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Abstract— Correctly identifying people who are interested in
an interaction with a mobile robot is an essential task for a
smart Human-Robot Interaction.

In this paper an approach is presented for selecting suitable
trajectory features in a task specific manner from a huge
amount of different forms of possible representations. Different
sub-sampling techniques are proposed to generate trajectory
sequences from which features are extracted. The trajectory
data was generated in real world experiments that include
extensive user interviews to acquire information about user
behaviors and intentions. Using those feature vectors in a
classification method enables the robot to estimate the user’s
interaction interest.

For generating low-dimensional feature vectors, a common
method, the Principle Component Analysis, is applied. The
selection and combination of useful features out of a set of
possible features is carried out by an information theoretic
approach based on the Mutual Information and Joint Mutual
Information with respect to the user’s interaction interest.
The introduced procedure is evaluated with neural classifiers,
which are trained with the extracted features of the trajectories
and the user behavior gained by observation as well as user
interviewing. The results achieved indicate that an estimation
of the user’s interaction interest using trajectory information
is feasible.

I. INTRODUCTION

A future application of interactive service robots, like
the robot platforms HOROS [1] or SCITOS [2], will be to
provide information and other services to people in public
environments and office buildings. A main question is how
the robot should attract the attention of its interaction part-
ners. It would be inconvenient to let the robot address every
detectable person in the surrounding area, or to let him wait
motionless for people to approach the robot themselves.

Intelligent robots should be able to show a natural human-
like behavior. For instance, they should meet halfway with
someone who is on the verge of starting an interaction and
attract people who are not sure about the robot’s abilities.
In addition, they should avoid disturbing people who are
unwilling to interact with them.

In order to do so, a robot must have the ability to estimate
on its own, who is willing to interact and who is not. This
estimation has to take place early enough before the person is
reaching the robot, to enable the system to accomplish a user-
adaptive welcoming. Human beings infer the intention of
other people from their mimics, gestures, and body language.
As a result of limited camera resolution, a robot is not able
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to specify those at far distances. A promising idea, followed
in this paper, is to extract the required information from a
person’s movement trajectory which is available as soon as
the person is detected by the robot.

Section II gives a short overview on recent research in this
particular field of Human-Robot Interaction. This is followed
by a description of the scenario in section III. Afterwards a
systematization on different methods for trajectory represen-
tation is presented in section IV. How to select the right
representation method is discussed in section V. After the
results are presented in section VI, the paper concludes with
section VII.

II. RELATED WORK

The estimation of a user’s interest to interact with a robot
with the common goal of adapting the robot’s behavior in
starting an interaction became focus of attention in different
works. Most approaches consider only the distance and
certain zones to infer a user’s intention since one-to-one
interactions are typically carried out in small distances. Finke
et al. [3] trained HMMs with data from sonar sensors to
recognize people that were closer than 1 m to the robot.
It was assumed that people which entered that zone are
interested in an interaction. Nabe et al. [4] discovered in
a field trial with a ROBOVIE-M robot that three zones exist
in which a person shows either a watching, a talking or a
physical interacting behavior depending on their distances to
the robot. They announced to regulate the robot’s behavior
just by these distances. Michalowski et al. [5] subdivided the
surrounding area of the roboceptionist VALERIE into certain
zones, also depending on the distance to the reception desk.
These zones were used together with head pose information
from a camera to determine the degree of the person’s
engagement in a Human-Robot Interaction in order to control
the rule-based behavior of Valerie in contacting people. An
approach with the main focus set on the selection of the
robot’s actions can be found in Schulte et al. [6]. The tour-
guide robot MINERVA measured the probability distibution of
people in the surrounding area as well as their distance to the
robot via laser. This information is used in a memory-based
reinforcement learning approach to learn the best action of
the robot for attracting people and involving them in an
interaction.

A known problem in the use of distance and zones as
criteria is that these measures might be applicable in some
scenarios but it seems insufficient when people are moving
quickly in the robot’s surroundings. Preferably, the classifica-
tion takes place as early as possible to let the robot react fast
enough. The incorporation of movement trajectories enables
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this course of action. A first step into this direction was made
by Holzapfel et al. [7]. They trained a neural network with
data from a stereo camera tracker. At each classification step,
some angle and distance features were used as input. People
heading towards the robot were classified as being interested
in an interaction, and people passing the robot as being not
interested.

Within the discussed approaches the classification problem
is always seen from the robot’s view by using a robot
centered coordinate system. In comparison, our approach
interpretes the scene from the person’s point of view which
brings some advantages. Moreover, often only raw trajectory
data is considered as classification input so far. Applying
specific preprocessing and automatic evaluation steps might
lead to more suitable classification results which is proposed
in this work.

III. SCENARIO AND DATA ACQUISITION

To realize the estimation of the users’ intention to interact
with a robot, it is necessary to capture movement trajectory
data. A spatio-temporal classifier, in particular a standard
feedforward Neural Network, is trained with this data. This
section discusses the data aquisition scenario.

We used our experimental robot plattform HOROS for this
purpose. The robot is shown in Fig. 2, while the details of
the applied multimodal people tracking system have been
introduced in [8].

This approach is using dif-
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Fig. 2. The robot plattform
HOROS. The marked devices are
(a) microphones, (b) touch screen,
(c) laser range finder, and (d)
sonar sensors.

ferent sensors of the robot to
get a set of hypotheses of peo-
ple’s positions in the robot’s
surroundings. A local occu-
pancy gridmap which is built
up from the measurements of
the robot’s sonar sensors is
compared to a static map of
the environment, yielding hy-
potheses based on unexpected
differences. Besides the hy-
potheses from this cue, a SICK
laser range scanner is used
to detect legs in greater dis-
tances. Using a difference ap-
proach, individual rays of the
range scan are compared to
a dynamic background model,
which adapts slowly to varia-
tions e.g. due to slight move-
ments of the robot. The dis-

advantage of the laser model, that people become part of
the background if they don’t move for a certain time, is
compensated by the combination of the different sensors by
means of probabilistic sensor fusion techniques. The system
generates a list of trajectory points for people moving in a
6 m circle around the robot with an update frequency of 10
Hz.

For the purpose of recording meaningful trajectory data an
appropriate location is needed. This comes with some strings
attached. Besides having enough space to detect and track a
person soon enough for accomplishing a robot action before
the person leaves the robot’s interactive operation area, the
place should have a high frequency of single individuals
passing by. One disadvantage of the used tracking system
is that people who walk very close to each other are hard to
separate.

However, two entrance halls at our university were chosen,
which seemed appropriate for this task. The robot was placed
in three different positions on 15 non-consecutive days for
about 6 hours each in order to gain trajectories from different
robot views. This allowed a position invariant estimation of
the user’s intention to interact.

Besides the choice of the place, different design decisions
had to be made before the experiments could be carried
out. First of all, a promising scenario for the target group,
consisting of students, employees and visitors, had to be
found. As the robot was supposed to be deployed for a longer
period of time, we wanted to offer an application which lead
to both, interactions with new people as well as repeated
interactions with people passing the robot regularly in order
to integrate the robot into their everyday life.

The resulting information terminal application provided
the daily menus of different cafeterias, the ongoing cinema
program, bus timetables, jokes, events and as a special
feature, an audio-based gender estimation accomplished by
the robot. An eye-catching GUI was created especially for the
application which was presented on the robots touch display.
It had a simple navigation structure to ensure that even people
who are not familiar with using technical devices are able
to interact with the robot intuitively. To let the robot differ
sufficiently from a static information terminal, we focused
on the integration of a broad spectrum of robot activities
by varying the robots voice responses, changing its facial
expressions and trying to produce a continuous dialogue
process.

The robot behaved as follows during the experiments:
Whenever a person was detected by HOROS, a randomly
chosen voice output started which was intended to attract the
user’s attention and influence the user’s decision to interact.

Each possible voice output had a different effect on the
user. These actions had specifiable moods, they were meant
to be funny, happy, or provocative. Several actions were
tested to find the most suited to the people’s expectations and
wishes. After an action was initiated, the robot waited for the
person to approach or to pass by. Via its sensors the robot
took note of hesitating people, too. In that case, the robot
started an additional animating voice output to convince the
person to interact. During each trial hidden experimentators
watched the scene and made notes about what happened. The
experimentators waited until the current person had left the
robot’s surroundings. Afterwards they tracked the person and
started an interview to gain new knowledge about Human-
Robot Interactions besides just recording trajectory data.



Fig. 1. Overview of different kinds of representation for trajectories. Choosing the right reference system (a), coordinate system (b) and sampling
technique (c) is highly task dependent. Optionally, it is possible to apply dimension reduction (d). In (d) the influence for two of the Eigentrajectories on
the recomposed trajectory are shown. Choosing informative representations via feature selection (e) and the neural network as final classifier (f) round out
the system.

Especially the process of establishing dialogs with humans
was our field of interest, concerning getting the attention
of people, signalizing the robot’s interest to interact and
finally establishing the interaction. A bunch of questions
arised in this context that we tried to answer by designing
a questionnaire for user interviews. Details regarding the
questions, the collected answers and conclusion are provided
in section VI.

IV. TRAJECTORY REPRESENTATION

One important step after data acquisition using a tracker
is to transform the trajectories into an appropriate rep-
resentation. This helps to provide necessary information
about the trajectory more explicitely, which will support the
classifier. Similar as performing image pre-processing steps
before classifying the image content, trajectory data needs to
undergo an adequate transformation.

Being confronted with the fact that collecting real world
data for training is time consuming, one has to deal with
few training examples. Having only a small amount of data
implicitely means that the number of input dimensions of the
classifier is not supposed to exceed a certain amount.

The final classification algorithm, as well as all necessary
preprocessing steps, have to work online on the robot. This
means the method has to deal with the fact, that during the
classification process only a part of the trajectory is known.
Hence, the classifier is trained with trajectory fragments.
Those fragments are extracted by sliding a window with
a fixed size over the trajectory (highlighted end of the
trajectory in Fig. 3(a)). For obtaining the right window size,
methods from time series analysis could be used [9]. Since
the system aims at online classification, a compromise has to
be found. On one hand having an adequate length to provide
enough information is crucial and on the other hand, being
able to estimate the user’s interest in a reasonable short time
before passing by is important, too.

(a)

(b) (c)

Fig. 3. (a) Reference systems: Contextual Information is provided by
specifying the polar coordinates of the trajectory’s origin (φO, dO) in a
stationary coordinate system originating at the robot’s position (which is
in this case facing to the right). The positions of the robot (φR, dR) or
other target objects (like a door) (φT , dT ) are provided in a trajectory
centered coordinate system. (b) Trajectory centered coordinate system: The
upper plot shows a point (xi, yi) on the trajectory represented in cartesian
coordinates, while the lower one shows its intrinsic representation (αi, li).
(c) Sampling techniques: In the upper graph the trajectory is sampled with
four points (×) being equally spaced with distance b. The lower one shows
the cartesian x-axis ploted against time. Equidistant sampling concerning
the t-axis leads to different points on the trajectory (+).

Unfortunately, choosing the right representation is highly
task dependent. Most recent publications either spend much
effort in designing a very task specific solution using expert
knowledge or skip it at all. This paper’s intention is to
present an evaluation procedure to support the designer in
the decision-making process. For this purpose, Fig. 1 gives
a short systematization of necessary steps to be considered.
So far, this systematization is not complete, but it helps to
get an idea of the necessary steps to follow.



The user’s situation is described within the tracking data.
To allow varying views on this situation, the data is split
up into different forms of representations. These forms are
achieved by using diverse reference systems (Fig. 1(a)),
which may contain a different amount of information. In
this paper three versions are discussed.

Choosing the right reference system has a high influence
on the classification task. For example, if the robot would
present general information, e.g. weather report, the direction
from which a person approaches would play no decisive role.
So a target referring coordinate system would be sufficient.
But if the robot presents information about the place it is
located in, e.g. in a museum, arriving people would probably
be more interested than leaving ones. In this case a contextual
view is essential.

First among the considered representation is a contextual
reference system (Fig. 3(a)), modeling information about the
surroundings. This paper suggests to provide information
about the origin of the trajectory in a robot-centered way.
This is done by specifying the first detected point of the
trajectory (φO, dO) in relation to the robot’s fixed position.
Most approaches are limited to such global types of represen-
tation. For the classification task presented in this paper using
this technique is expected to lead to unsatisfying results.

The intention of the user to interact with the robot can be
observed in a better way by centering the coordinate system
to the user and specifying the relative position to objects of
interest (Fig. 3(a)). Literarily spoken this helps the robot to
put itself into the person’s position. Such a target referring
representation is done for the last point in time of each
trajectory. Hence, the relative position of the nearest target
(φT , dT ) with the smallest angle and the robot (φR, dR) is
stored. This is done by specifying the distance d and the
angle φ relative to the person’s motion direction.

Furthermore, to rid the representation of the surroundings
a purely trajectory centered reference system is used. So,
the characteristics of the trajectory is put into focus, which
contains implicitly the velocity, acceleration and straightness.

Two different ways are suggested for describing the tra-
jectory in a trajectory centered reference system (Fig. 1(b)).
The first one (lower graph in Fig. 3(b)) can be compared
with a route description. The trajectory is represented in an
intrinsic way, which leads from one trajectory point to its
subsequent one. This is done by specifying the distance li
and the angle αi with respect to the motion direction to the
next point.

For the second one (upper graph in Fig. 3(b)) the origin
of the cartesian (x, y)-coordinate system is set to the last
trajectory point in time. The coordinate system’s orientation
is determined by the corresponding first trajectory point in
the window. In our case the orientation is chosen in the way
that this point lies on the x-axis.

Data originating from the tracker is sampled in a specific
way. But what kind of sampling technique (Fig. 1(c) and
Fig. 3(c)) helps to get most of the information? Sampling
in a spatial manner helps to keep the number of data points
constant for a certain trajectory length. For example, if a

person is standing, only one data point is sampled instead
of a point cloud. So, the shape of the trajectory is in the
focus of this type of representation. This is similar to the
way a HMM would handle the observations on the trajectory,
compensating variations in speed and time.

On the other hand, sampling can be done in a temporal
equidistant way. Hence, the speed of a person is coded
implicitly in the trajectory.

Some of the information implied in each of the trajec-
tory representations might be correlated. Finding out the
correlated data helps to reduce the number of information
that needs to be provided to the classifier. For this task
Principal Component Analysis (PCA) is commonly used,
which provides a set of Eigenvectors and Eigenvalues. The
Eigenvectors, which are called Eigentrajectories (Fig. 1(d)) in
this paper, span a new space, while the Eigenvalues indicate
the variance of each dimension of the new space.

The systematization presented in this section is to be
understood as a first proposal. Further efforts have to be
made to achieve an exhaustive taxonomy. Still, it becomes
clear, that a large number of representations can be generated.
But which one is the correct choice for the given task of
estimating the user’s interest in an interaction with the robot?
To make this determination, information theoretic measures
like Mutual Information and Joint Mutual Information (Fig.
1(e)) are applied together with the class labels gained from
the user observations and interviews. Both are discussed in
the next section.

V. FEATURE SELECTION AND CLASSIFICATION

The decision whether an observed person is interested in
an interaction with the robot is estimated by a neural classi-
fier, more specifically a Multi Layer Perceptron (MLP). This
classifier is trained with a part of the recorded data referred
to as training set, and the evalution is done subsequently
with the rest of the available data termed test set. Each
variable or dimension of a specific trajectory representation
is considered to be a feature.

Due to the abundance of possible input feature represen-
tations, the resulting neural classifier using all features is not
only prone to overfitting and related problems like increased
time demands for training, but we are interested in finding the
best way to preprocess our data, too. Hence, we incorporated
a feature selection step. These feature selection methods are
applied to identify irrelevant and redundant features in the
input space.

Feature selection methods are commonly distinguished
into “Filter”, “Wrapper” and “Embedded” approaches (see
[10]). Both wrapper and embedded methods utilize a learning
machine to evaluate the features, while the filter algorithms
are independent of the used classifier. For this work a filter
approach is chosen, because of this independence property.
The relevance of each feature is assessed with a statistical
measure, e.g. simple Pearson correlation coefficient, Fisher
discriminant analysis or information theoretic measures.

In this case, Mutual Information (MI) is applied (see [10],
chapter 6). MI expresses the correlation between a feature



Fig. 4. Interpretation of the information-theoretic measure Mutual Informa-
tion for our scenario. The approaching person sends signals of interaction
interest via gestures, facial expression and movement trajectories. Up to
now, the presented system only captures the movement trajectories including
some measurement noise, while e.g. gestures are lost. Additionally, maybe
some parts of the movement trajectory are not correlated to the interaction
interest at all. The relevant signals observable by the robot are measured
with MI.

xi, e.g. the x-coordinate of the position at the first trajectory
point, and the target Y , the class information representing
the intention to interact or not to interact. High MI values
indicate a strong correlation, while small values are hinting
at irrelevant features. It can be determinded by the following
equation, which is based on the well-known Kullback-Leibler
divergence:

MI(xi, Y ) =
∫

xi

∫

Y

P (xi, Y ) log
P (xi, Y )

P (xi)P (Y )
dxidY (1)

A graphical interpretation of the meaning of Mutual In-
formation in the context of the scenario is given in Fig. 4.

The computation of the probability densities is quite
demanding, due to the necessary integration. In the practical
implementation a histogram based approach was used to es-
timate the Probability Density Functions (PDF), simplifying
the above equation by replacing the integrals with sums over
the bins of the histogram. For more details on the histogram
technique and other approaches for PDF estimation the
interested reader is refered to [11].

The resulting MI value indicates the relevance of a feature
with respect to the target, but it does not include information
about possible redundancies between features. This drawback
can be overcome by computing the pairwise Mutual Infor-
mation MI(xi, xj) between the features. In this case a high
MI value indicates redundancy, low values independence.

A step further, the use of Joint Mutual Information (JMI)
eliminates another possible problem, that occurs if two
features are unimportant themselves, but provide information
if they are used in combination (think of the classical XOR
problem). JMI computes the relevance of a set of features
X = {x1, .., xn} with respect to the target in the following
way:

JMI(X,Y ) =
∫

X,Y

P (x1, .., xn, Y ) log
P (x1, .., xn, Y )

P (x1, .., xn)P (Y )
(2)

Selecting feature sets from different trajectory representa-
tions with high relevance for the user’s interest is the final
step before the training of the classifier. The next section
discusses which representations proved to be relevant.

VI. EXPERIMENTS & RESULTS

This section discusses the conducted experiments, the
obtained results and what conclusions can be drawn.

After the trajectory recording sessions, we were left with
a very unbalanced data set. The number of 43 interactions
with the robot is quite low, compared to the number of 450
non-interaction cases. However, an interaction took place if
and only if the user provided input to the system, e.g. pushed
a button. Additionally, 34 individuals stated that they were
undecided but finally did not interact with HOROS.

The analysis of the questionnaires revealed some of
the reasons for this unexpected behavior. The main issues
covered with our questions were:

• How should a robot behave in public environments,
especially in office environments?
As expected, the results showed that friendly and funny
actions were preferred from the users and lead to most
interactions. Sad or provocative robot voice outputs are
not recommendable since only in a few cases success-
ful interactions could be established by this behavior.
Moreover those actions had a slightly negative influence
on the users. Interestingly the results indicate that an
informal way to talk to people is more suitable than
being too formal.

• Which robot actions are appropriate for robots in public
environments, especially in office buildings, e.g. which
voice output, robot movements and facial expressions
should be used?
The choice of voice outputs was already discussed in the
previous question. Additionally, people wanted to get as
much information as possible about the robot’s abilities
during dialog initialization but with as little amount of
words as possible. We found out that next to a voice
output a movement of the robot is very important. Many
people noticed that HOROS didn’t move during the
experiments at all and suggested to include movements
in order to recognize the robot earlier while passing
by the robot. Regarding the robot’s facial expression, a
friendly and smart smiling was the best choice.

• Is a user-adaptive robot behavior necessary for such
environments during dialog initiation and beneficial for
future work?
In our long-term experiment we figured out that a
user-adaptive robot behavior is necessary during dialog
initiation. People who had to pass by the robot regularly
and didn’t have interest in an interaction tried to avoid
the robot and partially changed their way through the
building in order to be not recognized and contacted
by the robot. Also we couldn’t convince all undecided
people just by using voice output. For those people, a
more active robot behavior would be necessary. For peo-
ple who had interest in an interaction a time-consuming
greeting was needless. A short greeting and meeting
a person half way is completely appropriate for these
cases.



• How good is HOROS perceived in an environment by
people who don’t know about its presence and how
much is the robot able to arouse interest in an inter-
action?
Since HOROS was standing static during the experi-
ments, it partially was perceived too late. The eye-
catching appearance of HOROS did not compensate the
lack of movements.

• Which robot dependent and independent variables influ-
ence the user’s descisions to interact with the robot, e.g.
the person’s mood, haste and attitude towards robots?
In our questionnaires we tried to collect information
about all possible facts that could have an effect on
a user’s intention to interact with the robot. Other
variables like a persons mood, gender or a general
interest in robots were apparently no factor for engaging
in interactions.

• Why did people dodge an interaction?
One motive are time constraints. Because of them, many
people, students and employees alike, rushed through
the hall in a hurry. Another reason was, that people
avoided the robot because they were unsure if they
were allowed to use the system or expressed fear to
damage the robot. Those people who interacted with
the robot once, refused to use him again, mostly because
the application of the information terminal did not yield
enough benefit for them.

The main insight gained during the data selection phase
was, that people in a working environment need a strong
reason to use a robot.

In the following, the recorded trajectories are examined in
detail. The different forms of trajectory representation, see
section IV, are compared to each other to identify a useful
subset of trajectory features. At first, the time equidistant re-
sampling method is compared to the spatial equidistant one,
while intrinsic and cartesian trajectory centered coordinates,
are analyzed in more detail. The following evaluations have
been done once for both resampling methods, all leading
to the conclusion that, contrary to expectations, the disad-
vantage of losing velocity information in the case of spatial
resampling is not that relevant for the given classification
task. For all further illustrations, we will concentrate on time
equidistant resampling, knowing that spatial resampling will
yield similar results.

The next point of interest is the amount of information
contained in the raw data points considering the intrinsic
and cartesian descriptions (see section IV).

Fig. 5 shows a plot of the Mutual Information between
the individual features and the interest of people to inter-
act, computed as described in section V. A look at the
figure shows that in comparison cartesian coordinates (xi, yi)
seem to contain more information about the target interest
than intrinsic ones (αi, li). Especially the x-coordinate of
cartesian representation is coding the speed and thus seems
to be the most relevant. By plotting the pairwise Mutual
Information between the cartesian coordinates (see Fig. 6
(a)) it is observable that there is a high redundancy between

Fig. 5. This image shows the Mutual Information for the individual features
of the datapoints to the interest in an interaction. Columns 1 to 12 show the
resampled datapoints in cartesian coordinates (first x then y components),
13 to 18 describe the principal components for the cartesian representation,
19 to 30 show the data using intrinsic representation (angle α and length l
of segments), 31 to 36 principal components of intrinsic representation. The
right diagram shows the information of target refering data (relation to the
robot dR, φR and to the closest target point dT , φT ) on a different scale.

Fig. 6. Illustration of the pairwise Mutual Information matrices for the
raw data in cartesian coordinates (a) the respective principal components
(b), as well as the intrinsic representation (c) and corresponding principal
components (d). Yellow/Brighter color represents high values and indicates
that both variables share a lot of information, which means that they are
redundant, at least partially. e.g. the MI between x6 and x5 is very high
and thus one of the variables is redundant. Green/Darker ones imply lower
values and an independence of the considered variables. (a) and (b) have
the same scale which is different to the one of (c) and (d) which is lower
at all.

the features in the trajectory window. For example, looking
at matrix entry (x5, x6), which has a high pairwise Mutual
Information leads to the conclusion that only one of the
two features is necessary for the classification process. In
comparison with entry (y1, y4) the low value between those
leads to the conjecture that both features are not redundant.
The x-coordinates have higher correlations because they
result from translative motion, whereas the y-coordinates are
coding the shape of the trajectory in the window including
the curvature and therefore are less correlated among each
other than the x’s. An absolute quantitative comparison is
fairly hard but the relation is observable.

In contrast to this, angular descriptors (Fig. 6 (c)) of
the intrinsic representation are less redundant. But for this
representation the length of the segments is highly correlated,



MLP inputs Network complexity error
raw data (x1, y1, . . . , x6, y6) input 12, hidden 16 0.2252
PCA data (e1, . . . , e12) input 12, hidden 16 0.2454
raw data (x4, y4, x5, y5) input 4, hidden 10 0.2057
PCA data (e1, . . . , e4) input 4, hidden 10 0.193
(x4, y4, x5, y5), (φR, dR, φT , dT ) input 8, hidden 16 0.1756

TABLE I

Classification error of MLPs using different subsets of features (first column)
extracted from the windows of people’s trajectories (see section IV). The
binary output is compared to the class information and the errors are
averaged over the test data set to compute the final error rate. The best
result was achieved using the target refering information additionally.

because people usually do not vary their velocity that fast.

As introduced in section IV, the method used to reduce
linear redundancies is PCA. In Fig. 5, the information of
the most significant principal components ei and fj (the
projection on Eigentrajectories) are given for both kinds
of representation. In the cartesian case, the information is
concentrated in the most significant components, which are
nearly decorrelated, as a look on the pairwise Mutual In-
formation matrix Fig. 6(b) shows clearly. These components
describe the local shape of the trajectory, almost as well as
the complete raw data does.

In contrast the intrinsic representation decorrelates the
points on themselves. Considering the different scale, the
Mutual Information matrix shows that the correlations be-
tween the principal components does not decrease at all.
As a result we conclude, that the shape information of the
trajectory centered data is expressed in the most compact
way by projecting the cartesian raw data onto the most
relevant Eigentrajectories (principal components).

The experiments with the classifier that has been trained
once with the raw data and once with the data compressed
with PCA, reached similar performances with a quite com-
plex network. But as given in Table I, the compressed
representations (line 2 and 4) allow to keep the network
simple and, therefore, a better generalization over the test
data set can be reached. During the learning phase, the
target is set to one for interaction interest and zero for non-
interacting trajectories. By means of this, the classification
is done by thresholding the real-valued output in the interval
[0, 1] at 0.5. Hence, an expected interaction is coded as
one and a non-interaction as zero. The classification error
results from averaging the binary classification results over
all trajectory windows in the test data set. This includes the
ambiguous parts observed in the beginning of a trajectory.

A last experiment considering the obtainable classification
accuracy was conducted. The expectation from Fig. 5 is
that the classification rate could be increased once more
by taking into account the target refering information for
each trajectory window. Finally, without optimization of any
network structure, a rate of about 82% correct classifications
(see line 5 in Table I) promises a great benefit when selecting
the right action to attract interested people or avoid incurious
ones.

VII. CONCLUSION

This work concerns the task of classifying people in the
surroundings of the robot as interested in an interaction or
as incurious. The available hypotheses about the environment
come from the people tracking system of the robot, which
is used to create movement trajectories. After discussing
different approaches to represent trajectories, a method was
presented to prune these possibilites by means of information
theoretic measures.

This method conveniently supports the design process and
helps to break dependecies from expert knowledge. Hence,
the presented method is applicable for a wider spectrum
of applications than the one presented here. Projecting the
cartesian raw data into a PCA subspace proved to be the best
suited approach for the trajectory classification task.

In our future, work this knowledge about the user’s current
interest in an interaction will be used to automatically adapt
the welcoming strategy of the robot.

Further on, the presented approach will be applied to
estimate other user specific properties, like the degree of
urgency. This will allow us to refine and personalize the
dialog between human and robot even further.
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