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Abstract— In continuation of our previous work on visual,
appearance-based localization in manually built maps [1], [2],
in this paper we present a novel appearance-based, visual
SLAM approach. The essential contribution of this work is,
an adaptive sensor model which is estimated online and a
graph matching scheme to evaluate the likelihood of a given
topological map. Both methods enable the combination of
an appearance-based, visual localization concept with a Rao-
Blackwellized Particle Filter (RBPF) as state estimator to a real-
world suitable, online SLAM approach. In our system, each
RBPF particle incrementally constructs its own graph-based
environment model which is labeled with visual appearance
features (extracted from panoramic 360o snapshots of the
environment) and the estimated poses of the places where
the snapshots were captured. The essential advantages of this
appearance-based SLAM approach are its low memory and
computing-time requirements. Therefore, the algorithm is able
to perform in real-time. Finally, we present the results of SLAM
experiments in two challenging environments that investigate
the stability and localization accuracy of this SLAM technique.

I. INTRODUCTION

Robust self-localization plays a central role in our long-
term research project PERSES (PERsonal SErvice System)
which aims to develop an interactive mobile shopping as-
sistant that can autonomously guide its user within a home
improvement store [3] (see Figure 1). In everyday life and in
mobile robotics, two main types of self-localization methods
are typically used: landmark-based methods and appearance-
or view-based approaches. The reason why people frequently
and principally use natural landmarks (e.g. complete objects
like buildings, doors, or salient parts of objects) in recogniz-
ing places is that people can segment the landmarks rapidly
and accurately from scene images. On the other hand, people
do not have strong ability in recognizing a large amount of
valuable features of scene images in parallel, such as texture,
color, edges, shapes and their global appearance features.
Unlike people, computer-vision systems don’t have problems
to recognize location images and perform the function of
place recognition using views or extracted appearance fea-
tures only. That makes the appearance-based methods so
interesting for robust localization and map building in mobile
robotics. Instead by landmarks, appearance-based approaches
only compare the appearance of the current view with those

The research leading to these results has received funding from the State
Thuringia (TAB-Grant #2006-FE-0154) and the AiF/BMWI (ALRob-Project
Grant #KF0555101DF).

A. Koenig, J. Kessler, H.-M. Gross are with Neuroinformatics and
Cognitive Robotics Lab, Ilmenau University of Technology, 98684 Ilmenau,
Germany. alexander.koenig@tu-ilmenau.de

Fig. 1. Experimental platform
- the interactive mobile shopping
assistant TOOMAS based on a
SCITOS A5 (by MetraLabs Il-
menau, Germany) during an in-
teractive guided tour in a home
store. The SonyRPU camera at
the top of the robot head yields
the panoramic images for the
appearance-based approach pre-
sented here.

of the reference images to estimate the robot’s pose ([15],
[17]).

One objective of our ongoing research is to clarify whether
appearance-based SLAM approaches are basically suited for
large-scale and uniformly structured indoor environments,
like the aforementioned home improvement store, and if
so, how they can be made capable of working online and
real-time. In our research on vision-based robot navigation,
we are preferring the appearance-based approach for the
following reasons: i) In a highly dynamic, populated and
maze-like environment, a robust recognition of earlier se-
lected natural landmarks cannot be guaranteed in any case. ii)
Furthermore, the need for a robust and invariant detection of
visual landmarks often results in highly computational costs
and, therefore, map building is often performed off-line by
these approaches. Because of the required online capability,
we decided in favor of view-based techniques.

In our previous approach [1], [2] dealing with an
appearance-based Monte Carlo Localization, a static, graph-
based model of the environment was developed (see Fig. 2).
The nodes (poses of the robot) of this environment model are
labeled with appearance-based observations extracted from
an omnidirectional image. Based on this environment model,
we have developed an appearance-based visual SLAM ap-
proach that is using the Rao-Blackwellized Particle Filter
(RBPF) concept [4].

The essential contribution of the approach presented here
is, that we combined the appearance-based, visual localiza-
tion concept with a Rao-Blackwellized Particle Filter as state
estimator to a real-world suitable, online SLAM approach. In
our system, each RBPF particle incrementally constructs its
own graph-based environment model which is labeled with
visual appearance features (extracted from panoramic 360o

snapshots of the environment) and the estimated poses of
the places where the snapshots were taken from. Another key
idea of our approach is to utilize local graphs, representing a
kind of short-term memory or time window of the current and
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Fig. 2. A manually built map of the operation area, a regularly structured,
maze-like home improvement store with a size of 100x50m2 (taken from
[2]). The red dots show the positions of stored reference observations, i.e.
the places where they were taken from. The correct pose was provided by an
external reference system. To localize the robot in the home store, a Particle
Filter was used which determines the weights of the particles by calculating
the similarities between the current observation and the respective reference
observations stored in the graph.

the very latest observations and pose estimations, instead of
single observations typically used in the field of appearance-
based localization/mapping to perform the evaluation step.
Based on this, we introduce a graph-matching technique to
compare the local graph of each particle with its particular
global graph to determine the best matching map. Another
novel idea consists in online estimating an environment-
depending sensor model. This sensor model is used by
the graph-matching algorithm to evaluate the likelihood of
each map. The appearance-based SLAM approach presented
subsequently is able to robustly build consistent maps of
environments with a low demand on computational and
memory costs. Therefore it works in real-time.

The rest of the article is structured as follows: The next
section first gives an overview of related works. After that,
the developed appearance-based SLAM approach based on
RBPF and the novel key ideas of our approach, the graph-
based environment model, the employed graph matching
technique, and the adaptive sensor model, are described in
detail. Experimental results achieved with our SLAM ap-
proach in different environments are presented and discussed
in the section following that. A conclusion and suggestions
for future work are given at the end of the paper.

II. RELATED WORK

Many solutions have been presented in the past to realize a
robot self-localization in more or less complex environments
including methods based on feature or landmark extraction
and tracking and those based on appearance models of the
environment. A short overview of the most relevant research
is given in the following:

Feature/Landmark-based approaches: In many SLAM
approaches, the map representation is assumed to be a vector
of point-like feature positions (landmarks) [7]. The attractive-
ness of feature/landmark-based representations for SLAM
lies in their compactness. However, they rely on a priori
knowledge about the structure of the environment to identify
and distinguish potential features or landmarks. Furthermore,
a data association problem arises from the need to robustly
recognize the landmarks not only in local vicinities, but also
when returning to a position from an extended round-trip. In
the field of visual landmark-based SLAM algorithms, Lowe’s

SIFT-approach [8], [9] has often been used so far. Further
important feature/landmark-based approaches are those by
Davison using Stereo vision [10] or monocular vision [11].
To estimate the landmark positions, popular methods like
the Extended Kalmanfilter (EKF) [11], Rao-Blackwellized
Particle Filters (RBPF) [12] or FastSLAM [13] are applied.

Appearance-based SLAM/CML approaches: The Con-
current Mapping-building and Localization (CML) approach
of Porta and Kroese proposed in [19] was one of the first
techniques to simultaneously build an appearance-map of the
environment and to use this map, still under construction, to
improve the localization of the robot. Another way to solve
the SLAM-problem was proposed by Andreasson et. al. [20].
Here, a topological map stores nodes with appearance-based
features and edges which contain relations between nodes
and their poses. Essential drawbacks of this approach are,
however, the required offline relaxation phase and the com-
putational costs for calculation of the SIFT features. To avoid
these requirements, our approach uses simpler and, therefore,
faster methods to extract appearance features and also uses
an RBPF [4] to avoid off-line relaxation methods. Moreover,
the method to estimate the pose difference between images
applying the image similarity introduced by Andreasson [20]
has been picked up and extended in our SLAM approach.
Further approaches that use a topological map representation
are described in [22], where a Bayesian inference scheme
is used for map building, and in [23], where a fast image
collection database is combined with topological maps that
allows an online mapping, too.

III. APPEARANCE-BASED SLAM APPROACH WITH RBPF
A. RBPF with local and global graph models

Our appearance-based SLAM approach also utilizes the
standard Rao-Blackwellized Particle Filter approach to solve
the SLAM problem, where each particle contains a pose
estimate xi (position x, y and heading direction ϕ) as well
as a map estimate (see Fig. 3). The environment model
(map) used in our appearance-based approach is a graph
representation, where each node i representing a place in the
environment is labeled with appearance-based features (for
details see subsection III-D) zi extracted from the panoramic
view captured at that place and the estimated pose xi. To
solve the SLAM problem, the RBPF has to determine the
likelihood of the graph-based maps in the particles to be
correct. Therefore, our approach uses two different types
of maps: a global map mG = x1:(l−1), z1:(l−1), which
represents the already known environment model learned so
far and a local map mL = xl:t, zl:t representing the current
and the n latest observations and the local path between
them (e.g. the last two meters of the robot’s trajectory).
The global map stores all observations before the time-step
l = t − n. Thus, in extension of known RBPF techniques,
in our approach each particle (see Fig. 3) estimates and
stores a local map, a global map, and the currently estimated
pose. Figure 4 schematically shows the local and global
map in more detail. Serving as a short-term time-window of
observations the local map is used to compute the likelihood
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Fig. 3. The map represen-
tation of the particles in
our approach: Each parti-
cle models its current pose
estimation based on its
path history, a full global
map, and a local map. Due
to the path history, all par-
ticles are slightly different
and their maps differ as
well. Some maps are more
likely to be correct and
consistent than others.

of each global map to be correct. This has two advantages.
First, the likelihood of a given global map can be evaluated
in a simple way by comparing the local and the global map
directly. Based on this comparison, the RBPF can determine
for each particle the likelihood of the trajectory and the
global map estimated by that particle. Second, the still
more relevant advantage is that the local map provides both
geometric and visual information about the lastly observed
places. Only this way, correct comparisons can be made
taking both spatial relations and visual observations into
consideration. The approach assumes that a short part of the
robot’s trajectory is measured correctly. Hence, the length of
the local map has to be as short as possible. On the other
hand, for reliable comparison results, the graph of a local
map has to contain enough nodes for the matching process.
We achieved the best results with a local trajectory length
of about 2 meters and average distances between the nodes
of 0.2 meters. Note, that this values are depending on the
accuracy of the robot’s odometry sensors.

B. Graph matching

Our approach does not compute the probability distribu-
tion p(z|x,m) directly, but the likelihood of a given map to
be correct is estimated by comparing the local and the global
map. In the context of RBPF, these distribution determine
directly the importance weight w = p(z|x,m) of a particle.
For this purpose, corresponding pairs of nodes in both maps
are selected by a simple nearest neighbor search in the
position space. The relation between each selected pair of
corresponding nodes eL

i (of the local map mL) and eG
j (from

Fig. 4. Graph-based environment representation of our appearance-based
approach: The red nodes show the global map of a single particle with
respect to the path estimated by this particle. The blue nodes code the local
map, whose data represent a short-term time-window of observations (the
current and the n latest observations) used for map matching to determine
the likelihood of the respective global map. The idea of our appearance-
based RBPF is, that only particles with correctly estimated trajectories are
able to build correct maps, so that the matching between local and global
map provides a higher matching value than wrongly estimated trajectories.

  
 

 

 

Fig. 5. Basic idea of our map matching algorithm: the likelihood of a
given global map (particle-specific) is determined by comparison of the
spatial distances dij and visual similarities Sij between each pair of nodes
i (in the local graph) and j (in the global graph). Corresponding nodes eL

i
and eG

j are defined by the minimum spatial distances dij . The matching
weights wi per node in the local map are calculated in dependence of
the spatial distance dij and the visual similarity Sij (for more details see
Section III-C).

the global map mG) provides two pieces of information, a
geometric one (spatial distance dij) and a visual one (visual
similarity Sij), depicted in Fig. 5. Both aspects of each
relation ij are used to determine a matching weight wi

for the respective node i of the local map. Assuming an
independence between the node weights of the local map,
the total matching weight w[k] between the local and the
global graph of particle k is simply calculated as follows

w[k] =
n∏

i=1

w
[k]
i (1)

with n describing the number of nodes in the local map.
Because this graph matching needs to consider both spatial

and visual similarities, we have to distinguish between sev-
eral cases taking the different spatial situations (narrowness,
wideness) in the local vicinity of the robot into consideration:
in case of a correctly built global map, corresponding nodes
with low spatial distance dij code nearby places that show a
similar appearance. This results in a high visual similarity Sij

which should be considered in a high matching weight wi.
If the nearest corresponding nodes eL

i and eG
j are spatially

more distant, however, then no evidence is given whether
the map could be correct or not. In this case an average
matching weight wi should be assigned. And finally, if the
corresponding nodes in the local and global map seem to
have only a low spatial distance but also show only a low
visual similarity, then the respective global map must be
wrong, which should result in low matching weights. A
graph matching algorithm needs to take these different cases
into account. Before the following section describes how
this is realized by means of the adaptive sensor model, a
short summary of our RBPF with topological maps will
be given. Estimating correct maps with RBPF approaches
requires loops in the trajectory. When the robot closes a loop,
the local and global maps overlap and the graph-matching
algorithm can estimate the likelihood of a map. In the case of
non-overlapping maps no weights are determined by graph-
matching, but set to the apriori weight computed by the
average weight of all particles with overlapping maps. This
prevents particle depletion before a loop is closed. If there
are no particles with overlapping maps (e.g. at the start) the
uniform distribution is used for particle weighting. Note, that
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in the context of RBPF no explicit loop closing detection
is performed and, therefore, no explicit trajectory (or map)
correction can be done.

C. Adaptive sensor model

To compute the matching weights between corresponding
nodes, an adaptive sensor model had been developed which
respects the aforementioned cases and requirements. In the
context of appearance-based observations, the visual simi-
larity between observations is not only depending on the
difference in position but also on the environment itself. If
the robot, for example, moves in a spacious environment with
much free-space, the similarity between observations from
slightly different positions will be very high. In a narrow
environment with many obstacles, however, observations at
positions with low spatial distance are already drastically
influenced, which leads to low visual similarities. To that
purpose, our sensor model estimates the dependency between
surrounding-specific visual similarities Ŝij of the observa-
tions zi and zj and their spatial distance d̂ij . An example for
this dependency is shown in Fig. 6. The samples (blue dots)
to built such a model are taken from the nodes of the local
map where each node is compared to each other. This results
in n2/2 pairs of Ŝij and d̂ij representing samples describing
the appearance variability in the local environment. Different
approaches to approximate the model were investigated, e.g.
the Gaussian Process Regression (GPR) of Rasmussen [24].
Despite of the advantageous of non-parametrical description,
we decided against the use of GPR because of the compu-
tational costs associated with the algorithm, since the model
has to be computed after each motion step. Furthermore, the
model has to be applied to each node of the local map of
each particle while the graph-matching process. Therefore,
our approach uses a parametrical polynomial description
of the sensor model and its variance. The parameter are
estimated by a simple least square optimization. Then, the
model provides two values, an expected similarity Ŝ(dij) and
a reliability σ̂(dij) for a given distance dij . The likelihood
that two nodes i and j of particle k are matching is computed
as follows:

w
[k]
i = p (Sij |dij) ≈ exp−

(
Sij − Ŝ (dij)

)2

σ̂(dij)2
(2)

With that adaptive sensor model and the aforementioned
graph-matching algorithm, the importance weight of each
particle (the likelihood of a map) can be determined.

D. Visual features

Before the experimental results will be presented in the
following section, possible image features for our approach
are introduced. Concerning the reasons discussed in
Section I, we prefer an appearance-based approach utilizing
holistic appearance features extracted from panoramic
snapshots obtained from the omnidirectional camera located
at the top of our experimental robot platforms (see Fig. 1).
The environment observation for a given position of the
robot is described by one 360◦ view. Because the heading

Fig. 6. The adaptive sensor model (shown by the red curve similarity and
the blue area reliability ) is modeling the dependency of the visual similarity
between two appearance observations and their spatial distance in the local
environment described by the local map. The model uses a parametrical
polynomial description which is continuously re-estimated and updated by
means of the visual and metric labels of the local graph nodes (black dots).

direction of the robot only results in a rotated omniimage, the
appearance-based features extracted from such a snapshot
image are independent from the robot’s heading and can
simply be brought in reference orientation by simple rotation.

A number of possible appearance-based features has been
studied in our lab so far with respect to their capability to
visually distinguish neighbored positions in the environment,
the computational costs, and the preservation of similarities
under changing illumination conditions and occlusions. The
respective features experimentally investigated include local
RGB mean values [1], HSV-histograms [2], FFT-coefficients
(as proposed by Menegatti [17]), and SIFT features [8], [20]
as appearance-based image description. All these features
exhibit several pros and cons. RGB, HSV and FFT are
very fast to compute and to compare, furthermore, their
memory requirements are small. However, occlusions and
illumination changes are a problem, whereby the HSV
features are influenced least. In contrast to that, SIFT is
slow in computation and comparing, but the advantage
is the ability to determine the position of the salient
observation with high accuracy. In our SLAM approach,
however, where an adaptive sensor model is continuously
estimated (see Section III-C), the computation time grows
quadratically with the number of nodes in the local map.
Considering the findings and constraints of these preliminary
investigations, in our final implementation we decided in
favor of the HSV histogram features (lower memory usage
and computational costs than SIFT), especially because
of the real-time requirements of our SLAM approach and
the high robustness of these features. The extraction of
the HSV features and details of an automatic luminance
stabilization and color adaptation to cope with highly
varying illumination conditions are explained in detail in
[2].

IV. EXPERIMENTS AND RESULTS

Our appearance-based SLAM-approach and its general
map building and localization capabilities were investigated
in two different environments each of them showing spe-
cific constraints and challenges. For the first experimental
investigation, we used our default test environment [2], the
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Fig. 7. Experiment 1 (top) - in the home improvement store: The
red path shows the robot’s movement trajectory only estimated by our
appearance-based SLAM approach. The map shows a high accuracy with
only small alignment errors. For visualization of the localization accuracy,
a laser-based occupancy map was built in parallel and superimposed to the
estimated movement trajectory (visual SLAM). Experiment 2 (bottom)- in
a university building (Kirchhoff building): In this corridor-like environment
it is very challenging to build up a map without distance measuring sensors
because of the uniformity of the hallways and walls and the huge loop (250
m) that needs to be closed for place recognition.

home improvement store already introduced in Section I
and shown in Fig. 2, where many dynamic effects occur.
The second series of experiments was performed in a large
pentagonal university building, the Kirchhoff-building, where
the corridors are arranged in a closed loop. All data for the
analysis were recorded under realistic conditions, i.e. people
walked through the operation area, shelves were rearranged
and with that their appearance, and other dynamic changes
(e.g. illumination, occlusion) happened. Additionally, laser
data were captured to generate a ground truth to evaluate
the results of our appearance-based visual SLAM approach.
Note, that the laser scanner in all cases only was used
for comparison and visualization, but not for mapping or
localization.

In the first experiment, the robot was moved several times
through the home store along a path of about 500 meters
length. Repeated loops around the goods shelves were driven,
because the RBPF SLAM algorithm explicitly requires loop
closures. The resulting graph (Fig. 7, top) covers an area of

20 x 30 meters and was generated by means of 250 particles
in the RBPF. Thus, 250 global graph maps had to be built,
whereas Fig. 7 only shows the most likely final trajectory
and a superimposed occupancy map for visualization. This
occupancy map was created by means of raw laser data
arranged along the pose trajectory estimated by means of
the appearance-based SLAM approach. The superimposed
map gives an impression of the quality and accuracy of our
visual SLAM algorithm. It only shows marginal alignment
errors, all hallways and goods shelves are arranged very
precise along straight lines. To evaluate the visually esti-
mated path shown as red trajectory in Fig. 7, in addition
a ground truth path and map built by means of a Laser-
SLAM algorithm were calculated. A first result was, that the
trajectories estimated by both SLAM approaches are very
similar. This is also expressed by a mean localization error
of 0.27 meters (with a variance σ ≈ 0.13m) compared to the
laser-based SLAM results. The maximum position error in
this experiment was about 0.78 meters. These experimental
results demonstrate, that our approach is able to create a
consistent trajectory and for this reason, a consistent graph
representation, too. Furthermore, in contrast to grid map
approaches, topological maps require less memory because
of the efficient observation storage, where each observation’s
features of each snapshot are linked to all global maps.

The second indoor experiment was carried out in the
Kirchoff building where the robot drove a huge corridor loop
with a path length of about 250 meters (Fig. 7, bottom). The
challenge here is to close the loop at the right position. This is
really hard because the hallways in that building all look very
similar. In contrast to laser-based SLAM algorithms which
often use scan-matching techniques to keep the odometry
error small until a loop is closed, our RBPF approach cannot
improve the odometry before a loop closing occurs. Thus, a
position improvement cannot be done until the robot reenters
areas it has already visited. The robot SCITOS used for these
experiments produces a position error of 2-3 meters at the
end of the 250 meters loop. Therefore, our algorithm needs to
cope with this odometry uncertainty. Using a higher number
of particles (1,500 particles) to approximate this state space,
our algorithm also achieves good localization results with a
mean localization error of 0.57 meters (σ ≈ 0.26m) and a
maximum error of 1.39 meters.

A final overview of the achieved results and the computa-
tional costs of our visual SLAM approach in all experiments
and environments is given in Table I. It becomes evident,
that in those environments, like the home improvement store,
where the robot could be driven along smaller loops, the
visual SLAM approach achieved the highest accuracy. The
computational and the memory costs of the algorithm depend
linearly on the number of particles and quadratically on the
number of nodes in the local maps required for graph match-
ing. At a single-core CPU with 1.8GHz, the computation
of the adaptive sensor model is done in approximately 60
ms (independent from map and particle size), whereby 20
nodes of the local map were used for the estimation of the
similarity model. The rest of the computational costs (see
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TABLE I
OVERVIEW OF THE ACHIEVED RESULTS IN ALL EXPERIMENTS AND

ENVIRONMENTS.

Experiment Home store University building
Size of area 30x20m 90x120m

Total path length 500m 1400m
# of particles 250 1500

Error Mean/Var/Max 0.27/0.13/0.78 m 0.57/0.26/1.39 m
Time per cycle 0.08 s 0.16 s

Table I) is spent for map updates, weights determination, and
the resampling process. For a small number of particles (as
used in experiment 1), our approach is running in real-time.
With the higher number of particles used in experiment 2,
the SLAM algorithm nearly works in real-time. In this case,
the robot only has to be joy-sticked a bit slower through the
environment.

V. CONCLUSION AND FUTURE WORK

We presented a novel appearance-based SLAM approach
which is able to localize a mobile robot in demanding real-
world environments and to create a global map of the envi-
ronment simultaneously. To the best of our knowledge, this
is the first approach allowing an appearance-based on-line
SLAM in large-scale and dynamic real-world environments.
The essential contribution of this paper is the introduction
of the visual appearance-based approach into the concept
of Rao-Blackwellized Particle Filters (RBPF) to solve the
SLAM problem. The key ideas of our approach are the use
of global and local graph models per particle, the intro-
duction of an adaptive sensor model, and the sophisticated
graph-matching technique to compare the local graph of
the particle with the respective global graph to determine
the best matching map, and with that the best particles
for the resampling step. The essential advantages of our
appearance-based SLAM approach are its low memory and
computing-time requirements. Therefore, our algorithm is
able to perform in real-time which is a prerequisite for all
on-line working map builders or mapping assistants.

We conducted a number of indoor SLAM experiments
investigating the impact of the path length until loop closing,
the variability of the visual appearances captured from the
surroundings along the driven route, and the odometry qual-
ity on the stability and localization accuracy of this SLAM
technique. Based on these encouraging results, several long-
term experiments are planned for the near future to deter-
mine the accuracy of this approach in the complete store
(100x80m2), and to investigate the influence of dynamic
changes in the environment (changing filling of the goods
shelves, re-arrangements in the hallways, occlusions by peo-
ple, changing illumination), to the robustness and long-term
stability of our approach.
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