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Abstract. This paper’s intention is to present a new approach for de-
composing motion trajectories. The proposed algorithm is based on non-
negative matrix factorization, which is applied to a grid like representa-
tion of the trajectories. From a set of training samples a number of basis
primitives is generated. These basis primitives are applied to reconstruct
an observed trajectory. The reconstruction information can be used af-
terwards for classification. An extension of the reconstruction approach
furthermore enables to predict the observed movement into the future.
The proposed algorithm goes beyond the standard methods for tracking,
since it does not use an explicit motion model but is able to adapt to
the observed situation. In experiments we used real movement data to
evaluate several aspects of the proposed approach.
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1 Introduction

The understanding and interpretation of movement trajectories is a crucial com-
ponent in dynamic visual scenes with multiple moving items. Nevertheless, this
problem has been approached very sparsely by the research community. Most
approaches for describing motion patterns, like [1], rely on a kinematic model for
the observed human motion. This causes the drawback that the approaches are
difficult to adapt to other objects. Here, we aim at a generic, model-independent
framework for decomposition, classification and prediction.

Consider the simple task for a robot of grasping an object which is handed
over by the human interaction partner. First of all, the grasping task has to be
recognized by the robot. We assume that this information can be gained from
the motion information. Furthermore, to avoid a purely reactive behavior, which
might lead to ‘mechanical’ movements of the robots, it is necessary to predict
the further movement of the human’s hand.
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In [2] an interesting concept for a decomposition task is presented. Like play-
ing a piano a basis alphabet – the different notes – are superimposed to recon-
struct the observation (the piece of music). The much less dimensional descrip-
tion of when each basis primitive is used, can be exploited for further processing.
While the so-called piano model relies on a set of given basis primitives, our ap-
proach is able to learn these primitives from the training data.

Beside the standard source separation approaches, like PCA and ICA, an-
other promising algorithm exists. It is called non-negative matrix factorization
(NMF) [3]. Because of its non-negative character it is well suited for e. g. audio
source separation. The system of basis vectors which is generated by the NMF is
not orthogonal. This is very useful for motion trajectories, since one basis prim-
itive is allowed to share a common part of its trajectory with other primitives
and to specialize later.

The next section introduces the standard non-negative matrix factorization
approach and two extensions that can be found in the literature. In section 3 the
new approach for decomposing motion trajectories is presented. The experiments
with their conditions and results are presented in section 4, while the paper
concludes in section 5.

2 Non-negative Matrix Factorization

Like other approaches, e. g. PCA and ICA, non-negative matrix factorization
(NMF) [3] is meant to solve the source separation problem. Hence, a set of
training data is decomposed into basis primitives: V ≈W ·H Each training data
sample is represented as a column vector Vi within the matrix V. Each column
of the matrix W stands for one of the basis primitives. In matrix H the element
H

j
i determines how the basis primitive Wj is activated to reconstruct training

sample Vi. The training data V can only be approximated by the product of
W and H. This product will be referred to as reconstruction R = W ·H later.

Unlike PCA or ICA, NMF aims to a decomposition, which only consists of
non-negative elements. This means that the basis primitives can only be accu-
mulated. No primitive exists which is able to erase a ’wrong‘ superposition of
other primitives. This leads to a more specific set of basis primitives, which is
an advantage for certain applications, e. g. face recognition [4].

For generating the decomposition, optimization-based methods are used.
Hence, an energy function E has to be defined:

E(W,H) =
1

2
‖V −W ·H‖

2
(1)

By minimizing the energy equation, it is now possible to achieve a reconstruction
using the matrices W and H. This reconstruction is aimed to be as close as
possible to the training data V. No further constraints are given in the standard
formulation of the NMF. As it can be seen in equation 1, the energy function
depends on the two unknown matrices W and H.

Since both matrices usually have a large number of elements, the optimization
problem seems to be an extensive task. Fortunately, each training sample can be
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regarded independent from the others. Furthermore, both matrices are adapted
in an alternating fashion. This helps to reduce the number of dimensions for
the optimization process and allows a training regime with fewer examples. The
algorithm is formulated in the following description in vectorwise notation:
1. Calculate the reconstruction

Ri =
∑

j H
j
i Wj (2)

2. Update the activities

H
j
i ← H

j
i ⊙

(

VT
i Wj ⊘RT

i Wj

)

(3)

3. Calculate the reconstruction with the new activities

Ri =
∑

j H
j
i Wj (4)

4. Update the basis vectors

Wj ←Wj ⊙
(

∑

i H
j
i Vi ⊘

∑

i H
j
i Ri

)

(5)

Where the operations ⊙ and ⊘ denotes a component-wise multiplication and
division. For each of the training samples steps 1 to 4 are processed. The training
samples are iterated until a defined convergence criterion is reached. For the
criterion the energy function can be used in a usual fashion.

2.1 Sparse Coding

As it could be seen in equation 1 the energy function is formulated in a very
simple way. This results in a decomposition, which is quite arbitrary with no
further characteristics. This can lead, for example, to redundant information.
Especially, if the number of basis primitives is chosen higher than needed to
decompose the given training data. To compensate this drawback, it is useful
to apply a constraint which demands a sparse activation matrix, like it was
introduced in [5]. This avoids the fact, that several basis primitives are activated
at the same time, and hence are being superimposed.

E(W,H) =
1

2
‖V−W ·H‖2 + λ

∑

i,j

H
j
i (6)

The influence of the sparsity constraint can be controlled using the parameter
λ. In this paper, we only discuss a special case for the sparsity term. A more
detailed discussion can be found in [5]. The algorithmic description is similar
to the one of the standard NMF. The only thing that has to be considered is
that the basis primitives need to be normalized. The term λ

∑

i,j H
j
i together

with normalization and non negativity ensures sparsety in the sence of peak
distribution around low values.

2.2 Transformation Invariance

Beside the sparsity constraint another extension to NMF has been published in
[6]. The concept of transformation invariance allows to move, rotate, and scale



4 S. Hellbach, A. Kolarow, J. Eggert, E. Körner, H.-M. Gross

Fig. 1. Motion Trajectories are transferred into a grid representation. A grid cell is
set to 1 if it is in the path of the trajectory and set to zero otherwise. During the
prediction phase multiple hypotheses can be gained by superimposing several basis
primitives. This is indicated with the gray trajectories on the right side of the grid.

the basis primitives for reconstructing the input. In this way, we do not have to
handle each possible transformation using separate basis vectors. This is achieved
by adding a transformation T to the decomposition formulation: V ≈ T ·W ·H

However the activation matrix H has to be adapted in a way that each
possible transformation carries its own activation. Hence, the matrix H becomes
an activation tensor Hm, while m is a vector describing the transformation
parameters (rotation, scaling and translation).

Vi ≈
∑

j

∑

m

H
j,m
i ·Tm ·Wj (7)

For each allowed transformation the corresponding activity has to be trained
individually.

3 Decomposing Motion Trajectories

For being able to decompose and to predict the trajectories of the surrounding
dynamic objects, it is necessary to identify them and to follow their movements.
For simplification, a tracker is assumed, which is able to provide such trajectories
in real-time. A possible tracker to be used is presented in [7]. The given trajectory
of the motion is now interpreted as a time series T with values si = (xi, yi, zi)
for time steps i = 0, 1, . . . , n− 1: T = (s0, s1, . . . , sn−1).

It is now possible to present the vector T directly to the NMF approach. But
this could result in an unwanted behavior. Imagine two basis primitives, one
representing a left turn and another representing a right turn. A superposition
of those basis primitives would express a straight movement. However, we would
need to express either a left or a right turn.

The goal is to have a set of basis primitives, which can be concatenated one
after the other. Furthermore, it is necessary for a prediction task to be able to
formulate multiple hypotheses. For achieving these goals, the x-t-trajectory is
transferred into a grid representation, as it is shown in figure 1. Then, each grid
cell (xi, tj) represents a certain state (spatial coordinate) xi at a certain time
tj . Since most of the state-of-the-art navigation techniques rely on grid maps
[8], the prediction can be integrated easily. This 2D-grid is now presented as
image-like input to the NMF algorithm using the sparsity constraint as well as
transformation invariance (See section 2.1 and 2.2 respectively). Using the grid
representation of the trajectory also supports the non-negative character of the
basis components and their activities.

It has to be mentioned, that the transformation to the grid representation is
done for each of the dimensions individually. Hence, the spatio-temporal NMF
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Fig. 2. Training with Spatio-Temporal NMF. Given is a set of training samples in
matrix V. The described algorithm computes the weights W and the corresponding
activities H. Only the weights are used as basis primitives for further processing.

has to be processed on each of these grids. Regarding each of the dimensions
separately is often used to reduce the complexity of the analysis of trajectories
(compare [9]). Theoretically, the algorithm could also handle multi-dimensional
grid representation.

While applying an algorithm for basis decomposition to motion trajectories it
seems to be clear that the motion primitives can undergo certain transformations
to be combined to the whole trajectory. For example, the same basis primitive
standing for a straight move can be concatenated with another one standing for
a left turn. Hence, the turning left primitive has to be moved to the end of the
straight line, and transformation invariance is needed while decomposing motion
data. For our purposes, we concentrate on translation. This makes it possible
to simplify the calculations and to achieve real time performance. Using only
the grid like approach, adjacent grid cells are just different dimensions in the
grid vector just as completely remote cells are. Adding translation invariance
guarantees that adjacent cells have a neighbouring character.

It is known for each basis primitive,how they have to be combined to recon-
struct the input data. Hence, one of the algorithm’s outputs is a description of
the sequence of the basis primitives which can be used as input for a classifier.

The sparse coding constraint helps to avoid trivial solutions. Since the input
can be compared with a binary image, one possible solution would be a basis
component with only a single grid cell filled. The trajectory is then simply copied
into the activities.

3.1 Learning Phase

The goal of the learning phase is to gain a set of basis primitives which allow
to decompose an observed and yet unknown trajectory (see Fig. 2). As it is
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Fig. 3. The basis primitives W, which were computed during the training, are used
to reconstruct (matrix R) the observed trajectory V. This results in a set of sparse
activities – one for each basis primitive – which describe on which position in space and
time a certain primitive is used. Beside the reconstruction of the observed trajectory
(shown in Fig. 3), it is furthermore possible to predict a number of time steps into
the future. Hence, the matrix R is extended by the prediction horizon P. Right to the
prediction P the ground truth is plotted to get an idea of the prediction quality.

discussed in section 3, the training samples are transferred into a grid repre-
sentation. These grid representations are taken as input for the NMF approach
and are therefore represented in matrix V. On this matrix V the standard NMF
approach, extended by the sparsity constraint and by translation invariance, is
applied. The algorithm is summarized in Fig. 4.

Beside the computed basis primitives, the NMF algorithm also provides the
information of how each of the training samples can be decomposed by the basis
primitives. To be able classify the trajectory later, this information is used for
training the classifier. Since trajectories and hence the calculated activities are
temporal sequences, a recurrent neural network seems to be an adequate classi-
fier. The network is trained by presenting a discrete time step of the activities
(i. e. a single column in the matrix)

3.2 Application Phase

As it is indicated in Fig. 3, from the learning phase a set of motion primitives
is extracted. During the application phase, we assume that the motion of a
dynamic object (e. g. a person) is tracked continuously. For getting the input for
the NMF algorithm, a sliding window approach is taken. A certain frame in time
is transferred into the already discussed grid like representation. For this grid
the activation of the basis primitives is determined. The algorithm is identical
to the one sketched in Fig. 4 beside that steps 4 and 5 can be skipped.

The resulting activities are now used as input for the classifier, which was
adapted to the activities in the learning phase. In this way, a classification result
(e. g. the interest for interaction or the performed action) can be assigned to the
regarded time window.

The standard approach to NMF implies that each new observation at the next
time step demands a new random initialization for the optimization problem.
Since an increasing column number in the grid representation stands for an
increase in time, the trajectory is shifted to the left while moving further in
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1. Normalize the basis vectors according to

Wj = Wj · ‖Wj‖
−1 (8)

2. Calculate the reconstruction

Ri =
P

j

P

m
H

j,m
i TmWj (9)

3. Update the activities

H
j,m
i ← H

j,m
i ⊙

“

V
T
i T

m

Wj ⊘R
T
i T

m

Wj

”

(10)

4. Calculate the reconstruction with the new activities

Ri =
P

j

P

m
H

j,m
i TmWj (11)

5. Update the basis vectors

Wj ←Wj ⊙

P

i

P

m
H

j,m
i VT

i Tm + WjW
T

j

P

i

P

m
H

j,m
i RT

i Tm

P

i

P

m
H

j,m
i RT

i Tm + WjW
T

j

P

i

P

m
H

j,m
i VT

i Tm

(12)

Fig. 4. Algorithmic description of the Spatio-temporal NMF.

time. For identical initialization, the same shift is then reflected in the activities
after the next convergence. To reduce the number of iterations until convergence,
the shifted activities from the previous time step are used as initialization for
the current one.

To fulfill the main goal discussed in this paper – the prediction of the observed
trajectory into the future – the proposed algorithm had to be extended. Since
the algorithm contains the transformation invariance constraint, the computed
basis primitives can be translated to an arbitrary position on the grid. This
means that they can also be moved in a way that they exceed the borders of the
grid. Up to now, the size of reconstruction was chosen to be the same size as
the input grid. Hence, using the standard approach means that the overlapping
information has to be clipped. To be able to solve the prediction task, we simply
extend the reconstruction grid to the right – or into the future (see Fig. 3). So,
the previously clipped information is available for prediction.

As discussed, a classifier is trained during the learning phase using the ac-
tivities of the training samples. In the application phase the activities for the
current observation is calculated. The last activity column is used as input for
the classifier. So a classification result is gained for each time step on-line.

4 Evaluation

Taking a closer look at the example scenario from introductory section 1 reveals
that a robust identification and tracking of the single body parts is needed.
To be comparable and to avoid errors from the tracking system influencing the
test results, movement data from the Perception Action Cognition Lab at the
University of Glasgow [10] is used. The data contains trajectories from 30 persons
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Fig. 5. Box whiskers plot showing the convergence characteristics of the energy function
(see eqn. 1) for 15 iteration steps. For the upper (blue) plot the activities are initialized
randomly after each shift of the input data. For the lower (red) curve the activities
from the previous computations are shifted and used as initialization.

is recorded performing different actions in different moods. The movement data
has a resolution of 60 time steps per second, so that an average prediction of
about 50 steps means a prediction of 0.83 seconds into the future. Since most
trackers work with a lower resolution, a prediction further into the future is still
possible.

In the next subsections, two aspects of the proposed algorithm are investi-
gated in detail. First, it is shown that activity shifting brings a great benefit
towards real time performance. Afterwards the focus is set to the quality of the
prediction part.

For the experiments, the size of the basis primitives was chosen to be 50×50
grid cells The input grid size during the learning phase was set to 500× 50 for
each of the trajectories and to 100× 50 during application phase.

4.1 Activity shifting

In section 3.2 it has been mentioned that the information from the previous time
step can be used as initialization for the current one. Figure 5 shows the energy
function, which is defined in equation 1, for both possibilities of initialization. It
is plotted only for a low number of iteration steps (up to 15), since already there
the effect can be observed. For the upper (blue) plot a random initialization of
the activities was used. For the lower (red) curve the activities from the previous
computations are shifted and used as initialization. It can clearly be seen that
the convergence is faster by a number of about 10 steps in average.

4.2 Prediction

For evaluating the quality of the prediction, the prediction is compared with the
grid representation of the actual trajectory G. For each occupied grid cell the
value of the columnwise normalized prediction is added. The sum is divided by
the length of the trajectory:

SGT = |T |−1
∑

t∈T PT
t ·Gt ·

(
∑

i G
i
t

)−1

(13)

The normalization of the prediction is done separately for each time slice (column
in the grid).
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Fig. 6. (a) The mean correlation SGT (see eqn. 13) between the ground truth trajec-
tory and the prediction is plotted for each time step of the prediction horizon. A fit
value of 1.0 stands for a perfect prediction over the whole prediction horizon. As it
is expected the accuracy of the prediction decreases for a longer prediction period.
(b) The plot shows the prediction accuracy for predictions along a sample trajectory.
The 36 predictions were performed at each tenth time step of the chosen trajectory. A
fit value of 1.0 stands for a perfect prediction over the whole prediction horizon. The
constant and dotted lines (red) indicate mean and variance respectively.

The basis primitives can at most be shifted by their width out of the recon-
struction grid R. So the maximal size of the prediction horizon equals the width
of the basis primitives. Practically this maximum can not be reached, because
the basis primitives need a reliable basis in the part where the input is known.
Nevertheless, we have chosen to use the theoretical maximum as basis for the
evaluation.

The results are depicted in Fig 6. The first plot (Fig. 6(a)) shows the expected
decrease of the average prediction quality over the prediction horizon. Neverthe-
less, the decrease is smooth and no sudden collapses can be observed. For Fig.
6(b) an example trajectory has been selected for the reasons of clearness. The
plot is intended to show how the algorithm behaves in practical applications.
The predictions were performed at each tenth time step of the chosen trajectory.
A fit value of 1.0 stands for a perfect prediction over the maximum prediction
horizon, with only a single hypothesis for the prediction. The value decreases
significantly with multiple hypotheses being present.

4.3 Classification Task

The goal of the classifier is to classify the current action performed by the
proband (throw, walk, knock and lift). The input size is reduced by only us-
ing only a single limb (the right wrist). Using half of the data set the basic
primitives were trained (twelve for each spatial dimension). As classifier we use
a Layer-Recurrent Neural Network in MATLAB, which is a multi-layer version
of the well known Elman network. The network was initialised with an input-size
of 1800 neurons, 20 recurrent layers, sigmoid transfer function, and an output-
size of 4 neurons (binary coded output, one neuron for each class). The classifier
was trained using standard back-propagation with MSE. In order to evaluate the
classifier during training, the error on a test dataset is computed. Additionally
the performance was measured on a validation dataset after training. During the
first experiments the classifier scored 40% accuracy on the validation dataset.
The poor performance of the classifier may result from the still very high input
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dimensionality. The classifier is not able to profit from the sparse activation of
the basic primitives due to the grid representation. Additionally the grid rep-
resentation of the sparse input vector leads to many zeros in the input vector
which makes a gradient based learning method difficult. In further experiments
we will exploit the sparse input representation for the classifier using the position
of the maximum activation. The compacter encoding of the input should result
into better performance of the classifier.

5 Conclusion and Outlook

This paper presented a new approach for decomposing motion trajectories us-
ing non-negative matrix factorization. To solve this problem, sparsity constraint
and transformation invariance have been combined. The trajectories were then
decomposed using a grid-based representation. It could be demonstrated that
the concept of activity shifting clearly decreases the number of iterations needed
until convergence. Furthermore it was shown that the proposed algorithm is able
to predict the motion into the future. The prediction occurs by a superposition
of possible trajectory alternatives, yielding a quasi-probabilistic description. At
this point, the information about the sparse activation of the basis primitives
was used only for reconstruction purposes, even though it contains significant
information about the global motion. The classification task is still insufficent
and should be further improved as discussed. Furthermore, different kinds of
networks need to be investigated. Nevertheless it could be shown exemplarily,
how the suggested motion trajectory representation can be used to solve a clas-
sification task.
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