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Abstract— In this paper, we present a feature based approach a large amount of information about the structure of thelloca
for monocular scene reconstruction based on extended Kalman syrroundings.
filters (EKF). Our method processes a sequence of images Recently, time-of-flight
taken by a single camera mounted frontal on a mobile robot. '
Using different techniques, we are able to produce a precise
reconstruction that is free from outliers and therefore can be Frontal CCD color camera
used for reliable obstacle detection. In real-world field-tests we
show that the presented approach is able to detect obstacles
that are not seen by other sensors, such as laser-range-finder
Furthermore, we show that visual obstacle detection combined
with a laser-range-finder can increase the detection rate of
obstacles considerably allowing the autonomous use of mobile
robots in complex public environments.

cameras have been used
successfully for obstacle
detection  [2].  Similar
to laser-range-finders,
these cameras emit short
light pulses and measure
the time taken until the
reflected light reaches the
camera again. Due to their
high costs these cameras
may be suitable for robot
prototypes but are no option

for a series product that
For nearly then years we have been involved in the dez-4Sonarsensors we are planning to develop.
velopment of an interactive mobile shopping assistant for Another alternative is to use
everyday use in public environments, such as shoppingr@ent&g 1. The robot platform SCITOs Stereo vision for obstacle
or home improvement stores. Such a shopping companiss aszoing (::ﬁvell\tlnlrénFmaelntboft r!\/lft_raLabZ detection as described
autonomously contacts potential customers, intuitivelter- ,grrngurir:(periem onts and fied il s in [3] and many others.
acts with them, and adequately offers its services, inoyidieqyipped with sonar sensors, a laserHowever, a stereo camera
autonomously guiding customers to the locations of desireshge-finder and a frontal CCD camerajs less compact than a
goods [1]. As part of long-term field trials 9 shopping robotdat is tited towards the ground. 416 camera. Furthermore,
have been in daily use in three different home improvemeatmonocular approach that uses one camera only is more
stores in Germany since March 2008. interesting from a scientific point of view.

For obstacle detection the robots are equipped with an arrayin [4] a monocular approach for depth estimation and
of 24 sonar sensors at the bottom and a laser-range-findpstacle detection is presented. Information about scepthd
SICK S300 mounted in front direction at a height of 0,3% drawn from the scaling factor of image regions, which
meters as shown in Figure 1. Using these sensors, mostiofdetermined using region tracking. While this approach
the obstacles can be reliably detected. However, during tinay work well in outdoor scenes where the objects near
field trials it became apparent that many obstacles are vehg focus of expansion are separated from the background
difficult to recognize. The main extent of a shopping cart fdsy large depth discontinuities, it will fail in cluttereddnor
example is mainly located above the plane that is covered dgvironments like home improvement stores. In [5] we prepos
the laser-range-finder. Also small obstacles like flat pallge an early version of a feature-based approach for monocular
difficult to detect since they lie below the laser-range+ind scene reconstruction. This shape-from-motion approaels us
and can hardly be seen by the sonar sensors due to theirediffEgtended Kalman Filters (EKF) to reconstruct the 3D positio
characteristics and low precision. Therefore, it turnetltou of the image features in real-time in order to identify pditn
be necessary to use additional methods for robust and leliabbstacles in the reconstructed scene. Davison et al. [6, 7]
obstacle detection. Vision-based approaches are suitable use a similar approach and have done a lot of research in
this purpose since they provide a large field of view and supgthis area. They propose a full covariance SLAM algorithm

_ ' ' for recovering the 3D trajectory of a monocular camera.

e o SAOO ) e o (nhiraes, BOth. the camera position and the 3D posifons of tracked
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I. INTRODUCTION




Drummond [8]. Their graph-based algorithm partitions thB. State Representation
landmark observations into nodes of a graph to minimize Davison et al. [6, 7] use a single EKF for full covariance
statistical inconsistency in the filter estimates [9]. SLAM, i.e. for recovering the camera pose as well as the 3D
However, Eade and Drummond’s “Visual SLAM” as wellpositions of the tracked image features simultaneouslthib
as Davison’s “MonoSLAM” are both mainly focusing onalgorithm the inversion of the innovation covariance nxatri
the estimation of the camera motion, while a precise recomwhile computing the EKF update will dominate the overall
struction of the scenery is less important. As we want twntime resulting in a complexity of(n?) for large feature
use the reconstructed scene for obstacle detection antl Ideature counts:. Currently, such an approach only is able to
map building, our priorities are vice versa. We are prinyarilhandle up to 100 features in real-time.
interested in a precise and dense reconstruction of theescenln [12] the computation of pose and structure is split into
and do not focus on the correct camera movement, since thw steps. In the first step, a single EKF is applied to recover
distance of the objects relative to the camera and the rollo¢ camera position using a fixed number of reconstructed
respectively is sufficient for obstacle avoidance. Actyalle features. During the second stepEKFs are used to recover
are using the robot's odometry to obtain information on thithe 3D positions ofn features, where one EKF is used
camera movement. In contrast to Eade and Davison wher feature. Both steps are repeated in an interleaved way.
generally move their camera sidewards in their examples, ddbviously, this is a coarse approximation of the full cosade
camera is mounted in front of the mobile robot and, thereforSLAM since correlations between the different features are
moves along its optical axis (see Figure 1). Compared todhtenot taken into account. However, this approximation rasult
motion, this forward motion leads to higher uncertaintiethe in a heavy reduction of the computational complexity to
depth estimates due to a smaller parallax. This fact was al8¢m?) + O(n). Here O(m?) - the complexity of the pose
proven by Matthies and Kanade [10] in a sensitivity analysiestimation during the first step - is constant, since the rmimb
The main contribution of this paper is a monocular features of features that are used in the first step remains constant,
based approach for scene reconstruction that combinegoa. Thus, the overall complexity for large feature counts
number of different techniques that are known from resear€in).
areas like Visual SLAM or stereo vision to achieve a robust Since we require a dense reconstruction of the scene for
algorithm for reliable obstacle detection that must fulfiile obstacle detection, we have to cope with a large number

following requirements: of features which cannot be handled by a full covariance
1) A dense reconstruction to reduce the risk of missing &LAM approach in real-time. Therefore, we also use one EKF
ignoring an obstacle per feature to recover the structure of the scene similar to

2) The positions of obstacles that appear in the field of viel#2]. Each feature is associated with a state vectgy that
should be correctly estimated as early as possible to allé@presents the 3D position of the feature and a correspgndin
a fast reaction in motion control covariance matrixs;.

3) Outliers must be suppressed to avoid false positive detecDifferent parametrizations for the 3D positions of the fea-
tions that result in inadequate path planning or unnecdgres have been proposed in literature. The most compact
sary avoidance movements representation is the XYZ-representation where the osaf

The presented algorithm is based on our previous work [5] aR@ch feature is parameterized by its Euclidean coordinates
was improved by several extensions. In the next sections, wspace. Davison et al. [7] have shown that this repredentat
describe our approach in detail and show how it can be ude@p several disadvantages since the position uncertaifatie
for visual obstacle detection. Finally, we present experital distant features are not well represented by a Gaussiant- dist

results and conclude with an outlook for future work. bution. Instead, they propose an inverse depth repregemtat
where the 3D position of each featuirecan be described by
the following vector:

) A i Yi = (C'Lv 9i7 ©i )\i)Tv (l)
As stated before, we use a single calibrated camera that is

‘ 3 . :
mounted in front of the robot (see Figure 1). During the rabot"V 1€r€Ci € RR* is the optical center of the camera from which

locomotion, the camera is capturing a sequence of imadqg f(igturezfvtvk?s f|r§: obs?r:vid, ".mtﬁ’ f(b i 1S 'f[hetﬁzw;gth a_mtd
that are rectified immediately according to the intrinsimeaa e'evation of the unit ray that points Iroiey 1o the pf)m
parameters. Thus, different two-dimensional views of anecemc the feature. This ray is given by its direction vector:

are obtained and can be used for the scene reconstruction. , (¢,, ¢,) = (cos; cos ¢; , cosb; sing; , —sin6;)  (2)

II. MONOCULAR SCENE RECONSTRUCTION

The last elemen; of the state vector in equation(1) denotes
A. Feature Selection the inverse of the features depth= )\i‘l along the ray.

In these images distinctive image points (image featunes) a _Parsley et. al [13] have shown that this inverse depfh

detected. For performance reasons we use the “FAST” hidﬂ!ght become negative during the EKF update and proposed

speed comer detector [11], since SIFT or SURF featurds el alternative negative logarithmic parameterizationrartiee

require too much computation time. The selected features yyerse d?pth)‘i IS replac.ed by; = — I.Og(d.)' In.our expert-
nts, this parametrization resulted in a inferior coneaog

then tracked in subsequent frames while recovering their . .
g 9 of the EKFs. Therefore, we are going to use the inverse

positions. o
parametrization here.



SSE register (128 bit)

C. Feature Tracking fmmm———— rmmmm——— -

1

While the robot is moving, the image features are tracked i:n i 1
subsequent frames. In [5] we used a feature matching apgproac
that finds correspondences between homologue featuresiin
subsequent frames based on a bipartite graph matching. While.. -
that approach is suitable for SIFT or SURF features, it has
some shortcomings with less complex feature descriptkes i |
image patches. '

Here, we use a guided active search for tracking the featurgs 4
through the image sequence. As descriptor we utilizé:a16 MMX register (64 bit)
pixel image patch around each feature. @) ()

First, the image positiow; of each feature is predicted by

roiecting the current estimate of its 3D positionback onto Fig9- 2. (a) The correlation window is split into 5 sub-windoand allows
Proj 9 P wn better tracking along object boundaries. (b) For computiveg$AD of each

]Ehe im??ge plane usinQ; =h (Yiv P) with the measurement sub-window the data can be stored efficiently in SSE/MMX stegi.
unctiorn’:

h(yi,P)=P ()\é'i + ( m(96’¢i) )) : )
each sub-window;. The final correlation valu€’' is formed
HereP =KR [I| —c] is the projection matrix containing theby adding the correlation valug, of the central sub-window
current orientationR, the current positionc, and intrinsic and the values of the two best surrounding correlation wirsdo
calibration matrixK of the camera the current image wag, andC,:
captured with (see [14] for details). The current cameraepos
is obtained from the robot’s odometry data. We will get back

to this with some more information in a later subsection. hi ¢ similari f b bi
For each featurei, the corresponding image point is This measure of similarity performs better near object

searched in the current image around the predicted iméé%u'nd?nesb.&ncg at least two sgb-ww;jows areh Iogateq on
position x; by computing the sum of absolute difference& SIN9'€ O Ject In most cases. epending on the dominant
(SAD) with the image patch that is stored as descriptor page structure, the correspondence is either attacheldeto t

the feature. The image point that yields the lowest SAD [gréground or the background object, reducing the blurgilon
chosen. To achieve sub-pixel precision, we fit a 2D parabc} e reconstructed object borders. Using the SSE2 processor

into the computed SAD error surface around the ChosghqtrucUonPSADBW the correlation values can be computed

image point and use the coordinate of the apex as positihCciENty. This instruction simultaneously computes 8D
16 consecutive pixels while it sums the SADs for the

of the corresponding image point. The search is restrict

to an elliptical region that is defined by projecting the errcfirSt 8 pixgls separqtely from the baclg _mOSt pixgls wit_hin
covarianceX; of the feature's 3D position estimate to th&ne 128 bit SSE register. Therefore, splitting the windote in

image plane. The covariance matrix of this elliptical regioS sub-windows r(_asults In very Ilttle_computat{onal overthea
is computed within the EKF and is known as innovatioﬁompared to a single correlation window. This performance
covariance: improvement is a major reason for choosing the SAD as
' S, = H,,H + R; (4) similarity measure. Besides the correlation value, we adp
v 4 (3 K

] -an occlusion score by adding the correlation values of tlee tw
whereH; denotes the Jacobian of the measurement functig@yrst matching surrounding sub-windows:

in equation (3) andR; is the 2 x 2 measurement covariance

matrix that is set tdR; = 51 in our experiments. Coce = Cp + Cs, b= arsniax Ci, s = agmax Ci. (8
One major problem of patch-based approaches for feature ' 0

matching are occlusions near object edges, where the pa&@h the correlation valué’ and the occlusion scoi€,.. are

covers two different objects with large depth discontisit Normalized by the number of pixels in the used sub-windows.

(see Figure 2a). During the matching, this leads to a detisio

conflict since the part of the patch that belongs to the badk: Descriptor Update

ground object moves in a different way than the foreground Davison et al. [7] also use the image patch around the

object. As a result, t.he r.econstructed 3D points along obj_%ature as descriptor. While they capture this descriptdy on
bor_ders are b_lurreo_l in different depths. For stereo mag;hmbnce when the feature is first observed, we used a contrary
various z_idapnve window approaches have been pr0posedpf'n‘i’losophy in [5], where we update the descriptor every time
tackle this problem. L . . he feature is tracked in a new image. Both variants have
Here, we apply a variation of the multlpl_e wmdpw approachros and cons. If the descriptor is never adapted, the featur
p_resented n .[15] a_nd [16]. Instt_aad of _usmg_a_smgl_ex 16 cannot be tracked over long distances since the appearance
pl_xel correlation wm_dovy, the window is split into five SUb'changes too much due to affine and perspective deformations,
windows as shown in Figure 2. The SADs are computed fgrspecially when using a forward moving camera or robot. If,
3For better differentiation we notate homogeneous vectorstaand ©ON the other hand, the descriptor is updated with every frame
Euclidean vectors as, wherex = (x,1)" -s, s € R tracking errors might be accumulated over several frames,

e Y

C=Cp+Cy+Cs, b=argminC;, s = argmin C;. (5)
i>0 i>0,ib



and the descriptor might move along the edges of objgmtoper minimum for an iterative method. However, this needs
boundaries and does not represent a single fixed featurs. Tibi be further investigated.
usually occurs near occlusions and leads to incorrect atdsn

Therefore, we use the aforementioned occlusion s€gre F. Measurement Update

to determine whether updating the descriptor is reasor@ble  afier the features are tracked and the camera pose is refined,

not. If the normalized occlusion scotg,.. exceeds a certain he 3p positions of the features will be updated using thalisu

threshold the descriptor remains unachanged, otherwig itekF ypdate equations leading to a more precise reconsiructi
replaced by the corresponding patch in the current imagg.ine scenery.

Using this technique, most features can be tracked over long
distances while the projective deformations are compedsals Feature Sate Initialization
by permanent descriptor updates. Feature descriptors neaLr

occlusions are not updated to allow stable tracking alon% OStt fbeattjresk tga_t lf: the C_amerats field of \fewdoLthat
object boundaries. cannot be tracked in the previous step are replaced be new

features. Different methods for initializing the state awn
) features have been proposed in related literature. Some re-

E. Odometry Correction searchers initialize the features at a constant depth while

As stated before, we use the robot's odometry to retriegghers use a delayed initialization, where the position of a
the position of the camera for each image. However, due riew features is estimated using a PF e.g. before it is irerte
latencies in transmitting the image data from the camerhéo tinto the EKF cycle. However, since we want to use the
memory the time when the images were captured cannot &gproach for obstacle detection, we have to obtain a reliabl
determined precisely. Depending upon the current CPU usaggimate as early as possible in the estimation proces§] In [
and load on the main bus, the delay may vary between #@ have shown how to use a multi-baseline stereo approach
and 50 ms. Therefore, the odometry data cannot be assigf@dinitializing new features. The approach uses the images
exactly to an image. These inaccuracies constitute a negathat were capturedbefore the feature was first detected and
impact, especially if the angular velocity of the robot isearches along the epipolar line for corresponding image
changing rapidly. Additional errors are caused by the jeggtegions by computing the SAD. By accumulating the SAD
of the camera when driving over a bumpy floor. error over multiple images, a reliable initial inverse dept

To correct these inaccuracies, we tried to estimate tbetimate is obtained. Additionally, we treat the SAD error
camera’s position using different methods. We used anottiong the epipolar line as probability distribution and fit a
EKF additional to the 3D positions of the features in aGaussian distribution near the minimum in order to obtain a
interleaved way similar to [12], and we applied a Gaussariance of the initial estimate that is used for initiatigithe
Newton method to estimate the orientation of the camegaror covariance matrix;.
by minimizing the back-projection error. Both, the EKF and
the Gauss-Newton method were able to recover the camera [1l. OBSTACLE DETECTION

pose or orientation respectively but did not achieve a highe For obstacle detection, we perform the described monocular
precision than SCITOS'’s odometry, which already has a goggene reconstruction for 200-300 salient features of teaesc
accuracy. As an alternative we tried to use a particle filtgfmultaneously. Afterwards, the reconstructed featuea® o
(PF) for estimating the camera pose. First the particles ajdergo some post-processing where outliers and unreliabl
updated using a motion model. Then we choose a constagtimates are removed. From all reconstructed features, we
number ofm = 15 features that were tracked in the currengnly use those that meet the following criteria:

image. Thereby, features whose 3D positions are estimated e estimated height must be above 0.1m: obstacles below
with sufficient precision are chosen in a way to cover the ..« threshold cannot be detected safely

image uniformly. The importance weight of each partikls , the variance of the estimated inverse depth taken from the
then computed by adding the squared Mahalanobis distances g or covariance matris; must lie below a threshold of

between the projected 3D positions *) = h(y;, P) of 0.005
the selected features and their tracked image positionith | the distance to the camera must have been smaller than
respect to the innovation covarianSe from equation (4) : 3m when the feature was observed for the last time
m T 1 (k) The last criterion mainly removes virtual features thaseri
wy, = —log Z (Xi _Xz> S; (Xi —Xi) . (7)  where the boundaries of foreground and background objects

intersect in the image. These features do not correspond to a
wherePy, is the projection matrix computed from the cameraingle 3D point in the scene and cannot be estimated properly
pose that is estimated by tlteth particle. The features that pass the above filters may still contain
This PF achieves better results than the Gauss-Newwrfew outliers. Therefore, we examine the neighborhood of
method and the EKF for pose estimation. We assume that thech feature. Features that contain less than 4 neighbtivis wi
is a result of the shape of the error function that is minimizea surrounding sphere with a radius of 0.3m are regarded
by both methods. Although the error function is smooth ias outliers and will be rejected. The remaining features are
large scale, it is bumpy near the minimum due to slightlynserted into an occupancy map by projecting them on the
erroneous image measurements making it difficult to find thg-plane. This occupancy map is merged with a laser map by



Figure 3. Map created
by combining visual

information (red dots) and
laser-range-finder (blue).
The robot's trajectory

and moving direction is

denoted by the dashed
line. The ground truth is

highlighted in gray. The

visual map consists of about
8200 reconstructed points.
Obstacles detected using
vision only are labeled using
numbers. The images on the
right show the obstacles as
seen by the front camera.
The image on the left was
taken using a handheld 8
megapixel camera.

choosing the highest occupancy for each cell in both mapsew height. Some of these obstacles are numbered from 1 to
Finally, the merged map is used for both local path plannirgin Figure 3. In detail these obstacles are:

and obstacle avoidance. 1) an empty Euro-pallet with a height of 11cm
2) a ladder
IV. RESULTS 3) a low shopping cart with goods that jut out at both ends

Figure 3 shows such a map where laser and visual infor#) & high shopping cart
mation is merged. For image acquisition a 1/4” CCD fire-wire 2) Shelves that extend into the scene. _
camera is installed on the robot that is mounted at a height/f Of these obstacles cannot be seen by the laser-rangerfind
1.15m and tilted by 35° towards the ground (see Figure 1). TRBd, therefore, might result in collisions. However, using
occupancy map that is created using the laser-range-fisde¥ifual approach these obstacle can be detected robustly. In
colored in blue where the different shades of blue corregpofiigure 4 we try to quantify this result. For each obstacle,
to the probability that a cell is occupied. The position o thWe have manually labeled those parts of the outline that
features that were reconstructed using visual informatiog re relevant for navigation and obstacle avoidance dufieg t
the approach presented in this paper are colored in redeln #iP0ve test run using the ground truth map. The statistics
map, a total number of about 8,200 visual features is showf}, Figure 4 show the percentage of the relevant obstacle
While creating the map, a total number of 15,400 points whgundaries t'hat were detectgd l?y our 'V|'sual approach, the
reconstructed, where 6,000 features where filtered due td@ger-range-finder and a combination of vision and lasegs&h
bad variance, 1,000 features were classified as belonging'@8ults show that major parts of the above mentioned ofestacl
the ground and 100 were detected as outliers. can be detected. Furthermore, it can be seen that the detecti

For better evaluation and for visualization purposes argou@t€ for all relevant objects in the scene can be increased
truth map was created and is highlighted in gray in tpaignificantly py 20% compared to obstacle detection using a
background of Figure 3. For building the ground truth, wiser-range-finder only. _ .
took images of the scene using a hand held Canon EOS 350|j\dd|t|on_al tests were carried out in the garden center of
8.0 megapixel camera and used a bundle adjustmerft fiol the home improvement store where a bumpy stone floor leads

creating a precise reconstruction of the scene which finalf§y Vibrations. Figure 5a shows a front camera image of this
was edited and labeled manually. area. However, neither the increased shaking of the camera

The map covers an area of 14m2m within a home im- due to the rough ground outdoors resulted in a degradation of
provement store where our tests were conducted. This st dpe reconstruction nor did the repetitive texture of the rfloo
contains typical obstacles that we identified as problematfad to outliers or false positive obstacle detectionsiufea
during the field test since they cannot be detected by the- ladetected on the floor were estimated correctly and classified

range-finder due to their reflection properties, their fompo @ free and passable (Figure 5b). Figures 5c and 5d show two
synthetic views of the reconstructed scene, where the point

4Bundler:ht t p: / / phot ot our . cs. washi ngt on. edu/ bundl er/  features were rendered using their image patches. Usisg thi



obstacle visual laser visual+laser
1 63% - 63%
2 71% - 71%
3 71% - 71%
4 68% 10% 68%
5 82% - 82%
others 85% 78% 96%
total 83% 72% 93%

Fig. 4. Percentage of obstacle boundaries that can be éétesing the
presented visual approach, a laser-ranger-finder and a natidsi of both
for the 5 labeled obstacles and the rest of the scene showigumer3.

Fig. 5.
of the reconstructed features is coded by the color (greelmi16m, yellow-
red: 0.10m-1.15m), (c-d) synthetic views of the obstacleswiee generated
by rendering the patches of the reconstructed points.

(a) front camera image, (b) the reconstructed sceneewthe height

vision based approach. Furthermore, we were able to show
that visual obstacle detection combined with a laser-range
finder can increase the detection rate of obstacles coasilyer
During the next months, we will carry out long-term tests to
evaluate whether and how much the number of collisions or
near-collisions can be decreased during the daily usageeof t
robots.

Currently, we are developing an active vision approach that
selects features in areas where the obstacle situatiorcieam
and where more detailed scene reconstruction is necessary,
instead of selecting the features uniformly over the whole
image as it is done so far.

Additionally, we are going to research a method to estimate
the position of moving objects. However, since the position
of moving objects can be reconstructed up to a scaling factor
only, we will focus on obstacles that reach to the ground. At
the moment, features along moving objects are rejectedgluri
feature tracking and filtered after the reconstruction dwe t
their high variance in the position estimate.
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