. Furthermore,
a data association problem arises from the need to robustly
recognize landmarks not only in local vicinities, but also when
returning to a position from an extended round-trip.

In contrast to landmark representations, gridmaps [3] do
not make assumptions about specific features to be observable
in the environment. They can represent arbitrary environment
structures with nearly unlimited detail. However, they require
a large amount of memory. In particular, the memory cost
grows with the desired level of detail. Usually, 2D grids are
used, but 3D grid approaches also exist. However, 2D grids are
sufficient for most environments and applications of a wheel-
driven mobile robot, so we will only regard 2D mapping here.

The estimation algorithms can be roughly distinguished
in two main classes: Kalman filters and derivations thereof,
and (Rao-Blackwellized) particle filters. The Kalman filter
and its non-linear derivation Extended Kalman filter (EKF)
as well as similar approaches like the Information filter [4]
are best suited for landmark representations. They are able
to estimate the full posterior distribution over the pose and
map state. However they assume Gaussian distributions in the
motion and observation model and become unstable if these
assumptions are not met. More importantly, calculation of the
full covariance matrix can become very expensive for large
environments.

An effective means of handling the high-dimensionality in
the SLAM problem has been introduced in the form of the
Rao-Blackwellized Particle Filter (RBPF): in this approach
the state space is partitioned into the pose and map state. A
particle filter approximates the pose belief distribution of the
robot, while each particle contains a map which represents
the model of the environment, assuming the pose estimation
of that specific particle (and its history, which is the estimation
of the entire robot path) to be correct.

The RBPF was first proposed as a solution for the SLAM
problem by Murphy et. al. [5], [6]. Montemerlo et. al. [7]
used the RBPF for an efficient solution of SLAM on landmark
maps, utilizing a laser range scanner for landmark identifica-
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tion.
The RBPF also provides a framework for using gridmaps in

SLAM. Since the memory cost of gridmaps is comparatively
high and each particle carries its own map, the number of
particles is quite limited when using a plain version of this kind
of model. Successful implementations mainly evolved from
laser scan matching approaches: here, due to the use of scan
registration techniques, the uncertainty in the robot pose can
be kept very low during map aquisition. The small remaining
position variance can be handled efficiently by a RBPF using a
low number of particles. The high accuracy of the laser range
scanner also allows to very accurately identify the correct
(best) pose hypothesis when encountering differences between
expected and perceived environment at a loop closing point.

Hähnel [8] was the first who adapted the FastSLAM algo-
rithm of Montemerlo to gridmaps, introducing the inclusion of
scan matching to decrease the uncertainty in the robot motion
model. Grisetti [9] further improved that approach by adding
the inverse sampling strategy also known from Mixture MCL
[10], considerably decreasing the number of particles needed
to robustly track and converge the map estimation. Eliazar and
Parr [11], [12] chose a different way by identifying the redun-
dancy in the separate particle maps that arises from resampling
in the particle filter, which effectively means generating copies
of good particles and their maps. By introducing an original
storing scheme for the particle gridmaps which preserves the
inheritance relation between all particles, they were able to
reduce the memory cost significantly.

Our intention here has been to build maps with a robot
equipped with odometry and a sonar range sensor array only.
We therefore abandon any assumption of high-resolution

Fig. 1: Robot platform SCI-
TOS A5 by MetraLabs GmbH

range data like from a laser range
scanner. Against this background,
we can not use a scan registration
or similar method to correct the
odometry readings of the robot.
Instead, we use the raw odometry
data for forward propagation of
the pose belief when the robot is
moving through unexplored space.
Obviously, the pose uncertainty
which in turn determines the
number of particles needed,
depends on the accuracy of
the robot odometry. We present
experimental results with our
new robot platform SCITOS A5

(Fig. 1), which features a quite accurate odometry.
The main difference between the approach presented here

and the previous solutions using laser range scanners lies in
the comparison between actual environment observations and
expectations from the map. While the laser approaches used a
single scan to compare it against the map, we experienced
that this does not lead to robust results with sonar, due
to the lower resolution and significantly higher variances in
the measurements. We already presented a solution for this
problem in our previous work on map building [13], where
we proposed a method of map matching for determining the

best-matching pose given a sequence of sonar range readings
(and relative positions from odometry) and a map of the
environment.

The abandonment of scan matching in the forward propaga-
tion increases the number of particles needed to ensure robust
loop closing, and therefore the memory cost for storing the
particle maps. However, memory can be saved by exploiting
redundancy: In the resampling process (most obviously at a
loop closing point), irrelevant particles are deleted while good
particles are cloned. This results in an identical copy of the
particle map. Afterwards, the copies of the particle diverge
and add different modifications to their respective maps. In a
large environment, the differences often only affect a small
part of the map though, which means that large areas of
the maps belonging to different particles remain identical. By
representing a map as an array of small grid patches instead
of one large field, we are able to store each unique area patch
only once independently of the number of copies, significantly
saving memory.

By combining map matching and shared gridmap imple-
mentation with the RBPF framework, we are able to robustly
build consistent environment maps from odometry and sonar
without the need for a laser range scanner or similar high
resolution data. The rest of the paper is organized as follows:
We give a short introduction to the RBPF approach for SLAM
in the next section. Section III will explain the specific details
of our Sonar-SLAM implementation, while section IV deals
with the shared gridmap representation. Experiments with real
robot data are presented and discussed in section V, section
VI closes with a short summary and outlook.

II. RAO-BLACKWELLIZED PARTICLE FILTER FOR SLAM

As already described before, the complexity of the SLAM
problem arises from the very high-dimensional state space,
consisting of the variables describing the robot pose and the
variables describing the environment state. In the case of
gridmaps, the map alone usually contains a few thousands
up to several million cells, each of which corresponding to
a state variable. Obviously, a full posterior over the state
is extremely costly to estimate. The idea of the RBPF in
application to SLAM is to use a particle filter to estimate
the robot trajectory distribution p(x1:t|z1:t, u0:t) given the
sequence of odometry measurements u0:t and environment
observations z1:t. This trajectory estimate is then used to
estimate the desired distribution over map and trajectory:

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u0:t) (1)

The particle filter works analogous to Monte-Carlo-
Localization [16], except that instead of one given map each
particle contains a separate map. To calculate the importance
weights for p(x1:t), each particle uses its own map. The
map, in return, is built from the estimated trajectory of
that corresponding particle. The effect is that a number of
hypothesis maps are built, each corresponding to a possible
trajectory. Importance weighting is performed with the weight
for particle i following
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w(i) ' p(x(i)
t |z1:t, u0:t)

π(x(i)
t |z1:t, u0:t)

(2)

Here, π(x(i)
t ) denotes the proposal distribution. Typically,

the motion model is used to generate the proposal distribution
from the last particle generation (again, in analogy to local-
ization), in which case the weight formula simplifies to

wi ' p(zt|x(i)
t ,m(i)) (3)

By repeatedly calculating importance weights followed by
resampling to adapt the particle distribution to the estimated
distribution, particles are preferred whose maps match new
observations best, therefore the most likely map is selected.
Subsequently, we present a specific way of calculating the
particle weights for unreliable sensors where scan matching is
not applicable.

III. SONAR GRID SLAM

The base of our Sonar SLAM approach is a particle filter,
where each particle contains a pose (x,y, heading φ) estimate
as well as a map estimate. Without loss of generality we
can assume the robot to start mapping at position (0,0,0).
However, it is also possible to initialize the particle filter
at any other pose or even with any pose distribution, e.g.
to align with a previously learned part of the map. While
the robot moves, the particles move as well, according to
the odometry readings and the probabilistic odometry motion
model, which describes the uncertainty in the actual robot
motion. Due to this uncertainty, the motion model contains a
stochastic component, which effects in the particles spreading
out and generating slightly different trajectories. Basically,
we use the standard motion model which also can be found
in [8]. Additionally, during motion the robot observes the
environment by means of sonar range sensors. A map update is
triggered frequently (approx. every 0.2m). In that map update,
each particle adds the new environment observation to its own

(x, y,   )φ
pose = global map

local map

(x, y,   )φ
pose =

global map

local map

Fig. 2. Data representation overview: The particles model the distribution of
the robot pose belief. Each particle contains a full map of the environment,
which is a combination of the full particle trajectory and the sonar range
measurements. Furthermore, each particle contains a local map, which only
contains the most recent measurements and depends on the particle’s current
pose belief. The situation shown is shortly before a loop closing. Apparently,
the left particle is a better approximation of the true pose than the right
particle.

Fig. 3. Comparison of good (left) and bad (right) pose estimation. Each of
the images shows the estimated pose and map of one of 2 particles, assuming
the left one to be correct. The upper row shows the 2 particles at an early time.
The pose estimation of the right particle deviates from the true state. However,
since both particles do not know their current environment, they get assigned
the same weight. In the lower row, the loop closing situation is shown for
the same 2 particles. Only now the correctness of the pose estimation can be
evaluated by comparing the actual observation to the expected ones.

map, at its own estimated current position, using the standard
Bayesian occupancy update method for gridmaps [3]. Since
the position estimates of the particles are slightly different,
the maps differ as well (Fig. 2).

It should be noted that due to the low resolution, the
relatively high variance, and particularly the low reliable
maximum range of a sonar sensor in comparison to a laser
scanner more updates are needed for each cell to achieve
a reliable occupancy estimate. While a laser range scanner
can build a good local map from a single range scan, several
measurements from different positions are needed with sonar
sensors. An immediate effect is that when exploring unknown
space, the area in front of the robot is not approximated
well and the robot can only ”look ahead” for a very limited
distance. This is usually not a severe problem for map building
since it can be compensated easily by moving accordingly, but
it becomes important in the particle weight calculation: here
we need a weighting function for the particles to select good
estimates and reject those particles that represent an unlikely
state. To this purpose, the internal map representations of the
particles are continuously compared to the actual observations.

However, since the map in a particular position is unreliable
until the robot has actually moved beyond it, we do not regard
the most recent map updates for the weight calculation and
rather consider the map to be undefined at the current robot
position, unless the robot already passed there earlier. In the
actual implementation, this is realized by delaying updates of
the global map until the robot has moved on for several meters,
using a queue for the range measurements and a position queue
in each particle. In effect, from the start of mapping, as long
as the robot moves forward, for all the particles the map is
unknown at the current position and therefore the expected
observations of all particles are the same. Only when the
robot returns to a known area (more precisely, when a particle
believes to return to a known area), a map approximation for
the current position exists and different particle weights will
occur (Fig. 3).

For the actual weight calculation, initially we tried gen-
erating an expected range scan from the map and using a
model of the observation probability p(dobserved|dexpected)
built from sonar range data beforehand. We had achieved good
results with this method in a localization algorithm where
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a map was given already [17]. However, it did not lead to
success in SLAM, in particular because here we need to handle
situations where the particle does not have any map knowledge
at the current believed position. Problems mostly arise when
the robot returns to a position it has already visited before
and some of the particles are ”aware” of the loop closing
while others are not: Those particles that represent a good
position belief will have a certain expectation for the range
measurement, while many of the bad particles will still believe
to be in unknown space and not be able to generate a range
expectation. A consistent weight calculation apparently was
not possible for such situations.

We already experimented with a different way of comparing
expectation and observation from sonar range sensors in a
previous work on mapping [13]. There, we proposed a map
matching approach: a local map is built from only the most
recent sonar measurements and the resulting local map is
matched against the global map to find the most likely position
w.r.t. that global map. A similar technique was utilized in
[14]. In contrast to the particle filter we present here, only
one pose hypothesis was used in those approaches, which
was iteratively corrected by searching the local maximum of
the match function. In that maximum search, ambiguities are
likely to arise in straight corridors, where a position can be
chosen arbitrarily along the direction of the hallway and small
uncertainties often added up, leading to large position errors
eventually. However, with the SLAM approach presented here
this is not a problem because we do not need to explicitely
search a maximum match position: the position hypotheses are
represented by the particle filter and the match value is only
used to give a weight for each particle effectively modeling
an entire distribution of the match function.

There are two more advantages of map matching instead
of directly using the probability distribution p(z|x,m). First,
it is a tedious task to determine the full distribution of
measurements conditioned on real distance p(z|d) for a given
sensor, while for mapping it is usually sufficient to know
just the expected true distance for a certain measurement -
which should be equal for a suitable sensor. Furthermore, a
map is also capable of incorporating sensor observations for
which such a probability distribution can not be defined easily,
e.g. the occupancy map could be generated by a visual scene
reconstruction algorithm like the one presented in [15]. We
are currently working on implementing ”Visual SLAM” on
this base.

In order to be able to use map matching, each particle must
not only know its global map, but also a local map. Since
we already exclude the most recent range measurements from
the global map, we can use those measurements for the local
map. That way, global and local map are built from different
data and we avoid comparing certain measurements against
themselves. The local map can either be rebuilt from the pose
and scan queues for each weight calculation or be persistent
in the particle by just adding every new scan and forgetting
old scans. Making the local map persistent is more efficient
but less flexible. In both cases, the local map depends on the
believed recent trajectory of the particle and can therefore be
considered as an integral part of the particle (Fig. 2).
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Fig. 4. Map matching: For the left particle, representing a correct position
belief, the local map (clean white) is aligned to the global map (hatched) very
well, while for the right particle, which does not contain a position belief
consistent with the environment, the local map conflicts with the global map
(many of the occupied wall cells in the local map correspond to free cells in
the global map). This situation would result in a higher weight for the left
particle, supporting the position hypothesis which generates a consistent map.

The calculation of the match value between the local and
global map is quite simple: For each occupied cell in the
local map the occupancy value of the corresponding cell in the
global map is tested. If the global map cell also is occupied,
that cell contributes with a value of +1. If the global map cell
is free, it contributes with a value of −1. Only cells with a
value above or below a threshold (occupied/free) contribute to
the match value. That way, the match value is positive if local
and global map are very similar, and it is negative if many
objects exist in the local map where there is free space in the
global map. To obtain the actual particle weight match(i), an
exponential function is applied as follows:

w(i) = e
match(i)

f (4)

with f being a free parameter to influence the spread in the
particle weights and therefore the speed of convergence.

IV. SHARED GRIDMAPS

A major problem with using gridmaps in RBPF is the
memory cost: In a naive implementation, the number of cell
values to be stored would be the product of grid size and
particle number. However, the maps of the individual particles
are not completely independent: In the resampling as part of
the observation update, particles with low weights are deleted

1
3

Particle A Particle B Map Difference

2

Fig. 5. The robot started at position 1, closed the loop and moved on
to position 3. Particle B was generated as a copy of A during resampling
approximately at position 2. Therefore, the major part of the map is identical
between particles A and B. The right image highlights the map differences.
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and replaced by copies of particles with higher weights.
This results in multiple identical copies of the same map.
Afterwards, each of the particles will modify its respective
map differently, according to the path assumed through the
probabilistic motion model: The copies will not remain iden-
tical, but it is important to notice the changes often only affect
a small area of the already aquired map (see Fig. 6). The idea
to save wasting memory for redundant information therefore
is to split up the map into smaller patches and share those
patches across the particles. When a particle A is cloned, each
”copy” of a map patch belonging to the clone particle B is
just a reference to the original patch. Only when either A or
B modify a map patch later, a real copy is created in the local
memory of the respective particle. If particle A or B is copied
again without having modified a certain patch yet, the new
particle C will create a third reference to that same patch, etc.
Each patch will continue to exist until all references to it have
been deleted.

The effect of this representation is that the memory cost is
not determined by the map area, but by the size of path loops.
As long as a loop is not closed yet, particles are diverging
and many path hypotheses are maintained. When the loop gets
closed, only the best particles survive, and new particles are
generated as copies of those few best fitting hypotheses. While
a loop is open, each particle holds an own independent map of
that loop, but when it is closed, only few unique maps of that
specific loop (the best fitting ones) continue to exist. Therefore,
the ”residual” memory cost is determined by the entire map
area (the sum of all loops) and nearly independent of the
particle number, while the peak memory cost is determined
by particle number and maximum length of a single loop.

Obviously, the presented approach is somewhat reminiscent
of DP-SLAM by Eliazar [11], [12]. However, in contrast to
their method we do not explicitely maintain particle ancestry
and do not track modifying access for each particle at cell
detail, but for constant size blocks (referred to as map patches).
This results in a significantly simpler implementation. Al-
though the handling of redundancy is coarser and, therefore,
computational and memory cost reduction will be slightly

Particle BParticle A

unique patch (modified after copying)

shared patch (exact copy)

Fig. 6. Shared map representation: Particle A contains a map which consists
of a number of separate patches, where each patch is a gridmap of an area of
about 10 * 10 m. Particle B is created as a copy of A: The map of B consists
of references to the patches in A. When A or B modify a certain patch, it
creates a real copy first, so Particle A and B have a separate instance of
that patch. In the situation shown, 3 patches have been modified after B was
copied from A. Therefore, those 3 patches exist separately in each particle,
while all other patches exist just once and are shared between the particles.

smaller, the overall goal of limiting peak memory is reached
with lower effort.

We recently learned that our technique of sharing map
patches bears some similarities to a method presented by
Grisetti et.al. [19]. There, they partioned the map into patches
according to the robot path, while in our implementation
sharing is completely handled in the map itself and transparent
to the particles, which is favorable from an implementation
point of view.

Furthermore, one might argue that the convergence to a
small number of valid hypotheses at the loop closing could
be handled by actually reducing the particle number, which in
turn would automatically minimize the memory cost at that
time. However, this would not solve the problem actually:
With growing uncertainty in the next open loop, more particles
would be needed, which again would be generated by cloning
existing particles and their maps in particular. Therefore this
would not affect peak memory requirements. Nevertheless, an
adaptive particle number is expected to reduce computational
cost and is going to be implemented in the near future.

V. EXPERIMENTS

To test our approach, we built maps of a home store which
is the regular test environment for our navigation algorithms
[18]. This environment is very well suited for our proposed
SLAM approach as it essentially consists of a large number
of small circles of hallways (50 to 100 m loop length) (Fig.
7 top row). Only the robot odometry and sonar range sensors
were used in those experiments.

A map update was not done with every observation, but in
intervals. Whenever the robot has moved on for 0.2 meters,
first the new particle position is sampled from the odometry
motion model, then the particle’s map is updated with the
observation at that believed position. The images show the
trajectories of all particles. An importance weight calculation
and resampling of the particles was done in intervals of 1
meter. The parameter f from eq. 4 was set to the value 100,
therefore w(i) = exp(0.01 ·match(i)).

VI. SUMMARY & OUTLOOK

We presented an implementation of RBPF with gridmaps
which is able to solve the SLAM problem with low-resolution
sensors such as sonar range finders. Furthermore, we intro-
duced a shared map representation for particle filters which
effectively makes the maximum memory cost dependent on the
loop size instead of the overall map size. Experiments show
that our approach is well suited for large-scale environments
(100*100 m2) consisting of many loops with a limited length.
Implementation on a semi-automatic exploration method for
integration in SLAM is currently in progress and will be
presented in the near future.
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