
A sensor-independent approach to RBPF SLAM - Map Match SLAM

applied to Visual Mapping

Christof Schroeter, Horst-Michael Gross

Abstract— In this paper, we present the application of our
generic, sensor-independent Map Match SLAM framework to
visual mapping. In our previous work [14], we have introduced
the Map Match SLAM approach for mapping with sonar range
readings: Extending the grid-based Rao-Blackwellized Particle
Filter SLAM approach, in Map Match SLAM, a local map is
maintained by each particle in addition to the global map. The
local map is used to represent the most recent observations,
and weighting of the particles is done based on the compliance
of the local and the global map.

In this paper, we show how RBPF SLAM can also be applied
for mapping and path reconstruction with a stereo camera
or a single monocular camera, respectively. By mapping with
completely different sensors such as sonar, stereo, or monocular
cameras, we prove the wide range applicability of RBPF SLAM
and our Map Match SLAM computational framework.

I. INTRODUCTION AND RELATED WORK

Simultaneous Localization and Mapping (SLAM) de-

scribes the problem of mapping an unknown environment

without any external position reference [1]., e.g. GPS. In

that case, the consistency of the map depends on consis-

tent knowledge of the current position, while robust self-

localization requires an accurate map of the environment.

Therefore, the localization and the mapping problem are

coupled. The mutual dependency between pose and map

estimates requires to model the state of the robot in a high-

dimensional space, consisting of a combination of the pose

and map state.

The SLAM problem has drawn a lot of attention from

researchers in recent years and a variety of solutions have

been proposed, consequently. Algorithmic approaches can be

roughly divided according to two main criteria: The kind of

model that is used for representing the environment and the

algorithm that is employed in order to estimate the model

state. Furthermore, the model and method are often selected

depending on the sensor that is used and the features of the

environment that can be perceived by that sensor.

For the map representation often vectors of point-like

feature positions [2] are used. These features correspond

to landmarks or salient points/regions in the environment

which can be determined from the sensor input by ad-

equate feature-extraction algorithms. The attractiveness of

feature/landmark-based representations for SLAM lies in

This work has received funding from the State Thuringia (TAB-
Grant #2006-FE-0154) and the AiF/BMWI (ALRob-Project Grant
#KF0555101DF).

C. Schroeter, and H.-M. Gross are with Neuroinformatics and Cognitive
Robotics Lab, Ilmenau University of Technology, 98684 Ilmenau, Germany.
christof.schroeter@tu-ilmenau.de.

their compactness. However, they rely on a priori knowl-

edge about the structure of the environment to identify

and distinguish potential landmarks. In the field of visual

landmark-based SLAM algorithms, Lowe’s SIFT approach

[3] is commonly used. In recent publications, SURF features

are proposed instead of SIFT as a better compromise between

efficiency and accuracy [4]. Other successful approaches [5]

utilize different interest operators for detecting salient and

recognizable image regions, e.g. those introduced by Shi

and Tomasi [7]. Landmarks have also been extracted from

laser range scanner data, e.g. detecting tree trunks from local

minima in the depth profile [8].

In contrast to landmark representations, gridmaps [9] do

not make assumptions about any specific features to be

observable in the environment. They can represent arbitrary

environment structures with nearly unlimited detail. How-

ever, they require a large amount of memory, in particular,

the memory cost grows with the desired level of detail.

The estimation algorithms can be roughly distinguished

in two main classes: Kalman filters and derivations thereof,

and (Rao-Blackwellized) particle filters. The Kalman filter

and its non-linear derivation Extended Kalman filter (EKF)

as well as similar approaches like the Information filter [10]

are best suited for landmark representations. They are able

to estimate the full posterior distribution over the pose and

map state. However they assume Gaussian distributions in

the motion and observation model and become unstable if

these assumptions are not met. Furthermore, updateing the

full covariance matrix can become very expensive for large

environments. Therefore, algorithmic extensions have been

proposed for handling large numbers of state variables [6].

An effective means of handling the high-dimensionality

in the SLAM problem has been introduced in the form of

the Rao-Blackwellized Particle Filter (RBPF) [11]: in this

approach the state space is partitioned into the pose and

map state. A particle filter approximates the pose belief

distribution of the robot, while each particle contains a map

which represents the model of the environment, assuming

the pose estimation of that specific particle (and its history,

which is the estimation of the entire robot path) to be correct.

The RBPF approach to SLAM has been successfully used

with landmark-based maps [8] as well as with gridmaps [12].

However, gridmap solutions mostly used laser scanners and

exploited the high resolution and accuracy in order to reduce

state uncertainty and therefore computational cost [13].

In contrast to most of the approaches that have been

proposed so far, we aim at developing a SLAM algorithm

that is not adapted to any specific feature definitions or

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 2078

sensor characteristics. Instead, a widely applicable model

and algorithm should be used to represent the robot’s ob-

servations and to build the global environment map. For this

purpose, a gridmap model is not only used for the global

map, but also for representation of the current observation(s):

In addition to the global map, a local gridmap is built

from the current observation or from a sequence of recent

observations. While in other implementations the evaluation

of state hypotheses (particles) is based on the compliance of

observations with the global map through a sensor model,

which is specific to a particular sensor, in our approach

it is calculated using the compliance of local and global

map. With this method, any sensor (even multiple sensors)

can easily be integrated in the SLAM framework, as long

as a gridmap can be built from the sensor observations.

Furthermore, because the local map can incorporate multiple

subsequent observations, it is particularly well suited for

sensors with low spatial resolution or high noise, where a

sequence of measurements (preferably from slightly different

positions) will yield significantly richer information than a

single measurement.

In [14] we presented the Map Match SLAM approach

and showed its successful application to SLAM with low

resolution/high uncertainty sonar range sensors. We also

proposed a specific map model as a solution to the high

memory cost of gridmaps in combination with large particle

numbers, as an alternative to the one proposed in [13].

We will give a short overview over the SLAM framework

that was used there in section III and will describe the

application to binocular (stereo) vision input in section IV

and to monocular vision input in section V. Experimental

results for both inputs are presented in section VI.

II. RAO-BLACKWELLIZED PARTICLE FILTER

The complexity of the SLAM problem arises from the

very high-dimensional state space, consisting of the variables

describing the robot pose and the variables describing the

environment state. In the case of gridmaps, the map alone

usually contains a few thousands up to several million cells,

each of which corresponding to a state variable. Obviously,

a full posterior over the state is extremely costly to estimate.

The idea of the Rao-Blackwellized Particle Filter (RBPF) in

application to SLAM is to use a particle filter to estimate

the robot trajectory distribution p(x1:t|z1:t, u0:t) given the

sequence of odometry measurements u0:t and environment

observations z1:t. This trajectory estimate is then used to

estimate the desired distribution over map and trajectory:

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u0:t) (1)

The particle filter works in analogy to Monte-Carlo-

Localization [15], except that instead of one given map,

each particle contains a separate map. In order to calculate

the importance weights for p(x1:t), each particle uses its

own map. The map, in return, is built from the estimated

trajectory of that corresponding particle. The effect is that

a number of hypothesis maps are built, each corresponding

(x, y,)φ

pose =
global map

local map

(x, y,)φ

pose =
global map

local map

Fig. 1. Data representation overview: The particles model the distribution of
the robot pose belief. Each particle contains a full map of the environment,
which is a combination of the particle trajectory and the sensor observations.
Furthermore, each particle contains a local map, which only contains the
most recent measurements and depends on the particle’s current pose belief.
The situation shown is shortly before a loop closing. Apparently, the left
particle is a better approximation of the true pose than the right particle.

to a possible trajectory. Importance weighting is performed

with the weight for particle i following

w(i) ≃
p(x

(i)
t |z1:t, u0:t)

π(x
(i)
t |z1:t, u0:t)

(2)

Here, π(x
(i)
t) denotes the proposal distribution. Typically,

the motion model is used to generate the proposal distribu-

tion from the last particle generation (again, in analogy to

localization), in which case the weight formula simplifies to

wi ≃ p(zt|x
(i)
t ,m(i)) (3)

By repeatedly calculating importance weights, followed by

resampling to adapt the particle distribution to the estimated

distribution, particles are preferred which contain maps that

match new observations best, therefore the most likely map

is selected.

III. MAP MATCH SLAM

The base of our SLAM approach is a particle filter, where

each particle contains a pose (x,y, heading φ) estimate as well

as a map estimate. Without loss of generality, we can assume

the robot to start mapping at position (0,0,0). However,

it is also possible to initialize the particle filter at any

other pose or even with any pose distribution, e.g. to align

with a previously learned part of the map. While the robot

moves, the particles move as well, according to the odometry

readings and the probabilistic odometry motion model, which

describes the uncertainty in the actual robot motion. Due

to this uncertainty, the motion model contains a stochastic

component, which results in the particles spreading out and

generating slightly different trajectories. Basically, we use

the standard motion model which also can be found in

[12]. Additionally, during motion the robot observes the

environment by means of an appropriate sensor. A map

update is triggered frequently (depending on sensor range

and measurement characteristics). In that map update, each

2079

particle adds the new environment observation to its own

map, at its own estimated current position. Since the position

estimates of the particles are slightly different, the maps

differ as well (Fig. 1). As a distinctive feature of Map Match

SLAM, each particle contains, in addition to the global map,

a local map. The local map is built from sensor observations

in the same way as the global map, but consists of a limited

number of the most recent observations only, at any time.

Furthermore, by delaying updates for the global map until

the robot has moved on for several meters, we can ensure that

local and global map consist of disjoint sets of observations.

For this purpose, observations are stored in a queue together

with respective particle positions and global map updates are

performed with queue elements after the robot has moved

away from the actual observation position. This enables

the use of map matching between local and global map

for particle weighting, while still making best use of the

available information by incorporating all observations in the

global map.

Because of the delayed updates, from the start of mapping,

as long as the robot moves forward, the global map at

the current position is unknown, and there is no overlap

between local and global map. Only when the robot returns

to a known area (more precisely, when a particle believes

to return to a known area), local and global map overlap

at the estimated position and can be compared (Fig. 2).

For a correct particle position estimate, local and global

map of the particle should be compliant with each other

(assuming a static environment), while for wrong position

estimates, there will be discrepancies between the maps.

Therefore, the matching of local and global map is an

appropriate measure for evaluating the correctness of the

particle’s position estimate.

An alternative to using one local per particle would be to

build one common local map (relative to a robot centered

reference frame) and transform that local map into world

coordinates for the matching, according to each respective

particle’s position. Unfortunately, the discrete nature of grid

maps causes aliasing effects under translational and rota-

tional transformations, therefore this solution would come

at the cost of reduced pose resolution.

The calculation of the match value between the local and

global map is simple: For each cell in the local map the

occupancy value of the corresponding cell in the global

map is tested. If the cell is occupied in both maps, it

contributes with a value of +1. If the cell values of local

and global map disagree, the cell contributes with a value

of −1. That way, the match value is positive if local and

global map are very similar, and it is negative if many

objects exist in the local map where there is free space in

the global map. Discrimination between free, occupied and

unknown cells is done based on thresholds, but there is little

sensitivity of the results with respect to the actual threshold

values, because cell values mostly converge towards 0/1
after few observations and the map itself is nearly binary.

Therefore, the following, simple binary decision is applied

for calculating the match value:

Fig. 2. Map matching: For the left particle, representing a correct position
belief, the local map (white) is aligned to the global map (dark gray) very
well, while for the right particle, which does not represent a position belief
consistent with the environment, the local map conflicts with the global map
(many of the occupied wall cells in the local map correspond to free cells
in the global map). This situation would result in a higher weight for the
left particle, supporting the position hypothesis which generates a consistent
map.

match(i) =
∑

cell∈map







































1 if (local(cell) = occ)∧
(global(cell) = occ)

−1 if (local(cell) = occ)∧
(global(cell) = free)

−1 if (local(cell) = free)∧
(global(cell) = occ)

0 otherwise
(4)

Note that there is no rating for matching free cells.

Because the number of free cells is typically dominating

occupied cells, a ”reward” for matching free cells would

often favor a maximum area overlap of local and global

map, disregarding the accurate match of occupied cells. In

the experiments, in many cases this would prevent a correct

loop closure, as those particles that approached a loop closure

position earlier would be weighted higher, regardless of

correct position estimate. Furthermore, unknown cells do not

contribute to the match value (eq. 4), because an unknown

cell does not allow any assumption about the ”correct” cell

value - it is not even justified to assume unknown cells in the

local map must correspond to unknown cells in the global

map, as a slightly different robot path may yield observations

of a cell that was occluded previously (or vice versa).

To obtain the actual particle weight w(i), an exponential

function is applied as follows:

w(i) = ec·match(i)

(5)

with c being a free parameter to influence the range of the

particle weights and, therefore, the speed of convergence.

IV. GRIDMAPS FROM DISPARITY IMAGES

In our previous work [14], we introduced Map Match

SLAM for sonar range sensors. There, we found that map

matching works better for particle weighting in RBPF SLAM

than single observations when working with sonar sensors,

which have a low resolution and high characteristic sensor

noise. In order to prove the easy adaptation to various sensors

(even with a completely different measurement principle), we

will show here how to use Map Match SLAM for building

gridmaps from disparity images that are provided by a stereo

camera. Only minor modifications are necessary for using a

2080

Fig. 3. Left: The stereo camera mounted on our experimental platform
SCITOS-G5 from MetraLabs GmbH, Ilmenau. Right: An obstacle seen from
two different observation positions: Due to the camera’s limited field of
view, only the lower part of the obstacle is visible if it is too far away
from the robot. Consequently, that position will be wrongly estimated as
free space from that observation (see text).

Fig. 4. Occupancy estimation using a stereo camera: One input image of the
stereo image pair (top left) and the corresponding disparity image (top right,
yellow = low, orange = medium, red = high disparity). The disparity image
is not dense because disparity can only be calculated for image regions with
distinctive structure. The bottom images show the 3D point cloud generated
from the disparity image (left, side view into the scene, + camera viewing
frustum) and the respective cell occupancy estimations (right, with red =
occupied cells, green = free cells) for the visible area: the opposite door
and wall as well as the edge of the box to the right are correctly seen as
obstacles, while the floor is free space (incidentally, this is a view out of
the door that is visible in the background in Fig. 3)

new sensor: In fact, only the map update needs to be modified

to be able to update the local as well as the global map from

the sensor data. All other parts of the particle filter (motion

update, particle weighting through map matching, resampling

etc.) remain unchanged.

For image aquisition, we use a Videre Design Stereo-On-

Chip (STOC) camera (Fig. 3 left), which calculates disparity

images from two calibrated camera images in hardware (Fig.

4). Furthermore, the camera library also provides methods

to transform the pixels into a 3D depth point cloud in

the camera coordinate system. This is possible because

view direction is correctly known for each pixel from the

camera’s intrinsic parameters (determined as part of stereo

calibration), and the depth is known through disparity.

In order to convert the 3D points into robot coordinates

(to get the relative position as well as the height above

ground), we need to know the camera mount parameters

height and pitch. This is estimated in a simple calibration

run where the camera must see (nearly) only the floor in

front of the robot, preferably with good surface structure.

With the assumption that all points in the generated point

cloud are on the ground plane, the best fitting height and

pitch parameters are calculated using a RANSAC algorithm

[16].

With known camera mount parameters, points can be

transformed from the camera coordinate system into the

robot coordinate system. With the robot position estimated by

a particular particle, a further transformation yields a global

coordinate system position for each point.

The occupancy estimate is done in the following way: first,

the world coordinate points calculated from the disparity

images are assigned to the respective cells of the occupancy

gridmap. Every point with height above an obstacle threshold

h > hobst indicates that the cell is occupied. A point below

a free space threshold h < hfree indicates a free cell. Here,

we do not make any implicit assumptions about free space,

(like, e.g. space between the robot and the next obstacle is

free), because they do not hold if an obstacle is not perceived,

e.g. due to insuffient surface structure. Instead, cells are only

considered to be free in the current observation if the floor

is actually visible (and disparity for it can be determined).

Note that there may be points of different height within

one cell. In order to eliminate outliers (erroneous obstacle

detections), a cell is estimated as occupied only if a certain

number of points (e.g. 5) above the obstacle threshold are

located within the cell. If there are points indicating free

space, but no obstacle points, the cell is considered to be free.

These estimates are then used to update the stored occupancy

for all cells P (occij), using standard Bayesian occupancy

update [9]:

P (occij |o1:n) = 1.0 −
1.0

1.0 +
P (occij |on)

1−P (occij |on) ·
P (occij |o1:n−1)
1−P (occij |on−1)

(6)

where the intial occupancy is 0.5. If a cell holds no or not a

sufficient number of depth points in the current observation,

it remains unchanged.

One specific exception arises from the limited field of

view of the camera: Since the camera is mounted in such

a way that it is looking towards the floor in front of the

robot, the visible height decreases with the distance from

the robot (Fig. 3 right). Due to that limitation, obstacles

become partly or fully invisible if they are too far away from

the robot. When the lower part is still visible but not the

upper part, the respective position will wrongly be estimated

to be free from that observation. Through the cell update,

this could lead to fluctuation of the cell occupancy estimates

or even removal of previously correctly perceived obstacles

from the map. Note that although the viewing frustum is

known, the 2D occupancy grid map does not store the height

of obstacles and hence it is impossible to decide whether the

object that occupied the cell in an earlier observation has

disappeared or is just out of view. Eventually, this limitation

could only be overcome by using a representation which

2081

preserves the distribution of obstacles also in the height

dimension, e.g. similar to [18]. Our intention here is to

show that map matching using a simple 2D model will

yield good results in many scenarios. To this purpose, we

resort to a simple heuristic method: occupancy updates with

”free” observations are omitted if a cell has an occupancy

above a certain threshold, i.e. obstacles have been seen in

that cell in a certain number of observations before. This

way, an obstacle will remain in the map even if it is out

of the camera’s field of view in later observations. There

is a drawback of course: This method is not suited for

environments with dynamic objects, as an obstacle that was

seen in a certain place will remain in the map - even if it

disappears, and the position is observed to be free later.

V. GRIDMAPS FROM MONOCULAR CAMERA

IMAGES

In order to further prove the wide range capabilities of the

Map Match SLAM approach, we also demonstrate SLAM

from monocular camera input. Again, only the map update

needs to be adapted. Since the hardware does not provide

depth information in that case, we need an extended pre-

processing. To reconstruct 3-dimensional information from

the camera images, a stereo-from-motion approach was used

[17]. The basic components of the depth reconstruction

algorithm are:

1) Detection of interest points in the camera images

applying the FAST feature detector [19].

2) Tracking of features over a sequence of images through

optimal linking of the detected points in consecutive frames.

The robot’s odometry is used for finding epipolar lines and

initial 3D position estimation. Furthermore, image window

correlation is considered in the linking process.

3) Utilizing a multi-baseline stereo approach for initial

depth estimation of tracked points: a tracked feature’s 3D

position is calculated from the feature’s image positions in a

sequence of frames. Odometry is used as an estimate of the

respective camera observation positions. Since errors in the

odometry are small enough over a short distance (features

are usually tracked for not more than a few meters), it is

sufficient for that purpose.

4) Kalman filtering for refinement of the 3D position:

With the initial estimate, one Kalman filter is initialized for

each feature. Tracking of features continues until they are

lost (usually because they leave the camera’s field of view).

Each new observation contributes to the position estimate by

a Kalman filter observation update. Since feature positions

are estimated in global coordinates, a motion update is not

required.

In contrast to a binocular stereo camera setup, in monoc-

ular stereo-from-motion the observation positions are not

calibrated and scanlines for detection of matching points

are not exactly known. Therefore, uniqueness/recognizability

requirements for feature points are much higher. Besides the

computation cost, this is the main reason that the resulting

depth information is very sparse compared to a stereo camera

(Fig. 5). This also affects the occupancy information that can

Fig. 5. Stereo-from-motion: 3D points estimated from the monocular image
sequence (only the most recent image shown here). The feature’s positions
in the current image are marked, the color illustrates the estimated height
over ground (green = low, orange = medium, red = high).

Fig. 6. SLAM using a stereo camera: The top image shows the path and the
resulting occupancy grid map according to the robot’s odometry. The length
of the hallway is about 40m and the entire pathlength in this experiment is
300m. Although odometry has a relatively good accuracy on the SCITOS
robot in comparison to other platforms, the position errors accumulate up
to a few meters and in effect the map is very inconsistent. In the bottom
image, the corrected path and map from our Map Match SLAM approach
with a visual depth sensor is shown. All the position errors are corrected
and the obstacles and free space in the map are clearly defined, despite the
limitations of the sensor and its field of view.

be extracted. Due to the sparse depth information, detection

of free space is not feasible. The map building is restricted

to estimation of occupied cells from detected feature points

with a height greater than an obstacle threshold (Fig. 8). For

the map matching, eq. 4 is used again, but since no free

cells are detected, only matching occupied cells contribute

to the sum value. Of course, for path planning and obstacle

avoidance this kind of map can only serve as an additional

cue and needs to be combined with information from other

sensors like laser or sonar. For e.g. self-localization, though,

it is directly applicable. The approach is mainly presented

here to show that Map Match SLAM is capable to estimate

the correct path even with such sparse sensor information,

although we are aware of the fact that occupancy grids may

not be the best suited spatial model for this kind of sensor.

2082

Fig. 7. Overlay of the stereo SLAM map (colored yellow for better
visibility) with a reference laser map. The most noticeable differences are
caused by objects which are only partially or not at all seen by the laser
scanner (as the observations are restricted to one horizontal plane), e.g.
tables, chairs, plants.

VI. EXPERIMENTAL RESULTS

First, for the stereo mapping a proof-of-concept experi-

ment is presented, in which a partial map of our institute’s

building was built (Fig. 6). The cellsize was chosen as

(0.1m)2, which yields a good resolution but also ensures

a sufficient number of pixels/depth points per cell to avoid

excessive noise in the occupancy estimation from disparity

outliers. The robot was manually driven several hundred

meters through the central hallway and some adjacent rooms,

and SLAM was performed using only the odometry and

disparity images as inputs, with a fixed number of 200

particles.

A similar experiment was done with monocular input

(Fig. 8). Due to the sparse depth information, relatively few

cells in the map are adapted at all. As explained in section

V, free space is not detected. Despite the sparse map, the

consistent reconstruction of the true path also succeeds with

the combination of monocular images and odometry only.

VII. CONCLUSIONS

In extension to our previous work on Map Match SLAM,

in this paper we demonstrated a novel way of Simultaneous

Localization And Mapping based on visual input. We pre-

sented methods to estimate gridmap occupancies from stereo

disparity images as well as from monocular camera images

and integrated those map building approaches into our Map

Match SLAM framework, enabling the use of camera im-

ages in SLAM without any further modeling requirements.

Experimental demonstration of indoor mapping confirms the

functional capability of the proposed visual SLAM approach.

The demonstration of SLAM using such different sensors

as a sonar range array, a stereo camera, or a single camera

within the same computational framework supports the wide

range applicability of our Map Match SLAM system, which

is not dependent on specific sensor characteristics or pre-

defined features of the environment.

REFERENCES

[1] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, The MIT Press,
2005

[2] R. Smith, M. Self, P. Cheeseman, “A stochastic map for uncertain spatial
relationships”, in 4th Intl. Symposium on Robotics Research, pp. 467-
474, 1988

[3] S. Se, D. Lowe, J. Little, “Mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks”, in International

Journal of Robotics Research, 21(8), pp. 735-758, 2002
[4] Ch. Valgren, A. Lilienthal, “SIFT, SURF and Seasons: Long-term

Outdoor Localization Using Local Features”, in Proc. 3rd European

Conf. on Mobile Robots, pp. 253-258, 2007

Fig. 8. SLAM with a single monocular camera: The top image shows the
robot path and resulting occupancy gridmap from the odometry. The area
is the same as in Fig. 6. The bottom image shows the result of Map Match
SLAM with the single camera. Although the map is very sparse, the path
estimation is correct.

[5] A. Davison, “Real-time simultaneous localisation and mapping with a
single camera”, in Proc. Intl. Conf. on Computer Vision (ICCV’03), pp.
1403-1410, 2003

[6] J. Leonard, P. Newman, “Consistent, Convergent, and Constant-Time
SLAM”, in Proc. Intl. Joint Conf. on Artificial Intelligence, pp. 1143-
1150, 2003

[7] J. Shi, C. Tomasi, “Good features to track”, in Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 593-600, 1994
[8] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, “FastSLAM: A fac-

tored solution to the simultaneous localization and mapping problem”,
in Proc. AAAI-2002., pp. 593-598

[9] Moravec, H., “Sensor Fusion in Certainty Grids for Mobile Robots”,
in AI Magazine, 9(2), pp. 61-77, 1988

[10] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, A.Y. Ng, “Si-
multaneous mapping and localization with sparse extended information
filters”, in Intl. Journal Robotics Research, 23(7-8), pp. 693-716, 2004

[11] K. P. Murphy, “Bayesian map learning in dynamic environments”, in
Proc. NIPS’99, pp. 1015-1021, 1999

[12] D. Hähnel, W. Burgard, D. Fox, S. Thrun, “An Efficient FastSLAM
Algorithm for Generating Maps of Large-Scale Cyclic Environments
from Raw Laser Range Measurements”, in Proc. IEEE/RSJ Intl. Conf.

on Intelligent Robots and Systems (IROS’03), pp. 206-211, 2003
[13] A. I. Eliazar, R. Parr, “DP-SLAM: Fast, robust simultaneous local-

ization and mapping without predetermined landmarks”, in Proc. Intl.

Joint Conf. on Artificial Intelligence (IJCAI’03), pp. 1135-1141, 2003
[14] C. Schröter, H.-J. Böhme, H.-M. Gross, “Memory-Efficient Gridmaps

in Rao-Blackwellized Particle Filters for SLAM using Sonar Range
Sensors”, in Proc. 3rd European Conference on Mobile Robots, pp.
138-143, 2007

[15] D. Fox, W. Burgard, F. Dellaert, S. Thrun, “Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots”, in Proc. AAAI Natl.

Conf. on Artifical Intelligence, pp. 5398-5403, 1999
[16] M.A. Fischler and R.C. Bolles, “Random sample consensus: A

paradigm for model fitting with application to image analysis and
automated cartography”, in Communications of the ACM, 24(6), pp.
381-395, 1981

[17] E. Einhorn, C. Schröter, H.-J. Böhme, H.-M. Gross, “A Hybrid Kalman
Filter Based Algorithm for Real-time Visual Obstacle Detection”, in
Proc. 3rd European Conference on Mobile Robots, pp. 156-161, 2007

[18] Tim K. Marks, Andrew Howard, Max Bajracharya, Garrison W.
Cottrell, and Larry Matthies, “Gamma-SLAM: Using Stereo Vision and
Variance Grid Maps for SLAM in Unstructured Environments”, in Proc.

IEEE Intl. Conf. on Robotics and Automation, pp. 3717-3724, 2008
[19] E. Rosten, T. Drummond, “Machine learning for high-speed corner

detection”, in Proc. European Conf. on Computer Vision, pp. 430 -
443, 2006.

2083

