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Abstract. This paper’s intention is to adapt Echo State Networks to
problems being faced in the field of Human-Robot Interactions. The idea
is to predict movement data of persons moving in the local surroundings
by understanding it as time series. The prediction is done using a black
box model, which means that no further information is used than the past
of the trajectory itself. This means the suggested approaches are able
to adapt to different situations. For experiments, real movement data
as well as synthetical trajectories (sine and Lorenz-attractor) are used.
Echo State Networks are compared to other state-of-the-art time series
analysis algorithms, such as Local Modeling, Cluster Weighted Modeling,
Echo State Networks, and Autoregressive Models. Since mobile robots
highly depend on real-time application.
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1 Introduction

For autonomous robots, like SCITOS [1], it is important to predict their own
movement as well as the motion of people and other robots in their local en-
vironment, for example to avoid collisions or to evolve a proactive behavior in
Human-Robot-Interaction (HRI). Hence, further actions can be planned more
efficiently.

Most publications in this field focus on optimal navigation strategies [2, 3].
This paper, however, suggests to spend more effort into prediction of the mo-
tion of the dynamic objects instead. Often, only linear approximations or linear
combinations are used to solve this problem.

The approach presented here is the interpretation of movement trajectories
as time series and their prediction into the future. For performing this prediction
an assortment of time series analysis algorithms was implemented and tested.

Echo State Networks have proven to be able to predict chaotic time series
with a comparatively high accuracy [4]. Because of the fact that unexpected
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behavior can occur, movement data can also be understood as chaotic time
series. Echo State Networks should be able to predict such data well. Their
usage for the prediction of movement data has – to our best knowledge – not
been investigated yet.

For an application of Echo State Networks, the movement trajectory of a
person in the vicinity of the mobile robot, typically gained from a person tracker
like [5] needs to be presented as a time series. For this reason, the given trajectory
of the motion is now interpreted as T with values si for time steps i = 0, . . . , n−1:

T = (s0, s1, . . . , sn−1) (1)

Each si can be assumed as the tracked object’s position, e. g. in a three dimen-
sional Cartesian state space si = (xi, yi, zi)T . Basically, the prediction for each
future point on the trajectory is done iteratively for up to 500 time steps (about
8.3 seconds of motion using a sampling rate of 60 Hz).

The prediction in general takes place with the so-called black box model
which means that no further background information is used than the past tra-
jectory itself. The aspired prediction shall follow the trajectory’s characteristics,
which can be found in their past. Furthermore, no explicit model is given, to be
able to freely adapt to new types of trajectories, i. e. new situations.

The following section at first briefly explains the principles of Echo State
Networks and introduces different versions. In section 3, experiments and com-
parisons of the results on the movement data are presented, while the last section
concludes this paper.

2 Echo State Networks

It is commonly known, that Neural networks are well suited for function ap-
proximation tasks. For the specific task of predicting time series, Echo State
Networks (ESNs) are often used recently[4].

2.1 Principle

ESNs have some specific features which differ from “standard” neural networks:
The hidden layer consists of neurons which are randomly connected (see Fig. 1).
If the connectivity is low, this layer provides independent output trajectories.
For this reason, the hidden layer is also called reservoir. Furthermore, there are
neurons which are connected to circles in the reservoir, so that past states “echo”
in the reservoir. That is the reason why only the current time series value sn is
needed as input.

The weights of the reservoir determine the matrix Wr. In [4], it is mentioned
that the spectral radius spec of this matrix3 is an important parameter and must
not have values above 1.0 to guarantee stable networks. The randomly initialized
reservoir matrix Wr can easily be adapted to a matrix with a desired spectral
3 The spectral radius of a matrix equals to the largest Eigenvalue.
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Fig. 1. The design of Echo State Networks has some characteristic features. In addition
to the randomly connected reservoir rn, the training algorithm is pretty simple for
neural networks: Only the output weights wout are adapted.

radius. However, [6] argued that networks with a spectral radius close or slightly
above 1.0 may lead to better results. Both possibilities are evaluated for their
suitability for motion prediction.

Furthermore, the sparseness of the reservoir matrix plays an important role.
A sparse reservoir matrix means that most of the weights in the reservoir are set
to zero. This can be interpreted as the reservoir being decomposed into subsets,
which are responsible for basic signals being overlaid by the output layer. As
suggested in [4] and [6] both sources, about 80% of the weights are set to zero.

Another characteristic of ESNs is that only the output weights wout are
adapted and learned. All other weights (input, reservoir, feedback) are chosen
randomly and stay static.

2.2 Training and Application

For training, the network is initialized randomly, and the training time series
is used as network input step by step. The internal states rn are calculated by
using the following recursive equation:

rn = f(Wr · rn−1 + win · sn + wback · on−1) (2)

rn describes the internal state at time step n. Wr stand for the reservoir matrix,
while win and wback are the weights at the respective edges (See Fig. 1), while f
is the transfer function of the reservoir neurons which can be the Fermi-function
or the hyperbolic tangent.

From a predefined starting point, the internal states rn can be combined to
a matrix R. The starting point should be around the time step 100 or later to
overcome possible bad initial values in the network. The adaption step for the
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output weights wout is a linear regression using this matrix and the vector of
the related output values o:

wout = (RT R)−1RT o. (3)

After weight adaption, the network can be applied for prediction. Thereto,
the network is fed again with the whole trajectory data as input, this time step
by step. If the prediction is taking place (i. e. reaching the last known point in
time) the output is fed back to the input. So, the last network output is used
as the next input to be able to generate more than one prediction step. In our
experiments, up to 800 prediction steps are generated.

2.3 Enhancements

In [6] some additional Echo State Network features are introduced, like an online
adapting rule and a plasticity rule to adapt the Fermi transfer function parame-
ters in the reservoir (intrinsic plasticity). Furthermore, additional weights such
as a direct input-output (wdir) weight and a loop at the output neuron (wrec)
are suggested. Apart from the online rule, all other of those enhancements were
evaluated and tested.

Intrinsic plasticity is performed online. It helps to adjust the reservoir trans-
fer functions for better adapting to the current prediction task. It takes place
before starting the learning of the output weights and shouldn’t last longer than
200 time steps, otherwise predictions could get instable. Unfortunately, intrinsic
plasticity has the effect that the eigenvalues and thus the spectral radius of the
reservoir matrix increases.

Since in Echo State Network a huge number of parameters can be adjusted,
a more automated process would be reasonable, especially, for those network
weights, which are not changed during the regular training process, i. e. the win,
wback, and W r. This paper suggests to use multiple instances of the network,
as a kind of simple stochastical search in the parameter space. All instances are
trained using the same input data, after initializing the fixed weights diferrently
(in a random manner). During the training process, the output of each network is
compared with the corresponding values of the training trajectory. The network
showing the best prediction results for the yet unknown training data is then
selected for further application.

3 Motion Prediction

The algorithms presented in this paper are intended to be used for motion pre-
diction to enable a mobile robot evolving a proactive behavior in HRI. To be
comparable and reproduceable, however, movement data taken from the Univer-
sity of Glasgow is used [7]. This benchmark data is available as 3D coordinate
representation for each limb of a human performing a certain action, e. g. walk-
ing (see Fig. 2). Using this data is even more challenging, because several basic
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Fig. 2. Example of movement data from the University of Glasgow. Shown are the body
points from which data is available (a) and an exemplary trajectory of the movement
of the left ankle while walking in circles (b).

motions are combined (i. e. intrinsic movement, e. g. of the foot combined with
the walking direction). The data set consists of 25 trajectories containing 1,500
up to 2,500 sampled points.

3.1 Test Conditions

Trajectories Besides the movement data coming from the University of Glas-
gow, periodical and “standard” chaotic time series are used. All time series are
three-dimensional.

The movement data has a resolution of 60 time steps per second, so that an
average prediction of about 500 steps means a prediction of 8.3 seconds into the
future. Present movement prediction techniques last considerably shorter.

The periodical trajectories consists of up to three superimposed sine waves,
with each dimension being independent from the others.

As chaotic time series the Lorenz-Attractor is used. It is a simple system of
differential equations where the single dimensions are not independent. This time
series is a typically chaotic one, so small changes in a state leads to dramatic
differences after a short time period.

Quality Measures For comparing the prediction results, some kind of quality
measures are necessary. The used quality measures are based on the normalized
mean square error NMSE. Hence, the standard mean square error is normalized
using the variance σ2 of the time series.

NMSE =
1

N · σ2

N∑

i=1

(spred
i − sorig

i )2 =
MSE

σ2
(4)
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Since the trajectories are three-dimensional and dimensions with greater differ-
ence are supposed to be more important, the highest variance of all dimensions
is used as normalization.

Two different kinds of the defined measure are used. The first one, the short
term error STE, is responsible for evaluating a short period of the prediction.
It uses the first N = 75 predicted output values (which means 1.25 sec) with a
weighting of 1

f of the f -th prediction step. Since some of the algorithms show
the tendency to drift away, the performance is furthermore evaluated using the
long term error LTE, which uses all prediction steps with a weighting of 1√

f
.

3.2 Reference Algorithms

Time Series Analysis Algorithms Echo State Networks are compared to
other state-of-the-art time series analysis algorithms, to be able to assess not
only their absolute performance. They have been reimplemented in MatLab,
following the methods described in the respective papers. Again, the black box
model is used to have a similar starting point for all approaches.
1. Autoregressive Models assume a linear relation in the observed time se-

ries which means that any time series value can be determined by using a
linear combination of p previous values. Different approaches can be used to
determine these linear coefficients. The Wiener Filter, the Durbin-Levinson
algorithm and the Yule-Walker equations were used to calculate the coeffi-
cients. For further details see [8] and [9].

2. Local Modeling: This algorithm tries to find similar states of the observed
trajectory. Therefore, the usually low dimensional time series is transformed
in a higher dimensional space, the so-called embedding space. Details from
this algorithm can be found in [10] and [11].

3. Cluster Weighted Modeling: This approach is similar to the Local Mod-
eling but from a probabilistic point of view. Hence, the embedding space is
clustered with Gaussians. For more details see [10] and [11], too.

Trivial Comparison Algorithms The first algorithm, defining the baseline, is
a simple repetition of the last observed time series value and is called repetetive
algorithm in the following. Also a linear algorithm is used as reference. This
algorithm simply does a linear approximation based on the last two points of
the time series. The result of the better one is used as reference. Both algorithms
have to be outperformed clearly to get useful predictions.

3.3 Test Results

The following tests are to demonstrate the advantages and disadvantages of
the Echo State variants and the other time series analysis algorithms presented
within this paper. For the application of the algorithms, a lot of parameters had
to be specified. The paramter values presented in the following are chosen after
extensive tests, which cannot be not discussed here, because of space limitations.
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Fig. 3. The graphs show the STE (a) and LTE (b) plotted for each of the Echo State
Network version tested on 1D and 3D movement data. The ordinate uses a logarith-
mic scale. Hence, lower values mean a better prediction. The error bars represent the
standard deviation from the mean. The different tests are labeled with “Jaeger” and
“Steil” using the networks presented in [4] and [6] respectively. For Jaeger networks,
two versions are tested. On the one hand, parameters, like number of neurons, spectral
radius, and sparseness of the reservoir, where set to fixed values. On the other hand,
those parameters are obtained randomly. For Steil networks, the number of neurons is
increased (25, 100, 250). Additionally, version 3 of Steil network uses input sn−1 and
sn−2 as input (not only sn−1 as for all other tests)

Comparison of the Echo State Networks versions Since, the literature
provides slightly different variants of Echo State Networks, two different ones are
evaluated here. On the one hand, networks with a structure from [4], called in
the following Jaeger networks and on the other hand, networks with a structure
from [6] (Steil networks). For both networks, the spectral radius is set differently.
While Jaeger [4] uses spec = 0.8, with Steil networks it is set to spec = 1.0.

Both networks are evaluated on real motion data (see Fig. 3). As already
mentioned, the motion data is available as a trajectory in 3D Cartesian space.
These 3D points are used directly as input for the network (labeled “3D” in
Fig. 3), or they are split into three 1D time series, predicted independently with
three networks (labeled “1D” in Fig. 3).

It is recommended in [6] to initialize all Steil network weights to 0.05. Since
only weights to the output layer are adapted during training process, all other
weights stay at 0.05. Actually, this value could not be confirmed with the test on
movement data. It could be shown for both network versions, that the the feed-
back weights wback must be scaled very low (about 10−20) to guarantee stable
networks. Furthermore, the input weights win are set to values of about 10−5.
For all other weights the influence of the chosen values is not that significantly.

Steil networks have additional weights to the output layer (wdir,wrec). These
weights can be included in the learning process as it is suggested in [6]. Unfortu-
nately, this leads to instable networks, so that these weights were not learned for
predicting the movement data. These weights should be scaled low about 10−20

as well, because they have a similar function like the feedback weights wback.
Jaeger [4] suggests to use 50 up to 2000 neurons for the reservoir. In the

prediction of movement data, the size of the reservoir is set to lie between 25
and 250 neurons. However, a higher number of neurons doesn’t lead to significant
better results.
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Fig. 4. The graphs shows the STE (b), (c) and LTE (a), (d) plotted for each of the
algorithms tested with sine (a), Lorenz-attractor data (b), and movement data (c), (d).
The ordinate uses a logarithmic scale. Hence, lower values mean a better prediction.
The error bars represent the standard deviation from the mean. For the STE all results
lie relatively close together while the reference algorithm can only be beaten clearly
by the Echo State Networks. Longer predictions show more differences in the results
of the algorithms. Also the mean errors are higher than STE, as expected in longer
predictions. The reference is beaten more clearly in general. Local Average Models and
Echo State Networks show the best results.

Steil [6] adviises to apply Intrinsic Plasticity (adaption of transfer function
parameters) for the first 200 time steps to improve classification results of the
network. Those benchmark results were gained by applying the online learning
rule. Since only offline learning rule is used here, the results could not be con-
firmed. In both types of networks, Intrinsic Plasticity seems to have only minor
effects when the offline learning rule is applied.

Additionally, Steil networks were extended in a TDNN-like fashion, using
more than only the last point of the trajectory as input (labeled “Steil 3” in
Fig. 3). It can be observed that this leads to better predictions in the very first
steps (about 5) but may destabilize the prediction in the following steps. In
general, it leads to worse results for the chosen quality measures as they include
75 prediction steps.

Comparison to the reference algorithms In the prediction of sine trajecto-
ries, the Autoregressive Models show the best results in the mean for STE and
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LTE (see Fig. 4(a)). Note that these algorithms can build up to high values, so
that the standard deviation in this case is very high.

With worse mean errors the standard deviation is also lower. The Local
Models and Echo State Networks lead also to quite good prediction results, while
the used reference (data repetition of linear approximation) is beaten clearly by
all prediction algorithms.

For predicting the chaotic Lorenz-Attractor (see Fig. 4(b)) the Local Lin-
ear Model leads to the best results. Echo State Networks perform also well –
especially with higher number of neurons. Here, the reference algorithms are
outperformed clearly, as well. The standard deviation of the prediction quality
is relatively high.

For the prediction of real movement data, the Echo State Networks lead to the
best results for the STE as it is shown in Fig. 4(c), while for long term prediction
Local Models have slightly better results (Fig. 4(d)). The AR models perform
barely better than the reference. Here the Durbin-Levinson algorithm achieves
the best prediction quality. Cluster Weighted Models show the worst performance
and their mean errors stay even behind the simple reference algorithms.

It seems that the usage of the additional weights in the Steil networks
(wdir,wrec) destabilizes the prediction especially over a long term, because of
the fact that these networks have considerably worse prediction results.

In general, the difference between each of the algorithms and to the reference
is much smaller than for the predictions of the sine or Lorenz-Attractor trajecto-
ries. Nevertheless, the best algorithms still beat the simple references clearly (as
expected) and are able to predict movement trajectories, consisting of several
hundred hypothetical steps, very well.

It can be concluded that the prediction of movement data seems to be a
harder problem than predicting standard chaotic trajectories, such as those gen-
erated by the Lorenz-Attractor. This is caused by unique unexpected and un-
predictable behavior, which can be observed in the movement data. Therefore,
the choice of the number of neurons in the ESN reservoir, for example, has only
a minor effect. In tests, the difference in the prediction results of movement
data between 25 and 250 neurons were insignificant. It can be presumed that
the structure of the movement data does not allow a higher accuracy in the
prediction unlike other chaotic time series [4].

4 Conclusion

The intention of this paper was to connect the well-known fields of time series
prediction and movement data handling in a new way. It was possible to show,
that some of the algorithm are preforming well, while predicting movement data.
Generally, it can be said that movement data behaves different than periodical
sine and chaotic Lorenz-Attractor time series.

The tested algorithms show good results on movement data. However, some
improved versions of the algorithms, which show good results for sine and Lorenz-
attractor time series, show no benefit for movement data.



10 S. Hellbach, S. Strauss, J. Eggert, E. Körner, H.-M. Gross

Echo State Networks and Local Models turned out to be suitable algorithms
for movement prediction.

Autoregressive Models and again ESNs are able to predict fast enough for
an online application without any further adaption. From the current point of
view Echo State Networks are the “winning” approach which are able to solve
the problem. Hence, further analysis should put the focus on this approach and
on the additional improvements, which have not yet been tested.

The other algorithms can be upgraded as well. Local Models could be a good
alternative to ESNs, if they could be accelerated without deterioration of quality.
Besides, the enhanced versions of the AR Models such as ARMA or ARIMA
models could be tested. Furthermore, the usage of an irregular embedding is
imaginable.

As a next step, an adequate proactive navigation and interaction strategy
exploiting the prediction results needs to be investigated. One drawback for
predicting motion data is the fact that human beings may perform unexpected
motion. Since the discussed algorithms rely on the past characteristics, it is
possible to use them for detection of such unexpected behavior (as some kind of
“saliency”-cue) for improving robot human interaction.
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