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Abstract. Poses and gestures are an important part of the nonverbal
inter-human communication. In the last years many different methods for
estimating poses and gestures in the field of Human-Machine-Interfaces
were developed. In this paper for the first time we present an exper-
imental comparison of several re-implemented Neural Network based
approaches for a demanding visual instruction task on a mobile sys-
tem. For the comparison we used several Neural Networks (Neural Gas,
SOM, LLM, PSOM and MLP) and a k-Nearest-Neighbourhood classifi-
cator on a common data set of images, which we recorded on our mobile
robot Horos under real world conditions. For feature extraction we use
Gaborjets and the features of a special histogram on the image. We also
compare the results of the different approaches with the results of human
subjects who estimated the target point of a pointing pose. The results
obtained demonstrate that a cascade of MLPs is best suited to cope with
the task and achieves results equal to human subjects.

1 Introduction and Motivation

In recent years the Human-Machine Interaction has reached a large importance.
One of the most important and informative aspects of nonverbal inter-human
communication are gestures and poses. In particular, pointing poses can simplify
communication by linking speech to objects or locations in the environment in a
well-defined way. Therefore, a lot of work has been done in recent years focusing
on integrating pointing pose estimation into Human-Machine-Interfaces.

Numerous approaches, which can estimate the target of such a pointing pose
have been developed in recent years. Our goal is to provide an approach, which
can be used to estimate a pointing pose on a mobile robot by means of low-cost
sensors. Therefore, in this paper we refer only to approaches using monocular
images to capture the pose of the user. Second, approaches that do not use
Neural Networks to estimate the target of the pointing pose like Haasch [1],
who used an object-attention system and a skin color map or Nickel [2], who
estimated the target by the use of a virtual line through the tracked hand and
head of the user, are also not considered in this paper.
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Fig. 1. (left) Our robot Horos, used for experimental investigation of the pointing
pose estimation is shown. The images for the estimation of the pointing target were
taken with the firewire camera (located in the right eye). (right) The configuration
used for recording the ground truth training and test data. The subject stood in front
of the robot and pointed at one of the marked targets on the ground in a distance of
1 to 3 m from the subject. The distance of the robot to the subject varied between 1
m and 2 m.

However there are several approaches that utilize different Neural Networks
to estimate the pointing pose. Nölker and Ritter [3] used Gaborfilters in com-
bination with a Local Linear Map (LLM) and a Parametrized Self-Organizing
Map (PSOM) to estimate the target of a pointing pose on a screen the user is
pointing to. Richarz et al. [4] recently also used Gaborfilters on monocular im-
ages and a cascade of Multi-Layer Perceptrons (MLP) as function-approximator
to determine the target point of a pointing-pose on the ground. Takahashi [5]
suggested to use a special kind of histogram features in combination with a SOM
to estimate the pose of a person in an image. Finally, since the head pose is typ-
ically also important for a pointing pose, approaches estimating the head pose
are also considered in this paper: Krüger and Sommer [6] utilized Gaborfilters
and a LLM to estimate the head pose, while Stiefelhagen [7] presented a system
that works on edge-filtered images and uses a MLP for head pose estimation.

All these approaches achieved more or less good results for their particular
task, but can not be compared with each other, because they use different images
captured in different environments and they use different combinations of meth-
ods for feature extraction as well as different Neural Networks for approximating
the target point or the direction of the pose.

Therefore, for this paper we implemented and compared several selected neu-
ral approaches, all trained and tested with the same set of training and test data.
In this way we give an overview of the suitability of the different approaches for
the task of estimating a pointing pose on a monocular image. The referred ap-
proaches suggest different applications for the recognition of a pointing pose.
In our comparison we choose an application where a user points at a target on
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the ground which is similar to the application Richarz [4] suggested. We imple-
mented this approach on our mobile robot Horos (HOme RObot System, see
Fig. 1 left), making it navigate to the specified targets, thus enabling a user to
control the robot only by means of pointing.

The remainder of this paper is organized as follows: First, in Sect. 2 we give
an overview of our test environment used to obtain the training and test data
for our comparison. In Sect. 3, the preprocessing steps performed on every image
and the methods for feature extraction we used in our approach are explained.
In Sect. 4, we shortly describe the Neural Network techniques we compare in our
approach. Section 5 describes the experimental investigations we conducted and
compares the results of the different approaches. We conclude with a summary
in Sect. 6 and give a perspective on possible improvements we plan to investigate
in the near future.

2 Training-Data and Ground-Truth

We encoded the target points on the floor as (r, ϕ) coordinates in a user-centered
polar coordinate system (see Fig. 1). This requires a transformation of the esti-
mated target into the robot’s coordinate system (by simple trigonometry), but
the estimation task becomes independent of the distance between user and robot.
Moreover, we limited the valid area for targets to the half space in front of the
robot with a value range for r from 1 to 3 m and a value range for ϕ from −120◦

to +120◦. The 0◦ direction is defined as user-robot-axis, negative angles are on
the user’s left side. With respect to a predefined maximum user distance of 2
m, this spans a valid pointing area of approximately 6 by 3 m on the floor in
front of the robot in which the indicated target points may lie. Figure 2 shows
the configuration we chose for recording the training data and our robot Horos

which was used to record images of the subjects. The subjects stood at distances
of 1, 1.5 and 2 m from the robot. Three concentric circles with radii of 1, 2 and
3 m are drawn around the subject, being marked every 15◦. Positions outside
the specified pointing area are not considered. The subjects were asked to point
to the markers on the circles in a defined order and an image was recorded each
time. Pointing was performed as a defined pose, with outstretched arm and the
user fixating the target point (see Fig. 2).

All captured images are labeled with the distance of the subject and the
radius r and angle ϕ of the target, thus representing the ground truth used for

Fig. 2. Typical examples of images of subjects taken by the frontal camera of the robot
in several demanding real world environments with background clutter. The left three
images are from the trainig data, the right three images from the test data.
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training and also for the comparison with humans as pointing pose estimators
(see Section 5). This way, we collected a total of 2,340 images of 26 different
interaction partners in demanding real world environments with background
clutter. This database was divided into a training subset and a validation subset
containing two complete pointing series (i.e two sample sets each containing all
possible coordinates (r, ϕ) present in the training set). The latter was composed
from 7 different persons and includes a total of 630 images. This leaves a training
set of 19 persons including 1,710 samples.

3 Image Preprocessing and Feature Extraction

Since the interaction partners standing in front of the camera can have different
heights and distances, an algorithm had to be developed that can calculate a
normalized region of interest (ROI), resulting in similar subimages for subse-
quent processing. We use an approach suggested by [4] to determine the ROI
by using a combination of face-detection (based on the Viola & Jones Detector
cascade [8]) and empirical factors. With the help of a multimodal tracker [9]
implemented on our robot, the direction and the distance of the robot to the
interacting person can be estimated. The cropped ROI is scaled to 160*100 pix-
els for the body and the arm and 160*120 pixels for the head of the user. Then
a histogram equalization is applied. The preprocessing operations used to cap-
ture and normalize the image are shown in Fig. 3. Since some of the approaches
mentioned in Sect. 1 use a Background Subtraction ([5], [7]) while others do not
([3], [4] and [6]) we optional use a Background Subtraction to test its influence
on the pose estimation result.

Fig. 3. Steps of preprocessing and feature extraction: the raw distorted image of the
camera (a) is transformed into an undistorted image (b) and the face of the user is
detected by means of [8]. Based on the height of the face in the picture and the distance
of the user, two sections of the image are extracted and transformed into grayscale
images (c). On these images a histogram equalization is used (d). Subsequently features
are extracted in different ways. First, Gaborfilters placed at defined points of the image
(marked as dots in (e)) were used. The second approach is to count how often pixel
belonging to a pre-segmented user appear in every row and column of the image (f).
A Background Subtraction can optionally be used between steps (d) and (e).
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On the normalized image regions we extracted features for the approximation
of the target position the user is pointing to. We therefore compared two possi-
ble methods. First, we used Gaborfilters of different orientations and frequencies
bundled in Gaborjets that we located on several fixed points in the image sec-
tions. Gaborjets are also used in the approaches of [3], [4] and [6]. Second, we re-
implemented the approach presented by [5]. Based on a background model, in this
case, we could subtract the background from the image and count the number of
pixels which belong to the user in every row and column. The several steps of pre-
processing and feature extraction used in our comparison are shown in Fig. 3.

4 Used Techniques for Approximation of the Target

One objective of our approach is the experimental comparison of selected Neural
Network based pointing pose estimators including a simple k-Nearest-Neighbour
method well known as reference technique. In the following, the different methods
used for comparison are presented:

k-Nearest-Neighbour Classification: The k-Nearest-Neighbour method
(k-NN) is based on the comparison of features of a new input with features
of a set of known examples from the training data. A distance measure is used
to find the k nearest neighbours to the input in the feature space. The label
that appears most often at the k neighbours is mapped on the new input. This
method allows only classification and not an approximation between the labels
of two or more neighbours. Therefore, we slightly modified the method in our
approach in a SoftMax-manner where the label for the input fk(x) is determined
as follows:

fk(x) =
∑

i

li ·
(

1/di∑
j 1/dj

)
(1)

In this way, the labels li of the k nearest neighbours contribute to the output
and are weighted by their Euclidian distance di to the input.

Neural Gas: A Neural Gas network (NG, [10]) approximates the distribu-
tion of the inputs in the feature space by a set of adapting reference vectors
(neurons). The weights wi of the neurons are adapted independently of any
topological arrangement of the neurons within the Neural Net. Instead, the
adaptation steps are affected by the topological arrangement of the receptive
fields within the input space, which is implicitly given by the set of distortions
Dx = {‖x − wi‖ , i = 1, · · · , N} associated with an input signal x. Each time an
input signal x is presented, the ordering of the elements of the set Dx determines
the adjustment of the synaptic weights wi. In our approach, each neuron also
has a label li which is adapted to the label of the input signal.

Self-organizing Map: An approach very similar to the NG is the well-known
Self-Organizing Map (SOM, [11]). The SOM differs from the NG in the fact
that the neurons of the SOM are connected in a fixed topological structure. The
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neighbours of the best-matching neuron are determined by their relation in this
structure and not by their order in the set Dx. We modified the SOM so that
every neuron has a learned label as we did with the NG above.

Local Linear Map: The Local Linear Map (LLM, [12]) is an extension of the
Self-Organizing Map. The LLM overcomes the discrete nature of the SOM by
providing a way to approximate values for positions between the nodes. A LLM
consists of n nodes which each represent a pair of reference vectors (win

i ,wout
i )

in the in- and output-space and an associated only locally valid linear mapping
Ai. The answer ybm of the best-matching neuron of the LLM to an input x is
calculated as follows:

ybm = wout
bm + Abm

(
x − win

bm

)
(2)

The weights win
i ,wout

i and the mapping matrix Ai have to be learned during
the training process. See [12] for more details.

Parametrized Self-organizing Map: Like the LLM, a Parametrized Self-
Organizing Map (PSOM, [13]) is also an extension of the SOM. While the LLM
computes only a linear approximation of the output, a PSOM uses a set of non-
linear basis manifolds to construct a mapping through the reference vectors a.
A basis function H(s,a) is associated with each reference vector a. These basis
functions realize a smooth interpolation of intermediate positions between the
reference vectors. The interpolation is an iterative process starting at the best-
matching reference vector. The topological order of the reference vectors has to
be provided for the organization of the PSOM. In our approach we use a SOM
to obtain this topological order.

Multi-layer Perceptron: For our comparison we used a cascade of several
MLPs as decribed in [4]. The (r, ϕ) coordinates of the target point are estimated
by separate MLPs. The radius r is estimated by a single MLP while ϕ is deter-
mined by a cascade of MLPs which first estimate a coarse angle ϕ′ and second
the final angle ϕ depending on r and ϕ′.

5 Results of Comparing Experimental Investigations

To have a simple reference for the quality of the estimation, 10 subjects were
asked to estimate the target point of a pointing pose on the floor. At first, the
subjects had to estimate the target on a computer screen where the images of
the training data set were displayed. The subject had to click on the screen at
the point where they estimated the target. Thus, the subjects were estimating
the target on the images having the same conditions as the different estima-
tion systems. Second, we determined the estimation result the subjects achieved
under real world circumstances. Here each subject had to point at a target on
the ground and a second subject had to estimate the target. The results of the
human based reference experiments are included in Fig. 4 and Fig. 5. The la-
bel Human 2D refers to the experiments on the computer screen and the label
Human 3D refers to the results under real world conditions.
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Fig. 4. Results for the estimation of the radius (top) and the angle of the target position
(bottom). For each method the percentage of the targets estimated correctly and the
mean error is determined. At the right side, the results of the human viewers (2D on
computer screen, 3D in reality) are given for comparison. Methods that achieve a result
equal to that of the human viewers are marked with a shaded background.

The results of the several neural approaches for estimating the target position
are shown in Fig. 4 and Fig. 5. As described in Sect. 2 the ground truth data is a
tuple (r, ϕ) with the target radius r and the target angle ϕ. The separate results
for the estimation of r and ϕ are shown in Fig. 4. For the correct estimation
of the target point, r as well as ϕ had to be estimated correctly. We defined
the estimation result being correct if r differed less than 50 cm from the ground
truth radius and ϕ differed less than 10◦ from the ground truth angle. Figure 5
shows the results for a correct estimation of both values.

Every of the six selected approaches was trained and tested on the same train-
ing data set. For each system, we used five different feature extraction strategies:
first only Gaborfilters were utilized, second we combined Gaborfilters with an
additional Background Subtraction to reduce the effects of the different cluttered
backgrounds in the images. Third, we used only those Gaborfilters that had a
high discriminant value extracted by means of a Linear Discriminant Analysis
(LDA) executed over all predefined Gaborfilter positions. Fourth, we combined
Gaborfilter, Background Subtraction and utilized only the relevant features ex-
tracted by the Discriminant Analysis mentioned above. In the last setup, we
did not apply the Gaborfilters but the column and row histograms of the pre-
segmented persons in the images as proposed in [5].
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Fig. 5. The results for the estimation of the target point of the pointing pose. The
target point is determined by the radius r and the angle ϕ. Unlike Fig. 4, showing
the separate results for the estimation of r and ϕ, here the results for the correct
estimation of both values are shown. As in Fig. 4 the results of the human viewers (2D
on computer screen, 3D in reality) are given for comparison.

Fig. 6. The computation times of the different methods. A method capable of running
with a minimum of 12.5 images per second on our mobile robot has to process one
image in less than 80 ms (Athlon 2800, SUSE Linux).

These results demonstrate, that a cascade of several MLPs as proposed in
[4] is best suited to estimate the target position of a user’s pointing pose on
monocular images. A Background Subtraction and the information delivered by
a Discriminant Analysis can be used to improve the results. The best system is
capable of estimating r as good as humans with their binocular vision system in
a real world environment and even better than humans estimating the target on
2D screens. The estimation of ϕ does not reach equally good values. The system
is able to reach a result equally to humans on 2D screens, but it is not able to
estimate the angle as good as humans in a real world setting. This is because
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the estimation of the depth of a target in a monocular image is difficult for both,
human and function approximators.

In our experimental comparison, the LLM and the MLP deliver a better result
than the SOM and the Neural Gas. We suppose this result is caused by the ability
of the MLP and the LLM to better approximate the output function in regions
with few examples. The cascade structure of the MLP approach as proposed in
[4] makes it possible to estimate ϕ better than the other approaches. However,
since r is estimated by a single MLP and the MLP-result for r is better than
that of the other approaches, we believe that a cascade organization of the other
Neural Networks would not lead to a better result than that achieved by the MLP
cascade. The PSOM delivers a relatively bad result in comparison to the other
approaches. This is based on the fact, that only few basis points could be used
due to the very long computation time of the PSOM. Figure 6 finally shows the
computation times of all methods. Except the k-NN and the PSOM, all methods
are able to process more than 12.5 images per second at the robot’s on board
PC. The k-NN method needs a long running due to the many comparisons which
are needed to get the best neighbours to given observations. The computation
time of the PSOM is especially high because of the iterative gradient descent
along the PSOM structure that is needed to get the best suited output.

6 Conclusion

We presented an experimental comparison of several re-implemented Neural Net-
work based approaches for a demanding visual instruction task on a mobile sys-
tem. Since our goal is to provide an approach, which copes with the task by
means of low-cost sensors, we refered to approaches using monocular images. Of
the relevant approaches a cascade of Multi-Layer Perceptrons proved to be best
suited for this task. All methods profit from the use of a Background Subtrac-
tion and the information delivered by a Discriminant Analysis. The comparison
of the different methods had shown, that the usage of Gaborfilters for feature
extraction leads to better results than the histogram based features. The best
system is able to estimate the radius r of the target point better than human
subjects do, but there are still problems in estimating the angle ϕ of the target
due to the use of monocular images. This problem could be reduced by means
of a stereo camera, which delivers the lacking depth information. Possibly the
angle of the estimated target might not be as important if an other application
is chosen, for example, if the user is pointing at certain objects in the surround-
ings allowing a model-based pointing pose specification instead of a non-specific
target point on the ground.
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