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Abstract— In this paper, we present a feature based approach
for monocular scene reconstruction based on extended Kalman
filters (EKF). Our method processes a sequence of images
taken by a single camera mounted frontal on a mobile robot.
Using different techniques, we are able to produce a precise
reconstruction that is free from outliers and therefore can be
used for reliable obstacle detection. In real-world field-tests we
show that the presented approach is able to detect obstacles
that are not seen by other sensors, such as laser-range-finders.
Furthermore, we show that visual obstacle detection combined
with a laser-range-finder can increase the detection rate of
obstacles considerably allowing the autonomous use of mobile
robots in complex public environments.

Index Terms— shape-from-motion, visual obstacle detection,
monocular vision, EKF

I. I NTRODUCTION

For nearly then years we have been involved in the de-
velopment of an interactive mobile shopping assistant for
everyday use in public environments, such as shopping centers
or home improvement stores. Such a shopping companion
autonomously contacts potential customers, intuitively inter-
acts with them, and adequately offers its services, including
autonomously guiding customers to the locations of desired
goods [1]. As part of long-term field trials 9 shopping robots
have been in daily use in three different home improvement
stores in Germany since March 2008.

For obstacle detection the robots are equipped with an array
of 24 sonar sensors at the bottom and a laser-range-finder
SICK S300 mounted in front direction at a height of 0,35
meters as shown in Figure 1. Using these sensors, most of
the obstacles can be reliably detected. However, during the
field trials it became apparent that many obstacles are very
difficult to recognize. The main extent of a shopping cart for
example is mainly located above the plane that is covered by
the laser-range-finder. Also small obstacles like flat pallets are
difficult to detect since they lie below the laser-range-finder
and can hardly be seen by the sonar sensors due to their diffuse
characteristics and low precision. Therefore, it turned out to
be necessary to use additional methods for robust and reliable
obstacle detection. Vision-based approaches are suitablefor
this purpose since they provide a large field of view and supply
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a large amount of information about the structure of the local
surroundings.

Fig. 1. The robot platform SCITOS
A5, a joint development of MetraLabs
GmbH2and the NICR lab, that is used
for our experiments and field trials is
equipped with sonar sensors, a laser-
range-finder and a frontal CCD camera
that is tilted towards the ground.

Recently, time-of-flight
cameras have been used
successfully for obstacle
detection [2]. Similar
to laser-range-finders,
these cameras emit short
light pulses and measure
the time taken until the
reflected light reaches the
camera again. Due to their
high costs these cameras
may be suitable for robot
prototypes but are no option
for a series product that
we are planning to develop.
Another alternative is to use
stereo vision for obstacle
detection as described
in [3] and many others.
However, a stereo camera
is less compact than a
single camera. Furthermore,

a monocular approach that uses one camera only is more
interesting from a scientific point of view.

In [4] a monocular approach for depth estimation and
obstacle detection is presented. Information about scene depth
is drawn from the scaling factor of image regions, which
is determined using region tracking. While this approach
may work well in outdoor scenes where the objects near
the focus of expansion are separated from the background
by large depth discontinuities, it will fail in cluttered indoor
environments like home improvement stores. In [5] we propose
an early version of a feature-based approach for monocular
scene reconstruction. This shape-from-motion approach uses
Extended Kalman Filters (EKF) to reconstruct the 3D position
of the image features in real-time in order to identify potential
obstacles in the reconstructed scene. Davison et al. [6, 7]
use a similar approach and have done a lot of research in
this area. They propose a full covariance SLAM algorithm
for recovering the 3D trajectory of a monocular camera.
Both, the camera position and the 3D positions of tracked
image features or landmarks are estimated by a single EKF.
Another visual SLAM approach was developed by Eade and



2

Drummond [8]. Their graph-based algorithm partitions the
landmark observations into nodes of a graph to minimize
statistical inconsistency in the filter estimates [9].

However, Eade and Drummond’s “Visual SLAM” as well
as Davison’s “MonoSLAM” are both mainly focusing on
the estimation of the camera motion, while a precise recon-
struction of the scenery is less important. As we want to
use the reconstructed scene for obstacle detection and local
map building, our priorities are vice versa. We are primarily
interested in a precise and dense reconstruction of the scene
and do not focus on the correct camera movement, since the
distance of the objects relative to the camera and the robot
respectively is sufficient for obstacle avoidance. Actually, we
are using the robot’s odometry to obtain information on the
camera movement. In contrast to Eade and Davison who
generally move their camera sidewards in their examples, our
camera is mounted in front of the mobile robot and, therefore,
moves along its optical axis (see Figure 1). Compared to lateral
motion, this forward motion leads to higher uncertainties in the
depth estimates due to a smaller parallax. This fact was also
proven by Matthies and Kanade [10] in a sensitivity analysis.

The main contribution of this paper is a monocular feature-
based approach for scene reconstruction that combines a
number of different techniques that are known from research
areas like Visual SLAM or stereo vision to achieve a robust
algorithm for reliable obstacle detection that must fulfillthe
following requirements:

1) A dense reconstruction to reduce the risk of missing or
ignoring an obstacle

2) The positions of obstacles that appear in the field of view
should be correctly estimated as early as possible to allow
a fast reaction in motion control

3) Outliers must be suppressed to avoid false positive detec-
tions that result in inadequate path planning or unneces-
sary avoidance movements

The presented algorithm is based on our previous work [5] and
was improved by several extensions. In the next sections, we
describe our approach in detail and show how it can be used
for visual obstacle detection. Finally, we present experimental
results and conclude with an outlook for future work.

II. M ONOCULAR SCENE RECONSTRUCTION

As stated before, we use a single calibrated camera that is
mounted in front of the robot (see Figure 1). During the robot’s
locomotion, the camera is capturing a sequence of images
that are rectified immediately according to the intrinsic camera
parameters. Thus, different two-dimensional views of a scene
are obtained and can be used for the scene reconstruction.

A. Feature Selection

In these images distinctive image points (image features) are
detected. For performance reasons we use the “FAST” high-
speed corner detector [11], since SIFT or SURF features still
require too much computation time. The selected features are
then tracked in subsequent frames while recovering their 3D
positions.

B. State Representation
Davison et al. [6, 7] use a single EKF for full covariance

SLAM, i.e. for recovering the camera pose as well as the 3D
positions of the tracked image features simultaneously. Inthis
algorithm the inversion of the innovation covariance matrix
while computing the EKF update will dominate the overall
runtime resulting in a complexity ofO(n3) for large feature
feature countsn. Currently, such an approach only is able to
handle up to 100 features in real-time.

In [12] the computation of pose and structure is split into
two steps. In the first step, a single EKF is applied to recover
the camera position using a fixed number of reconstructed
features. During the second stepn EKFs are used to recover
the 3D positions ofn features, where one EKF is used
per feature. Both steps are repeated in an interleaved way.
Obviously, this is a coarse approximation of the full covariance
SLAM since correlations between the different features are
not taken into account. However, this approximation results
in a heavy reduction of the computational complexity to
O(m3) + O(n). Here O(m3) - the complexity of the pose
estimation during the first step - is constant, since the number
m of features that are used in the first step remains constant,
too. Thus, the overall complexity for large feature countsn is
O(n).

Since we require a dense reconstruction of the scene for
obstacle detection, we have to cope with a large number
of features which cannot be handled by a full covariance
SLAM approach in real-time. Therefore, we also use one EKF
per feature to recover the structure of the scene similar to
[12]. Each featurei is associated with a state vectoryi that
represents the 3D position of the feature and a corresponding
covariance matrixΣi.

Different parametrizations for the 3D positions of the fea-
tures have been proposed in literature. The most compact
representation is the XYZ-representation where the position of
each feature is parameterized by its Euclidean coordinatesin
3-space. Davison et al. [7] have shown that this representation
has several disadvantages since the position uncertainties for
distant features are not well represented by a Gaussian distri-
bution. Instead, they propose an inverse depth representation,
where the 3D position of each featurei can be described by
the following vector:

yi = (ci , θi , ϕi , λi)
⊤, (1)

whereci ∈ R
3 is the optical center of the camera from which

the featurei was first observed, andθi, φi is the azimuth and
elevation of the unit ray that points fromci to the 3D point
of the feature. This ray is given by its direction vector:

m (θi, φi) = (cos θi cos φi , cos θi sin φi , − sin θi)
⊤ (2)

The last elementλi of the state vector in equation(1) denotes
the inverse of the features depthdi = λ−1

i along the ray.
Parsley et. al [13] have shown that this inverse depthλi

might become negative during the EKF update and proposed
an alternative negative logarithmic parameterization where the
inverse depthλi is replaced byli = − log(d). In our experi-
ments, this parametrization resulted in a inferior convergence
of the EKFs. Therefore, we are going to use the inverse
parametrization here.
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C. Feature Tracking

While the robot is moving, the image features are tracked in
subsequent frames. In [5] we used a feature matching approach
that finds correspondences between homologue features in
subsequent frames based on a bipartite graph matching. While
that approach is suitable for SIFT or SURF features, it has
some shortcomings with less complex feature descriptors like
image patches.

Here, we use a guided active search for tracking the features
through the image sequence. As descriptor we utilize a16×16
pixel image patch around each feature.

First, the image positionx−
i of each feature is predicted by

projecting the current estimate of its 3D positionyi back onto
the image plane using̃x−

i = h (yi,P) with the measurement
function3:

h (yi,P) = P

(

λc̃i +

(

m (θi, φi)
0

))

. (3)

HereP =KR [I | −c] is the projection matrix containing the
current orientationR, the current positionc, and intrinsic
calibration matrixK of the camera the current image was
captured with (see [14] for details). The current camera pose
is obtained from the robot’s odometry data. We will get back
to this with some more information in a later subsection.

For each featurei, the corresponding image point is
searched in the current image around the predicted image
position x−

i by computing the sum of absolute differences
(SAD) with the image patch that is stored as descriptor of
the feature. The image point that yields the lowest SAD is
chosen. To achieve sub-pixel precision, we fit a 2D parabola
into the computed SAD error surface around the chosen
image point and use the coordinate of the apex as position
of the corresponding image point. The search is restricted
to an elliptical region that is defined by projecting the error
covarianceΣi of the feature’s 3D position estimate to the
image plane. The covariance matrix of this elliptical region
is computed within the EKF and is known as innovation
covariance:

Si = HiΣiH
⊤
i + Ri, (4)

whereHi denotes the Jacobian of the measurement function
in equation (3) andRi is the 2 × 2 measurement covariance
matrix that is set toRi = 5 I in our experiments.

One major problem of patch-based approaches for feature
matching are occlusions near object edges, where the patch
covers two different objects with large depth discontinuities
(see Figure 2a). During the matching, this leads to a decision
conflict since the part of the patch that belongs to the back-
ground object moves in a different way than the foreground
object. As a result, the reconstructed 3D points along object
borders are blurred in different depths. For stereo matching,
various adaptive window approaches have been proposed to
tackle this problem.

Here, we apply a variation of the multiple window approach
presented in [15] and [16]. Instead of using a single16 × 16
pixel correlation window, the window is split into five sub-
windows as shown in Figure 2. The SADs are computed for

3For better differentiation we notate homogeneous vectors asx̃ and
Euclidean vectors asx, wherex̃ = (x, 1)⊤ · s , s ∈ R
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Fig. 2. (a) The correlation window is split into 5 sub-windows and allows
better tracking along object boundaries. (b) For computing the SAD of each
sub-window the data can be stored efficiently in SSE/MMX registers.

each sub-windowCi. The final correlation valueC is formed
by adding the correlation valueCo of the central sub-window
and the values of the two best surrounding correlation windows
Cb andCs:

C = C0 + Cb + Cs, b = argmin
i>0

Ci, s = argmin
i>0,i6=b

Ci. (5)

This measure of similarity performs better near object
boundaries since at least two sub-windows are located on
a single object in most cases. Depending on the dominant
image structure, the correspondence is either attached to the
foreground or the background object, reducing the blur along
the reconstructed object borders. Using the SSE2 processor
instructionPSADBW, the correlation values can be computed
efficiently. This instruction simultaneously computes theSAD
for 16 consecutive pixels while it sums the SADs for the
first 8 pixels separately from the back most pixels within
one 128 bit SSE register. Therefore, splitting the window into
5 sub-windows results in very little computational overhead
compared to a single correlation window. This performance
improvement is a major reason for choosing the SAD as
similarity measure. Besides the correlation value, we compute
an occlusion score by adding the correlation values of the two
worst matching surrounding sub-windows:

Cocc = Cb + Cs, b = argmax
i>0

Ci, s = argmax
i>0,i6=b

Ci. (6)

Both the correlation valueC and the occlusion scoreCocc are
normalized by the number of pixels in the used sub-windows.

D. Descriptor Update

Davison et al. [7] also use the image patch around the
feature as descriptor. While they capture this descriptor only
once when the feature is first observed, we used a contrary
philosophy in [5], where we update the descriptor every time
the feature is tracked in a new image. Both variants have
pros and cons. If the descriptor is never adapted, the feature
cannot be tracked over long distances since the appearance
changes too much due to affine and perspective deformations,
especially when using a forward moving camera or robot. If,
on the other hand, the descriptor is updated with every frame,
tracking errors might be accumulated over several frames,
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and the descriptor might move along the edges of object
boundaries and does not represent a single fixed feature. This
usually occurs near occlusions and leads to incorrect estimates.

Therefore, we use the aforementioned occlusion scoreCocc

to determine whether updating the descriptor is reasonableor
not. If the normalized occlusion scoreCocc exceeds a certain
threshold the descriptor remains unachanged, otherwise itis
replaced by the corresponding patch in the current image.
Using this technique, most features can be tracked over long
distances while the projective deformations are compensated
by permanent descriptor updates. Feature descriptors near
occlusions are not updated to allow stable tracking along
object boundaries.

E. Odometry Correction

As stated before, we use the robot’s odometry to retrieve
the position of the camera for each image. However, due to
latencies in transmitting the image data from the camera to the
memory the time when the images were captured cannot be
determined precisely. Depending upon the current CPU usage
and load on the main bus, the delay may vary between 30
and 50 ms. Therefore, the odometry data cannot be assigned
exactly to an image. These inaccuracies constitute a negative
impact, especially if the angular velocity of the robot is
changing rapidly. Additional errors are caused by the joggle
of the camera when driving over a bumpy floor.

To correct these inaccuracies, we tried to estimate the
camera’s position using different methods. We used another
EKF additional to the 3D positions of the features in an
interleaved way similar to [12], and we applied a Gauss-
Newton method to estimate the orientation of the camera
by minimizing the back-projection error. Both, the EKF and
the Gauss-Newton method were able to recover the camera
pose or orientation respectively but did not achieve a higher
precision than SCITOS’s odometry, which already has a good
accuracy. As an alternative we tried to use a particle filter
(PF) for estimating the camera pose. First the particles are
updated using a motion model. Then we choose a constant
number ofm = 15 features that were tracked in the current
image. Thereby, features whose 3D positions are estimated
with sufficient precision are chosen in a way to cover the
image uniformly. The importance weight of each particlek is
then computed by adding the squared Mahalanobis distances
between the projected 3D positionsx−(k)

i = h(yi,Pk) of
the selected features and their tracked image positionxi with
respect to the innovation covarianceSi from equation (4) :

wk = − log

(

m
∑

i=0

(

x
−(k)
i − xi

)⊤

S−1
i

(

x
−(k)
i − xi

)

)

, (7)

wherePk is the projection matrix computed from the camera
pose that is estimated by thek-th particle.

This PF achieves better results than the Gauss-Newton
method and the EKF for pose estimation. We assume that this
is a result of the shape of the error function that is minimized
by both methods. Although the error function is smooth in
large scale, it is bumpy near the minimum due to slightly
erroneous image measurements making it difficult to find the

proper minimum for an iterative method. However, this needs
to be further investigated.

F. Measurement Update

After the features are tracked and the camera pose is refined,
the 3D positions of the features will be updated using the usual
EKF update equations leading to a more precise reconstruction
of the scenery.

G. Feature State Initialization

Lost features that left the camera’s field of view or that
cannot be tracked in the previous step are replaced be new
features. Different methods for initializing the state of new
features have been proposed in related literature. Some re-
searchers initialize the features at a constant depth while
others use a delayed initialization, where the position of a
new features is estimated using a PF e.g. before it is inserted
into the EKF cycle. However, since we want to use the
approach for obstacle detection, we have to obtain a reliable
estimate as early as possible in the estimation process. In [5]
we have shown how to use a multi-baseline stereo approach
for initializing new features. The approach uses the images
that were capturedbefore the feature was first detected and
searches along the epipolar line for corresponding image
regions by computing the SAD. By accumulating the SAD
error over multiple images, a reliable initial inverse depth
estimate is obtained. Additionally, we treat the SAD error
along the epipolar line as probability distribution and fit a
Gaussian distribution near the minimum in order to obtain a
variance of the initial estimate that is used for initializing the
error covariance matrixΣi.

III. O BSTACLE DETECTION

For obstacle detection, we perform the described monocular
scene reconstruction for 200-300 salient features of the scene
simultaneously. Afterwards, the reconstructed features have to
undergo some post-processing where outliers and unreliable
estimates are removed. From all reconstructed features, we
only use those that meet the following criteria:

• the estimated height must be above 0.1m; obstacles below
this threshold cannot be detected safely

• the variance of the estimated inverse depth taken from the
error covariance matrixΣi must lie below a threshold of
0.005

• the distance to the camera must have been smaller than
3m when the feature was observed for the last time

The last criterion mainly removes virtual features that arise
where the boundaries of foreground and background objects
intersect in the image. These features do not correspond to a
single 3D point in the scene and cannot be estimated properly.

The features that pass the above filters may still contain
a few outliers. Therefore, we examine the neighborhood of
each feature. Features that contain less than 4 neighbors within
a surrounding sphere with a radius of 0.3m are regarded
as outliers and will be rejected. The remaining features are
inserted into an occupancy map by projecting them on the
xy-plane. This occupancy map is merged with a laser map by
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Figure 3. Map created
by combining visual
information (red dots) and
laser-range-finder (blue).
The robot’s trajectory
and moving direction is
denoted by the dashed
line. The ground truth is
highlighted in gray. The
visual map consists of about
8200 reconstructed points.
Obstacles detected using
vision only are labeled using
numbers. The images on the
right show the obstacles as
seen by the front camera.
The image on the left was
taken using a handheld 8
megapixel camera.

choosing the highest occupancy for each cell in both maps.
Finally, the merged map is used for both local path planning
and obstacle avoidance.

IV. RESULTS

Figure 3 shows such a map where laser and visual infor-
mation is merged. For image acquisition a 1/4” CCD fire-wire
camera is installed on the robot that is mounted at a height of
1.15m and tilted by 35° towards the ground (see Figure 1). The
occupancy map that is created using the laser-range-finder is
colored in blue where the different shades of blue correspond
to the probability that a cell is occupied. The position of the
features that were reconstructed using visual informationand
the approach presented in this paper are colored in red. In the
map, a total number of about 8,200 visual features is shown.
While creating the map, a total number of 15,400 points was
reconstructed, where 6,000 features where filtered due to a
bad variance, 1,000 features were classified as belonging to
the ground and 100 were detected as outliers.

For better evaluation and for visualization purposes a ground
truth map was created and is highlighted in gray in the
background of Figure 3. For building the ground truth, we
took images of the scene using a hand held Canon EOS 350D
8.0 megapixel camera and used a bundle adjustment tool4 for
creating a precise reconstruction of the scene which finally
was edited and labeled manually.

The map covers an area of 14m×12m within a home im-
provement store where our tests were conducted. This test area
contains typical obstacles that we identified as problematic
during the field test since they cannot be detected by the laser-
range-finder due to their reflection properties, their form or too

4Bundler:http://phototour.cs.washington.edu/bundler/

low height. Some of these obstacles are numbered from 1 to
5 in Figure 3. In detail these obstacles are:

1) an empty Euro-pallet with a height of 11cm
2) a ladder
3) a low shopping cart with goods that jut out at both ends
4) a high shopping cart
5) shelves that extend into the scene.

All of these obstacles cannot be seen by the laser-range-finder
and, therefore, might result in collisions. However, usingour
visual approach these obstacle can be detected robustly. In
Figure 4 we try to quantify this result. For each obstacle,
we have manually labeled those parts of the outline that
are relevant for navigation and obstacle avoidance during the
above test run using the ground truth map. The statistics
in Figure 4 show the percentage of the relevant obstacle
boundaries that were detected by our visual approach, the
laser-range-finder and a combination of vision and laser. These
results show that major parts of the above mentioned obstacles
can be detected. Furthermore, it can be seen that the detection
rate for all relevant objects in the scene can be increased
significantly by 20% compared to obstacle detection using a
laser-range-finder only.

Additional tests were carried out in the garden center of
the home improvement store where a bumpy stone floor leads
to vibrations. Figure 5a shows a front camera image of this
area. However, neither the increased shaking of the camera
due to the rough ground outdoors resulted in a degradation of
the reconstruction nor did the repetitive texture of the floor
lead to outliers or false positive obstacle detections. Features
detected on the floor were estimated correctly and classified
as free and passable (Figure 5b). Figures 5c and 5d show two
synthetic views of the reconstructed scene, where the point
features were rendered using their image patches. Using this
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obstacle visual laser visual+laser

1 63% - 63%
2 71% - 71%
3 71% - 71%
4 68% 10% 68%
5 82% - 82%

others 85% 78% 96%

total 83% 72% 93%

Fig. 4. Percentage of obstacle boundaries that can be detected using the
presented visual approach, a laser-ranger-finder and a combination of both
for the 5 labeled obstacles and the rest of the scene shown in Figure 3.

(a) (b)

(c) (d)

Fig. 5. (a) front camera image, (b) the reconstructed scene where the height
of the reconstructed features is coded by the color (green: <0.10m, yellow-
red: 0.10m-1.15m), (c-d) synthetic views of the obstacles that were generated
by rendering the patches of the reconstructed points.

technique, arbitrary views of the scene could be generated and
used for appearance-based SLAM for example.

Our approach has been tested on an Intel Core 2 Duo,
2 GHz CPU. In spite of utilizing one core only we are able to
process up to 30 frames per second while reconstructing 200-
300 features simultaneously. Depending on the robot’s driving
speed, we only need to process 10-15 frames per second
leaving enough CPU resources for other applications like map
building, navigational tasks, user tracking and human-machine
interaction.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an algorithm for monoc-
ular scene reconstruction and shape from motion. We have
described several improvements to [5] that make the recon-
struction more reliable and help to reduce outliers. These
techniques allow the approach to be used for robust real-time
obstacle detection. In realistic field tests, we have shown that
some obstacles that are not visible to distance measuring active
sensors, like laser-range-finders, can be safely detected by our

vision based approach. Furthermore, we were able to show
that visual obstacle detection combined with a laser-range-
finder can increase the detection rate of obstacles considerably.
During the next months, we will carry out long-term tests to
evaluate whether and how much the number of collisions or
near-collisions can be decreased during the daily usage of the
robots.

Currently, we are developing an active vision approach that
selects features in areas where the obstacle situation is unclear
and where more detailed scene reconstruction is necessary,
instead of selecting the features uniformly over the whole
image as it is done so far.

Additionally, we are going to research a method to estimate
the position of moving objects. However, since the position
of moving objects can be reconstructed up to a scaling factor
only, we will focus on obstacles that reach to the ground. At
the moment, features along moving objects are rejected during
feature tracking and filtered after the reconstruction due to
their high variance in the position estimate.
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