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Abstract. In this paper, we present a feature based approach for monocera s
reconstruction based on extended Kalman filters (EKF). Our methaggses a
sequence of images taken by a single camera mounted in front of a muitle
Using different techniques we are able to produce a precise recctimtrthat
is free from outliers and therefore can be used for reliable obstacletidetand
avoidance. In real-world field-tests we show that the presented agpiable to
detect obstacles that can not be seen by other sensors, such-aargsefinders.
Furthermore, we show that visual obstacle detection combined with aréaggs
finder can increase the detection rate of obstacles considerably allowirgith
tonomous use of mobile robots in complex public and home environments.

1 Introduction

For nearly ten years we have been involved with the developwfean interactive mo-
bile shopping assistant for everyday use in public enviremis, such as shopping cen-
ters or home improvement stores. Such a shopping compauaton@mously contacts
potential customers, intuitively interacts with them, atquately offers its services,
including autonomously guiding customers to the locatiohdesired goods [1]. Cur-
rently, we are developing an interactive assistant thabeamsed in home environments
as companion for people with mild cognitive imparments (Miing at home alone.
However, both public emvironments, like home improvemeotes, as well as home
environments like kitchens or living rooms, contain a larggety of different obstacles
that must be detected by an autonomous robot.

For obstacle detection our robot is equipped with an arrag4o$onar sensors at
the bottom and a laser range finder SICK S300 mounted in frioattibn at a height
of 0,35 meter. Using these sensors, many obstacles canilgyaletected. However,
during the field trials it became apparent that many obsteanle very difficult to rec-
ognize. Some obstacles are mainly located above the plahéstbovered by the laser
range finder. Also small obstacles are difficult to reveatasithey lie below the laser
range finder and can hardly be seen by the sonar sensors chertdiffuse charac-
teristics and low precision. Therefore, it turned out to leeassary to use additional
methods for robust and reliable obstacle detection. Vibiased approaches are suit-
able for this purpose since they provide a large field of vied supply a large amount
of information about the structure of the local surrounding

Recently, time-of-flight cameras have been used succisifubbstacle detection
[2]. Similar to laser range finders, these cameras emit $ijbttpulses and measure the
time taken until the reflected light reaches the camera agaiather alternative is to



use stereo vision for obstacle detection as described er{@many others. However, a
stereo camera is less compact than a single camera. Fudiesrammonocular approach
that uses one camera only is more interesting from a scieptfint of view.

In [4] monocular approach for depth estimation and obstaetection is presented.
Information about scene depth is drawn from the scalingfaaftimage regions, which
is determined using region tracking. While this approach mvayk well in outdoor
scenes, where the objects near the focus of expansion amas=pfrom the background
by large depth discontinuities, it will fail in cluttereddoor environments like home
improvement stores or home environments. In [5] we proposealy version of a
feature-based approach for monocular scene reconstudtiis shape-from-motion
approach uses extended Kalman filters (EKF) to reconsthect3D position of the
image features in real-time in order to identify potentibstacles in the reconstructed
scene. Davison et al. [6,7] use a similar approach and have @tot of research in this
area. They propose a full covariance SLAM algorithm for kexng the 3D trajectory
of a monocular camera. Both, the camera position and the 3iquus of tracked image
features or landmarks are estimated by a single EKF. Anatiseal SLAM approach
was developed by Eade and Drummond [8]. Their graph-bageditim partitions the
landmark observations into nodes of a graph to minimizéssi@dl inconsistency in the
filter estimates [9].

However, Eade’s and Drummond’s “Visual SLAM” as well as Bai’s “MonoSLAM”
are both mainly focusing on the estimation of the cameraanotihile a precise recon-
struction of the scenery is less important. As we want to nsegconstructed scene for
obstacle detection, our priorities are vice versa. We areaoily interested in a precise
and dense reconstruction of the scene and do not focus orottectcamera move-
ment, since the distance of the objects relative to the camed the robot respectively
is sufficient for obstacle avoidance and local mp buildingtually, we are using the
robot’'s odometry to obtain information on the camera moveima contrast to Eades
and Davison who generally move their camera sidewards ing¢kamples, our camera
is mounted in front of the mobile robot and, therefore, moatemg its optical axis.
Compared to lateral motion, this forward motion leads tchbiguncertainties in the
depth estimates due to a smaller parallax. This fact wasp®aen by Matthies and
Kanade [10] in a sensitivity analysis.

The main contribution of this paper is a monocular featuasell approach for scene
reconstruction that combines a number of different tealmsghat are known from re-
search areas like visual SLAM or stereo vision to achievédasbalgorithm for reliable
obstacle detection that must fulfill the following requirents:

1. A dense reconstruction to reduce the risk of missing oorigiyg an obstacle
2. The positions of obstacles that appear in the field of viesukl be correctly esti-
mated as early as possible to allow an early reaction in matimtrol
3. Outliers must be suppressed to avoid false positive tletescthat result in inade-
guate path planning or not necessary avoidance movements
The presented algorithm is based on our previous work [5haagiimproved by several
extensions. In the next sections, we describe our approaddtail and show how it can
be used for visual obstacle detection. In section 4 we ptesene experimental results
and conclude with an outlook for future work.

2 Monocular Scene Reconstruction
As stated before, we use a single calibrated camera thatistenbin front of the robot.
During the robot’s locomotion, the camera is capturing ausege of images that are



rectified immediately according to the intrinsic cameraapagters. Thus, different two-
dimensional views of a scene are obtained and can be usdtfecéne reconstruction.
In these images distinctive image points (image featuresji@etected. For performance
reasons we use the “FAST” corner detector [11] since SIFT WRS features still
require too much computation time. The selected featueethan tracked in subsequent
frames while recovering their 3D positions.

Davison et al. [6,7] use a single EKF for full covariance SLALt is able to handle
up to 100 features. As we require a denser reconstructioheoktene for obstacle
detection, we have to cope with a large number of featurestwtdnnot be handled
by such an approach in real-time. Therefore, we decoupléhind=KF and use one
EKF per feature to recover the structure of the scene sinal§t2]. Each featuré is
associated with a state vectgy that represents the 3D position of the feature and a
corresponding covariance matix;.

2.1 State Representation

Different parametrizations for the 3D positions of the feas have been proposed in
literature. The most compact representation is the XYZasgntation where the posi-
tion of each feature is parameterized by its Euclidean doates in 3-space. Davison et
al. [7] have shown that this representation has severatldigaages since the position
uncertainties for distant features are not well represehtea Gaussian distribution.
Instead, they propose an inverse depth representatiomewvite 3D position of each
featurei can be described by the vecter = (c;, 0;, v;, \;) |, wherec; € R? is
the optical center of the camera from which the featunas first observed, artl, ¢;

is the azimuth and elevation of the unit ray that points frgnto the 3D point of the
feature. This ray is given bsn (6;, ¢;) = (cos 6; cos ¢; , cos §; sin ¢; , —sin Hi)T. The
last element\; of the state vector denotes the inverse of the features dgpth A, !
along the ray.

2.2 Feature Tracking

While the robot is moving, the image features are tracked lisasguent frames. In [5]
we used a feature matching approach that finds correspoesi&etween homologue
features in subsequent frames based on a bipartite graghimat\While that approach
is suitable for SIFT or SURF features it has some shortcosimith less complex
feature descriptors like image patches. Here, we use adjaitteve search for tracking
the features through the image sequence. As descriptorikze at16 x 16 pixel image
patch around each feature. First, the image positiorof each feature is predicted by
projecting the current estimate of its estimated 3D pasigip onto the image plane
usingx; = h (y;, P) with the measurement functién

h(y: P) =P (/\éi n (m(%”‘bi))) . (1)

HereP =KR [I| —c] is the projection matrix containing the current orientati®, the
current positiorc and the intrinsic calibration matriK of the camera, which captured
the current image (see [13] for details). The current carpese is obtained from the
robot's odometry data.

! For better differentiation we notate homogeneous vectos asd Euclidean vectors ag
wherex = (x,1)" -5, s € R



For each featuré, the corresponding image point is searched in the current im
age around the predicted image positigh by computing the sum of absolute differ-
ences (SAD) with the image patch that is stored as descioptbe feature. The image
point that yields the lowest SAD is chosen. To achieve subtgirecision we fit a 2D
parabola into the computed SAD error surface around theechimsage point and use
the coordinate of the apex as position of the correspondiragé point. The search is
restricted to an elliptical region that is defined by coraacie matrix of the innovation
that is computed in the EKF.

One major problem of patch-based approaches for feature
matching are occlusions near object edges where the pateh co
ers two different objects with large depth discontinuitiesir-
ing the matching, this leads to a decision conflict since #ré p
of the patch that belongs to the background object moves in a
different way than the foreground object. As a result, the re
constructed 3D points along object borders are blurredfin di
ferent depths. For stereo matching different adaptive auind
Fig.1. The correlation approaches have been proposed to reduce this problem.
window is split into 5 We apply a variation of the multiple window approach pre-
sub-windows. sented in [14] and [15]. Instead of using a singiex 16 pixel
correlation window, the window is split into five sub-windswas shown in Figure 1. The
SADs are computed for each sub-wind@iy. The final correlation valu€¢’ is formed
by adding the correlation valug, of the central sub-window and the values of the two
best surrounding correlation windows andCs. This measure of similarity performs
better near object boundaries since at least two sub-wisdoe located on a single
object in most cases. Depending on the dominant image steuthe correspondence
is either attached to foreground or the background objetiigieg the blur along the
reconstructed object borders. Using the SSE2 processangétisn PSADBWthe corre-
lation values can be computed efficiently and splitting tiedow into 5 sub-windows
results in very little computational overhead compared single correlation window.
This performance improvement is a major reason for choasiaggAD as measure of
similarity. Besides the correlation value, we compute arlusion score”,.. by adding
the correlation values of the two worst matching surrougdinb-windows. Both the
correlation value” and the occlusion scoKg,.. are normalized by the number of pix-
els in the used sub-windows.

2.3 Descriptor Update
Davison el al. [7] also use the image patch around the feamidescriptor. While they
capture this descriptor only once when the feature is firseoled, we used a contrary
philosophy in [5], where we update the descriptor every tilreefeature is tracked in
a new image. Both variants have pros and cons. If the descigphever updated, the
feature cannot be tracked over long distances since theaegppee changes too much
due to affine and perspective deformations, especially wisémg a forward moving
camera or robot. If, on the other hand, the descriptor is tgudavery frame, tracking
errors might be accumulated over several frames, and tlogipies might move along
the edges of object boundaries and does not represent a kgl feature. This usually
occurs near occlusions and leads to incorrect estimates.

Therefore, we use the aforementioned occlusion s€gre to determine whether
updating the descriptor is reasonable or not. If the nozadlbcclusion scor€,... lies
below a certain the threshold descriptor is updated usiagcthiresponding patch in



the current image, otherwise the descriptor remains urggdhrising this technique,
most features can be tracked over long distances while tegiive deformations are
compensated by permanent descriptor updates. Featumptiescnear occlusions are
not updated to allow stable tracking along object boundarie

After the features are tracked and the camera pose is refime®D positions of
the features will be updated using the usual EKF update eEmsakeading to a more
precise reconstruction of the scenery.

2.4 Feature Initialization

Lost features that left the camera’s field of view or that earfue tracked in the previous
step are replaced be new features. Different methods foalining the state of new
features have been proposed in related literature. In [Shawe shown how to use
a multi-baseline stereo approach for initializing new fieas. The approach uses the
images that were capturddfore the feature was first detected and searches along the
epipolar line for corresponding image regions by computiiregSAD. By accumulating
the SAD error over multiple images a reliable initial invedepth estimate is obtained.
Additionally, we treat the SAD error along the epipolar le probability distribution
and fit a Gaussian distribution near the minimum in order t@ioba variance of the
initial estimate that is used for initializing the error emiance matrixy;.

3 Obstacle Detection

For obstacle detection, we perform the described monosgleme reconstruction for
200-300 salient features of the scene simultaneouslyrwétels, the reconstructed fea-
tures have to undergo some post-processing where outtidrsraeliable estimates are
removed. From all reconstructed features, we only use ttegemeet the following
criteria:

— the estimated height must be above 0.1m; obstacles belswhtigishold cannot be
detected safely

— the variance of the estimated inverse depth taken from tloe eovariance matrix
must lie below a threshold of 0.005

— the distance to the camera must have been smaller than 3mthvéeature was
observed for the last time

The last criterion mainly removes virtual features thasanivhere the boundaries of
foreground and background objects intersect in the imalgesd features do not corre-
spond to a single 3D point in the scene and cannot be estimpedpérly.

The features that pass the above filters may still contaiwatgliers. Therefore, we
examine the neighborhood of each feature. Features th&indass than 4 neighbors
within a surrounding sphere with a radius of 0.3m are reghwae outliers and will
be rejected. The remaining features are inserted into ampaocy map by projecting
them on the xy-plane. This occupancy map is merged with a taap by choosing the
highest probability for each cell in both maps. Finally, therged map is used for both
local path planning and obstacle avoidance.

4 Results

Figure 2 shows such a map where laser and visual informagiomerged. The occu-
pancy map that is created using the laser range finder isembior blue where the
different shades of blue correspond to the probability éhegll is occupied. The posi-
tion of the features that were reconstructed using visdatmmation and the approach
presented in this paper are colored in red. In the map, anotaber of about 8,200



Fig. 2. Map created by combining visual information (red dots) and laser réinder (blue).
The robot’s trajectory and moving direction is denoted by the dashed lime.gfound truth
is highlighted in gray. The visual map consists of about 8,200 recansttipoints. Obstacles
detected using vision only are labled using numbers. The images on thehimk the obstacles
as seen by the front camera. The image on the left was taken usingdaeh@r8 megapixel
camera.

visual features is shown. While creating the map a total nurab&5,400 points was

reconstructed, where 6,000 features where filterd due ta adrdance, 1,000 features
were classified as belonging to the ground and 100 wheretddtas outliers. For im-

age acquisition a 1/4” CCD fire-wire camera is installed @rtibot that is mounted at
a height of 1.15m and tilted by 35° towards the ground.

For better evaluation and for visualization purposes ampidtuth map was created
and is highlighted in gray in the background of Figure 2. Railding the ground truth,
we took images of the scene using a hand held Canon EOS 350De8#pixel camera
and used a bundle adjustment fofidr creating a precise reconstruction of the scene
which finally was edited and labeled manually.

The map covers an area of 14&th2m within a home improvement store where
our tests were conducted. This test area contains typicdholes that we identified as
problematic during the field test since they cannot be detidoy the laser range finder
due to their reflection properties, their form, or too lowdidi Some of these obstacles
are numbered from 1 to 5 in Figure 2. In detail these obstaakesl. an empty Euro-
pallet with a height of 11cm, 2. a ladder, 3. a low shopping wé@h goods that jut out
at both ends, 4. a high shopping cart, and 5. shelves thateiit the scene.

All of these obstacles cannot be seen by the laser range findetherefore, might
result in collisions. However, using our visual approaassthobstacle can be detected
safely. In Table 1 we try to quantify this result. For eachtable, we have manually
labeled those parts of the outline that are relevant forgaion and obstacle avoidance
during the above test run using the ground truth map. Thésttatin Table 1 show
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the percentage of the relevant obstacle boundaries that detected by our visual
approach, the laser range finder and a combination of visiohlaser. These results
show that major parts of the above mentioned obstacles cdetbeted. Furthermore,
it can be seen that the detection rate for all relevant abjadhe scene can be increased
significantly by 20% compared to obstacle detection usirasarlrange finder only.

Fig. 3. left: top view of our test area, the reconstructed features are shown asctdluts, where
the color indicates the estimated height of each feature (green: < OyHmw-red: 0.10m-
1.15m),right: images of the scene superimposed by highlighted feationgsr right: synthetic

3D view of the estimated features.

Additional tests were carr[ed out_in a Spedai)bstacle visual laser visual+laser
test area of our lab that contains typical elements
of a living room as well as a floor with repet- 63% - 63%
itive texture. Figure 3 shows a top view of this 1% - 1%
test area. The reconstructed features are shown as3 1% - 71%
colored dots, where the color indicates the esti- 4 68% 10%  68%
mated height of each feature. All obstacles that 5  82% - 82%
were covered by the camera are detected robustipthers 85% 78%  96%
while features on the floor are estimated correctlytotal 83% 72%  93%
and classified as free and passable. The imagasle 1.Percentage of obstacle bound-
on the right of Figure 3 show three images of tharies that can be detected using the pre-
scene taken by the front camera as well as a syented visual approach, a laser range
thetic three-dimensional view of the reconstructdihder and a combination of both for
features. the 5 labeled obstacles and the rest of

All tests were conducted on an Intel Core 2 D5 Scene shown in Figure 2.
2 GHz CPU. In spite of utilizing one core only we are able togess up to 30 frames per
second while reconstructing 200-300 features simultasigoDepending on the robot’s
driving speed, we only need to process 10-15 frames per ddeawning enough CPU
resources for other applications like map building, natityeal tasks, user tracking and
human-machine interaction.




5 Conclusion and Future Work

In this paper, we have presented an algorithm for monocuakmesreconstruction and
shape from motion. We have described some improvementsnidlea the reconstruc-
tion more reliable and help to reduce outliers. These tegtes allow the approach to
be used for robust real-time obstacle detection. In réaliigld tests, we have shown
that some obstacles that are not visible to sensors like tasge finders can be safely
detected by the vision based approach. Furthermore, we atdeeto show that visual
obstacle detection combined with a laser range finder caease the detection rate
of obstacles considerably. During the next months we willycaut long-term tests to
evaluate how much the number of collisions or near-coltisioan be decreased during
the daily usage of the robots.

Currently, we are developing a method to estimate the postf moving objects.
However, since the position of moving objects can be recoatstd up to a scaling fac-
tor only, we will focus on obstacles that reach to the grouktdthe moment, features
along moving objects are rejected while feature tracking ftered after the recon-
struction due to their high variance in the position estamat
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