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Abstract. In this paper, we present a feature based approach for monocular scene
reconstruction based on extended Kalman filters (EKF). Our method processes a
sequence of images taken by a single camera mounted in front of a mobilerobot.
Using different techniques we are able to produce a precise reconstruction that
is free from outliers and therefore can be used for reliable obstacle detection and
avoidance. In real-world field-tests we show that the presented approach is able to
detect obstacles that can not be seen by other sensors, such as laser-range-finders.
Furthermore, we show that visual obstacle detection combined with a laserrange
finder can increase the detection rate of obstacles considerably allowing the au-
tonomous use of mobile robots in complex public and home environments.

1 Introduction
For nearly ten years we have been involved with the development of an interactive mo-
bile shopping assistant for everyday use in public environments, such as shopping cen-
ters or home improvement stores. Such a shopping companion autonomously contacts
potential customers, intuitively interacts with them, andadequately offers its services,
including autonomously guiding customers to the locationsof desired goods [1]. Cur-
rently, we are developing an interactive assistant that canbe used in home environments
as companion for people with mild cognitive imparments (MCI) living at home alone.
However, both public emvironments, like home improvement stores, as well as home
environments like kitchens or living rooms, contain a largevariety of different obstacles
that must be detected by an autonomous robot.

For obstacle detection our robot is equipped with an array of24 sonar sensors at
the bottom and a laser range finder SICK S300 mounted in front direction at a height
of 0,35 meter. Using these sensors, many obstacles can be reliably detected. However,
during the field trials it became apparent that many obstacles are very difficult to rec-
ognize. Some obstacles are mainly located above the plane that is covered by the laser
range finder. Also small obstacles are difficult to reveal since they lie below the laser
range finder and can hardly be seen by the sonar sensors due to their diffuse charac-
teristics and low precision. Therefore, it turned out to be necessary to use additional
methods for robust and reliable obstacle detection. Vision-based approaches are suit-
able for this purpose since they provide a large field of view and supply a large amount
of information about the structure of the local surroundings.

Recently, time-of-flight cameras have been used successfully for obstacle detection
[2]. Similar to laser range finders, these cameras emit shortlight pulses and measure the
time taken until the reflected light reaches the camera again. Another alternative is to



use stereo vision for obstacle detection as described in [3]and many others. However, a
stereo camera is less compact than a single camera. Furthermore, a monocular approach
that uses one camera only is more interesting from a scientific point of view.

In [4] monocular approach for depth estimation and obstacledetection is presented.
Information about scene depth is drawn from the scaling factor of image regions, which
is determined using region tracking. While this approach maywork well in outdoor
scenes, where the objects near the focus of expansion are separated from the background
by large depth discontinuities, it will fail in cluttered indoor environments like home
improvement stores or home environments. In [5] we propose an early version of a
feature-based approach for monocular scene reconstruction. This shape-from-motion
approach uses extended Kalman filters (EKF) to reconstruct the 3D position of the
image features in real-time in order to identify potential obstacles in the reconstructed
scene. Davison et al. [6,7] use a similar approach and have done a lot of research in this
area. They propose a full covariance SLAM algorithm for recovering the 3D trajectory
of a monocular camera. Both, the camera position and the 3D positions of tracked image
features or landmarks are estimated by a single EKF. Anothervisual SLAM approach
was developed by Eade and Drummond [8]. Their graph-based algorithm partitions the
landmark observations into nodes of a graph to minimize statistical inconsistency in the
filter estimates [9].

However, Eade’s and Drummond’s “Visual SLAM” as well as Davison’s “MonoSLAM”
are both mainly focusing on the estimation of the camera motion, while a precise recon-
struction of the scenery is less important. As we want to use the reconstructed scene for
obstacle detection, our priorities are vice versa. We are primarily interested in a precise
and dense reconstruction of the scene and do not focus on the correct camera move-
ment, since the distance of the objects relative to the camera and the robot respectively
is sufficient for obstacle avoidance and local mp building. Actually, we are using the
robot’s odometry to obtain information on the camera movement. In contrast to Eades
and Davison who generally move their camera sidewards in their examples, our camera
is mounted in front of the mobile robot and, therefore, movesalong its optical axis.
Compared to lateral motion, this forward motion leads to higher uncertainties in the
depth estimates due to a smaller parallax. This fact was alsoproven by Matthies and
Kanade [10] in a sensitivity analysis.

The main contribution of this paper is a monocular feature-based approach for scene
reconstruction that combines a number of different techniques that are known from re-
search areas like visual SLAM or stereo vision to achieve a robust algorithm for reliable
obstacle detection that must fulfill the following requirements:
1. A dense reconstruction to reduce the risk of missing or ignoring an obstacle
2. The positions of obstacles that appear in the field of view should be correctly esti-

mated as early as possible to allow an early reaction in motion control
3. Outliers must be suppressed to avoid false positive detections that result in inade-

quate path planning or not necessary avoidance movements
The presented algorithm is based on our previous work [5] andwas improved by several
extensions. In the next sections, we describe our approach in detail and show how it can
be used for visual obstacle detection. In section 4 we present some experimental results
and conclude with an outlook for future work.

2 Monocular Scene Reconstruction
As stated before, we use a single calibrated camera that is mounted in front of the robot.
During the robot’s locomotion, the camera is capturing a sequence of images that are



rectified immediately according to the intrinsic camera parameters. Thus, different two-
dimensional views of a scene are obtained and can be used for the scene reconstruction.
In these images distinctive image points (image features) are detected. For performance
reasons we use the “FAST” corner detector [11] since SIFT or SURF features still
require too much computation time. The selected features are then tracked in subsequent
frames while recovering their 3D positions.

Davison et al. [6,7] use a single EKF for full covariance SLAMthat is able to handle
up to 100 features. As we require a denser reconstruction of the scene for obstacle
detection, we have to cope with a large number of features which cannot be handled
by such an approach in real-time. Therefore, we decouple thethe EKF and use one
EKF per feature to recover the structure of the scene similarto [12]. Each featurei is
associated with a state vectoryi that represents the 3D position of the feature and a
corresponding covariance matrixΣi.

2.1 State Representation
Different parametrizations for the 3D positions of the features have been proposed in
literature. The most compact representation is the XYZ-representation where the posi-
tion of each feature is parameterized by its Euclidean coordinates in 3-space. Davison et
al. [7] have shown that this representation has several disadvantages since the position
uncertainties for distant features are not well represented by a Gaussian distribution.
Instead, they propose an inverse depth representation, where the 3D position of each
featurei can be described by the vectoryi = (ci , θi , ϕi , λi)

⊤, whereci ∈ R3 is
the optical center of the camera from which the featurei was first observed, andθi, φi

is the azimuth and elevation of the unit ray that points fromci to the 3D point of the
feature. This ray is given bym (θi, φi) = (cos θi cos φi , cos θi sin φi , − sin θi)

⊤. The
last elementλi of the state vector denotes the inverse of the features depthdi = λ−1

i

along the ray.

2.2 Feature Tracking
While the robot is moving, the image features are tracked in subsequent frames. In [5]
we used a feature matching approach that finds correspondences between homologue
features in subsequent frames based on a bipartite graph matching. While that approach
is suitable for SIFT or SURF features it has some shortcomings with less complex
feature descriptors like image patches. Here, we use a guided active search for tracking
the features through the image sequence. As descriptor we utilize a16×16 pixel image
patch around each feature. First, the image positionx−

i
of each feature is predicted by

projecting the current estimate of its estimated 3D position yi onto the image plane
usingx̃−

i
= h (yi,P) with the measurement function1:

h (yi,P) = P

(

λc̃i +

(

m (θi, φi)
0

))

. (1)

HereP =KR [I | −c] is the projection matrix containing the current orientationR, the
current positionc and the intrinsic calibration matrixK of the camera, which captured
the current image (see [13] for details). The current camerapose is obtained from the
robot’s odometry data.

1 For better differentiation we notate homogeneous vectors asx̃ and Euclidean vectors asx,
wherex̃ = (x, 1)⊤ · s , s ∈ R



For each featurei, the corresponding image point is searched in the current im-
age around the predicted image positionx−

i
by computing the sum of absolute differ-

ences (SAD) with the image patch that is stored as descriptorof the feature. The image
point that yields the lowest SAD is chosen. To achieve sub-pixel precision we fit a 2D
parabola into the computed SAD error surface around the chosen image point and use
the coordinate of the apex as position of the corresponding image point. The search is
restricted to an elliptical region that is defined by convariance matrix of the innovation
that is computed in the EKF.
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Fig. 1. The correlation
window is split into 5
sub-windows.

One major problem of patch-based approaches for feature
matching are occlusions near object edges where the patch cov-
ers two different objects with large depth discontinuities. Dur-
ing the matching, this leads to a decision conflict since the part
of the patch that belongs to the background object moves in a
different way than the foreground object. As a result, the re-
constructed 3D points along object borders are blurred in dif-
ferent depths. For stereo matching different adaptive window
approaches have been proposed to reduce this problem.

We apply a variation of the multiple window approach pre-
sented in [14] and [15]. Instead of using a single16 × 16 pixel

correlation window, the window is split into five sub-windows as shown in Figure 1. The
SADs are computed for each sub-windowCi. The final correlation valueC is formed
by adding the correlation valueCo of the central sub-window and the values of the two
best surrounding correlation windowsCb andCs. This measure of similarity performs
better near object boundaries since at least two sub-windows are located on a single
object in most cases. Depending on the dominant image structure the correspondence
is either attached to foreground or the background object reducing the blur along the
reconstructed object borders. Using the SSE2 processor instructionPSADBW the corre-
lation values can be computed efficiently and splitting the window into 5 sub-windows
results in very little computational overhead compared to asingle correlation window.
This performance improvement is a major reason for choosingthe SAD as measure of
similarity. Besides the correlation value, we compute an occlusion scoreCocc by adding
the correlation values of the two worst matching surrounding sub-windows. Both the
correlation valueC and the occlusion scoreCocc are normalized by the number of pix-
els in the used sub-windows.

2.3 Descriptor Update
Davison el al. [7] also use the image patch around the featureas descriptor. While they
capture this descriptor only once when the feature is first observed, we used a contrary
philosophy in [5], where we update the descriptor every timethe feature is tracked in
a new image. Both variants have pros and cons. If the descriptor is never updated, the
feature cannot be tracked over long distances since the appearance changes too much
due to affine and perspective deformations, especially whenusing a forward moving
camera or robot. If, on the other hand, the descriptor is updated every frame, tracking
errors might be accumulated over several frames, and the descriptor might move along
the edges of object boundaries and does not represent a single fixed feature. This usually
occurs near occlusions and leads to incorrect estimates.

Therefore, we use the aforementioned occlusion scoreCocc to determine whether
updating the descriptor is reasonable or not. If the normalized occlusion scoreCocc lies
below a certain the threshold descriptor is updated using the corresponding patch in



the current image, otherwise the descriptor remains unchanged. Using this technique,
most features can be tracked over long distances while the projective deformations are
compensated by permanent descriptor updates. Feature descriptors near occlusions are
not updated to allow stable tracking along object boundaries.

After the features are tracked and the camera pose is refined,the 3D positions of
the features will be updated using the usual EKF update equations leading to a more
precise reconstruction of the scenery.

2.4 Feature Initialization
Lost features that left the camera’s field of view or that cannot be tracked in the previous
step are replaced be new features. Different methods for initializing the state of new
features have been proposed in related literature. In [5] wehave shown how to use
a multi-baseline stereo approach for initializing new features. The approach uses the
images that were capturedbefore the feature was first detected and searches along the
epipolar line for corresponding image regions by computingthe SAD. By accumulating
the SAD error over multiple images a reliable initial inverse depth estimate is obtained.
Additionally, we treat the SAD error along the epipolar lineas probability distribution
and fit a Gaussian distribution near the minimum in order to obtain a variance of the
initial estimate that is used for initializing the error covariance matrixΣi.

3 Obstacle Detection
For obstacle detection, we perform the described monocularscene reconstruction for
200-300 salient features of the scene simultaneously. Afterwards, the reconstructed fea-
tures have to undergo some post-processing where outliers and unreliable estimates are
removed. From all reconstructed features, we only use thosethat meet the following
criteria:

– the estimated height must be above 0.1m; obstacles below this threshold cannot be
detected safely

– the variance of the estimated inverse depth taken from the error covariance matrix
must lie below a threshold of 0.005

– the distance to the camera must have been smaller than 3m whenthe feature was
observed for the last time

The last criterion mainly removes virtual features that arise where the boundaries of
foreground and background objects intersect in the image. These features do not corre-
spond to a single 3D point in the scene and cannot be estimatedproperly.

The features that pass the above filters may still contain a few outliers. Therefore, we
examine the neighborhood of each feature. Features that contain less than 4 neighbors
within a surrounding sphere with a radius of 0.3m are regarded as outliers and will
be rejected. The remaining features are inserted into an occupancy map by projecting
them on the xy-plane. This occupancy map is merged with a laser map by choosing the
highest probability for each cell in both maps. Finally, themerged map is used for both
local path planning and obstacle avoidance.

4 Results
Figure 2 shows such a map where laser and visual information is merged. The occu-
pancy map that is created using the laser range finder is colored in blue where the
different shades of blue correspond to the probability thata cell is occupied. The posi-
tion of the features that were reconstructed using visual information and the approach
presented in this paper are colored in red. In the map, a totalnumber of about 8,200



Fig. 2. Map created by combining visual information (red dots) and laser rangefinder (blue).
The robot’s trajectory and moving direction is denoted by the dashed line. The ground truth
is highlighted in gray. The visual map consists of about 8,200 reconstructed points. Obstacles
detected using vision only are labled using numbers. The images on the right show the obstacles
as seen by the front camera. The image on the left was taken using a handheld 8 megapixel
camera.

visual features is shown. While creating the map a total number of 15,400 points was
reconstructed, where 6,000 features where filterd due to a bad variance, 1,000 features
were classified as belonging to the ground and 100 where detected as outliers. For im-
age acquisition a 1/4” CCD fire-wire camera is installed on the robot that is mounted at
a height of 1.15m and tilted by 35° towards the ground.

For better evaluation and for visualization purposes a ground truth map was created
and is highlighted in gray in the background of Figure 2. For building the ground truth,
we took images of the scene using a hand held Canon EOS 350D 8.0megapixel camera
and used a bundle adjustment tool2 for creating a precise reconstruction of the scene
which finally was edited and labeled manually.

The map covers an area of 14m×12m within a home improvement store where
our tests were conducted. This test area contains typical obstacles that we identified as
problematic during the field test since they cannot be detected by the laser range finder
due to their reflection properties, their form, or too low height. Some of these obstacles
are numbered from 1 to 5 in Figure 2. In detail these obstaclesare: 1. an empty Euro-
pallet with a height of 11cm, 2. a ladder, 3. a low shopping cart with goods that jut out
at both ends, 4. a high shopping cart, and 5. shelves that extend into the scene.

All of these obstacles cannot be seen by the laser range finderand, therefore, might
result in collisions. However, using our visual approach these obstacle can be detected
safely. In Table 1 we try to quantify this result. For each obstacle, we have manually
labeled those parts of the outline that are relevant for navigation and obstacle avoidance
during the above test run using the ground truth map. The statistics in Table 1 show

2 Bundler:http://phototour.cs.washington.edu/bundler/



the percentage of the relevant obstacle boundaries that were detected by our visual
approach, the laser range finder and a combination of vision and laser. These results
show that major parts of the above mentioned obstacles can bedetected. Furthermore,
it can be seen that the detection rate for all relevant objects in the scene can be increased
significantly by 20% compared to obstacle detection using a laser range finder only.

Fig. 3. left: top view of our test area, the reconstructed features are shown as colored dots, where
the color indicates the estimated height of each feature (green: < 0.10m,yellow-red: 0.10m-
1.15m),right: images of the scene superimposed by highlighted features,lower right: synthetic
3D view of the estimated features.

obstacle visual laser visual+laser
1 63% - 63%
2 71% - 71%
3 71% - 71%
4 68% 10% 68%
5 82% - 82%

others 85% 78% 96%
total 83% 72% 93%

Table 1.Percentage of obstacle bound-
aries that can be detected using the pre-
sented visual approach, a laser range
finder and a combination of both for
the 5 labeled obstacles and the rest of
the scene shown in Figure 2.

Additional tests were carried out in a special
test area of our lab that contains typical elements
of a living room as well as a floor with repet-
itive texture. Figure 3 shows a top view of this
test area. The reconstructed features are shown as
colored dots, where the color indicates the esti-
mated height of each feature. All obstacles that
were covered by the camera are detected robustly,
while features on the floor are estimated correctly
and classified as free and passable. The images
on the right of Figure 3 show three images of the
scene taken by the front camera as well as a syn-
thetic three-dimensional view of the reconstructed
features.

All tests were conducted on an Intel Core 2 Duo,
2 GHz CPU. In spite of utilizing one core only we are able to process up to 30 frames per
second while reconstructing 200-300 features simultaneously. Depending on the robot’s
driving speed, we only need to process 10-15 frames per second leaving enough CPU
resources for other applications like map building, navigational tasks, user tracking and
human-machine interaction.



5 Conclusion and Future Work

In this paper, we have presented an algorithm for monocular scene reconstruction and
shape from motion. We have described some improvements thatmake the reconstruc-
tion more reliable and help to reduce outliers. These techniques allow the approach to
be used for robust real-time obstacle detection. In realistic field tests, we have shown
that some obstacles that are not visible to sensors like laser range finders can be safely
detected by the vision based approach. Furthermore, we wereable to show that visual
obstacle detection combined with a laser range finder can increase the detection rate
of obstacles considerably. During the next months we will carry out long-term tests to
evaluate how much the number of collisions or near-collisions can be decreased during
the daily usage of the robots.

Currently, we are developing a method to estimate the position of moving objects.
However, since the position of moving objects can be reconstructed up to a scaling fac-
tor only, we will focus on obstacles that reach to the ground.At the moment, features
along moving objects are rejected while feature tracking and filtered after the recon-
struction due to their high variance in the position estimate.
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