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TOOMAS: Interactive Shopping Guide Robots in Everyday Use - Final
Implementation and Experiences from Long-term Field Trials

H.-M. Gross, H. Boehme, Ch. Schroeter, S. Mueller, A. Koenig, E. Einhorn, Ch. Martin, M. Merten, A. Bley

Abstract— The paper gives a comprehensive overview of our
Shopping Guide project, which aims at the development of
interactive mobile shopping companion robots for everyday use
in challenging operating environments such as home improve-
ment stores. It is spanning an arc from the expectations and
requirements of store owners and customers, via the challenges
of the shopping scenario and the operating environment, the
implemented functionality of the shopping guide robots, up to
the results of long-term field trials. The field trials started in
April 2008 and still ongoing aim at studying whether and how a
group of interactive mobile shopping guide robots can operate
completely autonomously in such everyday environments and
how they are accepted by uninstructed customers. In these field
trials, where nine robotic shopping guides traveled together
2187 kilometers in three different home improvement stores
in Germany, more than 8,600 customers were successfully
guided to the locations of their products of choice. With the
successful development of these shopping guide robots, a further
important step towards assistive robotics for daily use has been
done.

I. INTRODUCTION

More and more shopping centers are looking for new
ways to make shopping an experience for the customers.
Improving the shopping quality and the service offers is an
interesting way of ensuring customers returning to the shop.
Assistive mobile robots offering a spectrum of novel on-site
services, e.g. an interactive article search, a smart guiding
function, or an individual counseling by highly skilled and
omnipresent expert staff per video link can play an important
role in this process. Also for the shop owners such assistive
robots are of great interest, because they disburden the expert
staff from less challenging, trivial routine tasks, like guiding
customers to the products of their choice or informing them
about prices, and allow them to focus on their main task -
detailed customer counseling.

Against this background, in continuation of [1] this paper
gives a comprehensive overview of our Shopping Guide
project. This project started in 2000 [2] aims at the develop-
ment of interactive shopping guide robots for use in spacious
and populated public environments under everyday condi-
tions such as shopping centers or home improvement stores.
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Fig. 1. Interactive mobile shopping
assistant TOOMAS guiding a customer
together with his shopping trolley to the
location of the product of his choice in
a typical home improvement store.

Our robotic shopping guides are supposed to autonomously
contact potential users, intuitively interact with them, and
adequately offer their services. Service tasks tackled in this
project are to autonomously navigate through the market and
guide the customers to the products of their choice, and
to accompany them during the whole purchase as mobile
shopping companions offering a set of further functionalities,
like video connection to a salesperson, infotainment, or exe-
cuting composite purchases (Fig. 1). Because our project is
primarily focused on interaction and guidance functionality,
a shopping cart function allowing to carry the chosen goods
by the robot has been excluded explicitly from the beginning
for various reasons. For example, this would have required a
completely different platform design and engineering, and
many other constraints would have had to be taken into
consideration, e.g. the payload and therewith the spectrum
of goods that can be chosen by the customer. Instead of
that, customers use the standard shopping carts available in
the store for carrying the chosen goods when employing a
robot as shopping guide (see Fig. 1).

Unlike our previous publications dealing with more
methodologically oriented aspects of our Shopping Guide
project, like e.g. self-localization and map building [3], [4],
[5] or human-robot interaction [6], this paper is giving a
summarizing overview of the project. For this purpose, it is
covering a broad range from the expectations and require-
ments of the store owners and customers, via the challenges
of the shopping scenario and the operating environment, the
robot hardware and the functionality implemented of the
shopping guide, the integration of the components into a
smoothly working interactive system, up to the results of
long-term field trials, which have been conducted with nine
robotic shopping guides in three different home improvement
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Fig. 2. Part of the interactive menu on the touch screen of the shopping
assistant. Here, the map of the store is shown, in which the current position
of the robot, the position of the article in the store (red circle), and the
suggested path planned by the robot (blue line) are drawn in.

stores in Germany since April 2008. The main objective
of the still ongoing field trials is a long-term evaluation of
the technical performance of the shopping robots and their
in principle acceptance by uninstructed customers, while
a systematic evaluation study of the interaction, the user
experiences, and the usability will be done in the near future.

II. CHALLENGES, CONSTRAINTS AND REQUIREMENTS
OF THE SHOPPING ROBOT SCENARIO

In this section, the key insights we gained from (i)
requirement specifications of the store owners and managers,
(ii) own experimental experiences achieved in the different
home stores used as test environments since 2000, but also
from (iii) surveys of the market staff and customers are
summarized. The aim of this compilation is to support
other projects doing similar robotics research in avoiding
dead-ends, making the same mistakes, or putting envisaged
technical solutions on unrealistic assumptions. These require-
ments pose great challenges to the navigation, interaction and
service components of each mobile robot assistant.

A. Challenges & Requirements to Navigation & Integration

Complexity of the environment: A home improvement
store is a very complex, maze-like indoor environment with
a very high structuring (see Fig. 2). It consists of a set of
parallel, long hallways or corridors separated by shelves,
corridors connected to alleys, a network of alleys, connected
to the main store entrance and to the checkout counters. Typ-
ically, the area has a size of 5,000 to 15,000 square meters.
The environment is highly dynamic due to moving people
(customers, staff) or other moving objects, like shopping
carts or pallet transporters. Moreover, a home store is a very
evolutive environment regarding the filling of the shelves,
or the placement of special offers at the head sides of the
shelves (product heaps, sales, etc.).

Plug & Play solutions vs. installations: The embedding of
mobile service systems in a market should be doable without
cost- and time-expensive modifications of the market or its
technical infrastructure. For most store owners we discussed
with, it was unacceptable to retrofit the whole operation area
(all shelves and corridors) with a dense net of RFID tags to

allow a robust navigation. This also applies to a retrofitting
of the store with Indoor-GPS techniques based on laser or
other active components. The best would be a simple plug
& play solution using only the robot’s on-board sensors and
advanced navigation techniques. Also required is a simple
integration in the existing infrastructure (wi-fi, merchandize
management system, etc.). Only that way, a high flexibility of
the robotic solution regarding reconfigurations of the store,
task changes, and new requirements can be guaranteed.

Another key problem is the question of how to accomplish
an automatic labeling of the navigation map with the posi-
tions of all products, because a manual labeling of all goods
locations is impossible. The reason is that for large hardware
stores up to 60,000 different products have to be placed in
the map used for navigation. Here an automatic mapping
between this map and the places of the goods within the
shelves (stored in the merchandize management system of
the store) is required.

B. Requirements to Human-Robot Interaction

Speech-based dialog and article search: It rapidly turned
out that speech recognition features a significantly higher
complexity compared to other typical HCI application sce-
narios due to (i) the extreme background noise in home
stores, (ii) distracting public address announcements, (iii) the
large diversity of descriptions for the same article, and (iv)
the use of common speech and dialects, unclear articulation,
and pronunciation. Against this background, it proved to be
an unrealistic requirement to recognize the desired goods by
speech - also due to the huge spectrum of different articles
in a home store and the necessary speaker-independence.
Therefore, we agreed to abstain from a speech-based article
selection and decided in favor of a pure menu-based selection
on the touch screen using established methods of keyword
or product group search.

Getting and staying in contact with customers: The getting
in contact and the interactive dialog have to be intuitively
understandable, so that the customers don’t have to be briefed
before using a shopping robot. From our own experience
we know that customers often are restrained and incom-
municative or even anxious if confronted with this kind
of technology. They don’t know if and how the robot can
communicate by speech or other modalities. Therefore, in
90% of all interactions they waited in the vicinity of the
robot to be addressed by it - an unexpected experience
which was of immediate importance for the dialog design,
particularly for the question how to take the initiative by the
robot while getting in contact. Moreover, RFID proved as a
not-practicable technology for user detection and tracking,
because most customers are not willing to wear RFID tags.
Many of them try to kid or even mislead the robot e.g. by
putting down the tags into the shelves. Speech-based user
tracking is also unsuitable because single users typically
don’t speak along their paths, and background noise is
significantly higher than the voice of a person in a distance of
several meters. So, only vision in combination with distance



measuring sensors proved to be suitable for robust user
detection and tracking.

III. RELATED WORK

A comprehensive overview of the employment of mobile
robots as tour guides in expositions, museums, or other
places open to the public is given in [7]. Among them are
such well known robots like Rhino, Minerva, and Sage, the
exposition guide RoboX, or the robots Mona/Oskar at the
Opel sales center at Berlin. Usually, these robots guide visi-
tors to a set of predefined exhibits following a planned path
while offering exhibition-related information. They navigate
in populated, structured, but completely known operation
areas as they are typical for expositions - in the most cases
limited to a few hundred square meters. By contrast, the
shopping robot scenario and the operational environments in
shopping centers make still more challenging demands.

So far, there are only a few approaches known that have
tried to tackle the challenging requirements of the shopping
scenario. RoboCart [8], [9], a robotic shopping assistant
for the visually impaired, or the approaches of [10] and
[11] belong to this. However, these systems don’t operate
autonomously as it is required for a realistic application
as shopping assistant. Moreover, most of them require cus-
tomized, engineered stores with shelves or hallways equipped
with RFID-tags for self-localization of the robots. Other
robots are completely remote-controlled from a user outside
the store, like the robot Luk from NTTcom and tmsuk, or the
robot of the Tsukuba University (Japan) that allows a user
a tele-operated grasping of fruit during a remote-controlled
shopping tour [11].

Another interesting approach dealing with an assistive and
highly interactive shopping cart robot for supermarkets is
being developed in the ongoing project CommRob [12],
[13]. High-level human-machine communication and user
acceptance aspects are of particular interest in this project.
At the end of the project in 2010, the prototype of a shopping
cart robot is supposed to operate and interact with humans
in an environment modeled after a real supermarket.

Most recently, Kanda et al. from ATR presented an affec-
tive guide robot [14], an interactive system that can explain
the way to the shops in a mall by means of speech and
gestures. From mobile robotics point of view this approach,
however, is only a stationary interactive system that does
not move and guide the customers to the locations of the
shops. Moreover, its speech recognition and decision making
is partially controlled by a human operator to cope with the
challenges of a real environment and to handle unexpected
situations. For estimation of the customers’ positions during
interaction, floor sensors covering a local area around the
robot and RFID tags worn by the customers are used.

All the approaches introduced here are either proof-of-
concept prototypes only or just design concepts not yet ready
for autonomous operation in real shopping environments.
Most of them show very limited functionality regarding an
autonomous guidance behavior and require instructed or even
technically equipped users and the presence of roboticists
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Fig. 3. Interactive mobile shopping assistant TOOMAS based on a
SCITOS A5 (developed by MetraLabs GmbH Ilmenau, Germany,) with
its main equipment for environment perception, navigation, and human-
machine interaction.

or human operators during their operation to guarantee the
safety of the users and to handle unexpected situations. Either
they do not emphasize the interaction or autonomous naviga-
tion part enough, or they rely on techniques and requirements
which are very questionable in that specific application field,
e.g. they require controlled uncluttered environments, clothes
with specific appearance to be worn by the users, RFID
tagging of the operation area or the users, Indoor-GPS for
localization, or floor sensors for user detection. Having true
autonomy in mind, none of the aforementioned systems
can already be considered as autonomous shopping robot.
Moreover, none of these systems has continuously been
involved in shopping tasks over longer periods of time, or
was subject of long-term field trials during routine operation
of the store. Therefore, all these systems are not yet suitable
for autonomous operation in unengineered environments and
for everyday use. Both features are, however, the essential
prerequisites for a serious acceptance of mobile service
robots both by customers and the owners of a store.

IV. MOBILE SHOPPING ROBOT TOOMAS

The robot TOOMAS we developed for the application as
mobile shopping companion is based on a SCITOS [saitoz]
A5 shown in Fig. 3. With a height of 1.5 m the robot is
comparable with the size of a 14 years old child. Its size is
optimized for a friendly appearance and an ergonomic oper-
ation. The drive system of the robot consists of a differential
drive and a castor on the rear. This gives TOOMAS a good
maneuverability and stability in spite of its height and weight
of 75 kg, and allows a max. driving speed of up to 1.4 m/s.

Sensor equipment: For navigation, HRI and safety, the
system is equipped with various sensor systems. First, there
is an omnidirectional camera mounted on the top of the head.
Due to the integrated hardware transformation, the camera
delivers both a panoramic image (720x150 pixels) and a
high resolution frontal image (720x362 pixels), which can be
panned around 360o. Besides this main sensor, the robot is
equipped with a set of 24 sonar sensors at the bottom, which



are used for obstacle detection, map building, localization
and person tracking. They cover the whole 360o around
the robot. Contrary to our original planning but required
by safety regulations of the German Technical Inspection
Agency (TUV), a laser range finder (SICK S300) had to be
added and mounted in front direction at a height of 35cm.

Human-robot interaction: For interaction with the cus-
tomers TOOMAS is equipped with an integrated touch
display (see Fig. 3), a sound system, and a 6 DOF RoboHead.
The touch screen is the central communication interface
to the robot. A set of stereo loudspeakers and two om-
nidirectional condenser microphones are integrated in the
screen device. The head with several degrees of freedom
gives the robot a smart but still technical appearance, which
encourages users to interact with it.

Hardware: SCITOS A5 is controlled by an Embedded PC
with an Intel Core 2 Duo processor and a multitude of small
hardware units which monitor several functions of the robot
[15]. The hierarchical energy-saving concept in conjunction
with the energy-saving units enables a long run-time. Based
on two lead-acid gel batteries with an overall charge of 38
Ah, a SCITOS A5 autonomously operates about 8-12 hours
until it needs a break for recharging. Easily connected to
main supply or its self-charging station, it can be recharged
by the integrated charging system in about 10-12 hours. The
safety system of the robot involves a closed bumper with
tactile sensors for the detection of possible collisions. In
combination with additional sensors, like the vision system,
the laser range finder and the sonar sensors, SCITOS has a
safety approval of the German TUV that was given after a
number of challenging safety tests.

Integration: TOOMAS is getting the required data about
the article information, product groups, price information and
current promotions from the market server, an off-board PC
in the market which it is linked with via WiFi. However, it
does not rely on this connection because it is always running
from its on-board computer in fully autonomous mode. Other
PCs in the market can be connected to this market server to
be used as info and video-link terminals for the staff. This
allows to display the current positions and their current status
of all robots operating within the store.

V. REALIZED SERVICE FUNCTIONALITY

Before the control architecture and techniques for robust
HRI and navigation implemented in the current version of the
shopping guide will be presented in the following sections, a
brief overview of the already realized service functionality is
to be given. With the objective of finding people who might
need assistance, the shopping guides move around in the
store and patrol between particular points of interest which
can be set by the store management. If one of the robots
detects a potentially interested customer during its tour by
means of the techniques presented in Section VII, it stops
and offers its service by using a short voice output like
”Hello! May I help you to find an article?”. In situations
with more than one user in the local vicinity of the robot,
the robot selects that person of the group with the lowest

distance to the robot, if that person is facing the robot
which is interpreted as interest in assistance. If the customer
is interested, s/he starts the communication with the robot
by pressing the ”Start” button on the touch screen. To that
purpose, the robot is turning to the customer presenting its
touch screen and giving instructions by synthesized speech.
Because the head can be rotated completely, the robot is
facing the user during interaction.

Then, the menu for selecting the several modes for goods
search (keyword or product group search) are displayed
and also verbally explained. If the customer has found the
requested article in the database, a map of the store is shown
(see Fig. 2), in which the current position, the position of
the article in the store, and the suggested path planned by
the robot are drawn in. If the customer presses the button
”Go”, the robot moves along its planned path to the requested
article while the customer is following the robot during
this guided tour. The speed of the robot during guiding the
customer is controlled in dependence of the speed of the
person, i.e. the distance between robot and user during the
tour. In straight hallways, a pleasant walking speed of 1.0
m/s can be reached. At the arrival point, the robot steps
aside, so that the customer has enough space for choosing
the preferred article, and offers additional services like a
video conference to a salesperson, a price scanning, or a new
search. If the customer wants to bring the assisted shopping
process to an end, s/he can finally press a ”Good bye” button.

It should be stressed, that users don’t need to be briefed
before using the robot. As described above, the robot is
autonomously making contact to the user by active user
search, and all activities to be done by the user (e.g. pressing
buttons) are explained by speech output during the greeting
and article search phase. The dialog is self-explanatory
and assisted by the robot, and nearly all users confirm its
simplicity and intuitiveness.

VI. ROBOT CONTROL ARCHITECTURE

A. Layers and Main Components

To guarantee the main requirements to a modern robot
control architecture, like modularity, extensibility, efficiency,
customizability, reusability, and rapid application develop-
ment [16], we decided to separate the robot-specific methods
and skills from the application itself resulting in a flexible
three-layered control architecture (Fig. 4). The layer L0

(Hardware Layer) encloses the robot hardware (sensors and
actuators), the operating system, and the low-level interface
to the hardware. The low-level sensor information is pro-
cessed in the next higher level to provide different skills,
which then will be executed in L0. In the next layer L1

(Skill Layer) all required classical robotic-specific meth-
ods are located. Typically, these are modules for collision
avoidance, localization and navigation, speech recognition,
speech synthesis, people tracking and so on. These different
robot-specific skills are reusable for various applications.
The highest layer L2 (Application Layer) provides elements,
which are required for a specific application of a mobile
interactive robot. An important fact is, that all layers are
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Fig. 4. The main components of our universal robot control architecture:
the Hardware Layer, the Skill Layer with robot-specific methods and skills,
and the Application Layer for hardware-independent applications.

only communicating with their immediate neighbors. This
guarantees the transparency between the different layers. By
using this strict separation, for a new application or for the
usage of an alternative robot system only the Application
Layer L2 has to be changed rather than the whole system.
The Skill Layer L1 (Fig. 4) consists of two main components:
the robot-specific and application-independent skills and a
Blackboard System. The Blackboard can be considered as
general shared data memory allowing to share all required
information between the different skills. This makes it easy
for the programmers to integrate new modules or to make
modifications on existing modules.

The Application Layer L2 combines the different skills
and capabilities of the robot into a complete application.
The main components of this layer are a State Machine,
an Event Manager and a set of Behaviors. Additionally, the
Communication Interface provides a coupling to the Graph-
ical User Interface (GUI). The Event Manager listens on
the Blackboard for specific events or changes in the robot’s
environment, like the detection of a new user, the arrival at
the target position, or a collision with an obstacle. Based on
these events and other information from the Blackboard, a
finite State Machine controls the application. Further, each
defined state also represents a principle behavior which will
be executed if the system is in this specific state. Typical
behaviors are ”Explore & search user” or ”Guide user to
target position”. The different behaviors use the skills of
Layer L1 to realize the desired functionality. Each state is
connected with at least one other state. These connections
define specific conditions that have to be fulfilled to transfer
into a state. The whole Application Layer is realized in a
script language, which allows an easy programming of the
behaviors and the State Machine.

B. The State Machine

Fig. 5 shows the State Machine of the shopping robot
application. Our State Machine uses hierarchical states,
which means that there exist both high level as well as
low level states. The low level states inherit all features
from the corresponding high level state. That means, that
all state transitions of a high level state are also active in the
respective low level state. For example, the high level state
RobotMoving, which contains all low level states where the
robot is moving autonomously (Explore, Guide user, etc.),
has a transition to the Bumper state, which is activated by
a bumper signal or event. In this way, the State Machine
becomes much simpler than a non-hierarchical one. For our
mobile shopping robot we use a State Machine with four
nested high level states (dashed gray lines in Fig. 5). The
highest ranked state is RemoteMaintenanceAllowed. In this
state, remote administrative commands are allowed. In our
case, all other states are sub-states of RemoteMaintenanceAl-
lowed. The next high level state is AdminAllowed. In this
state, the AdminMode can be activated (using a special RFID
key) by the personnel of the shopping store. An other high
level state is CallRobotAllowed, which allows the employees
of the store to call the robot to an information desk. The
innermost high level state is RobotMoving, which handles
the BumperState as explained above.

During a typically operating day, the robot boots up in the
morning automatically and starts in the Init state. In this state,
the robots waits for the activation by a responsible employee
of the store. After the activation, the robot is in the Admin
state, where some adminstrative functions are available. After
that, the robots waits in the state Wait on charging station
until the configured operating time has been reached. Before
the robot can begin its operation, it is necessary to go to the
state Undock from the charging station. After a successful
undock process, the robot is in the Explore/Search user
state, in which the robot explores between specific locations
(like the entrance area and the main information desk) and
searches for users. After a user pressed the ”Start” button on
the touchscreen, the state Dialog is active. Now the user can
search for articles, product groups or special services of the
store. After a selection, the state Guide User is activated,
in which the robot guides the customer to the location of
the product of choice in the store. After the destination is
reached (state Goal Reached), the robots moves a little bit
further (state Step aside) not to block the product shelves.
After that, the user can continue the shopping tour with the
robot, or the robot goes back to the state Explore/Search user
and looks for a new customer. When the operating time is
over, or the batteries become empty, the robot enters the state
Drive to charging station, where the robot autonomously
drives to the charging station. After the dock process (state
Dock on charging station), the robot waits in the state Wait
on charging station until the batteries are recharged.

VII. INTERACTION AND NAVIGATION METHODS

HRI and robust user localization and tracking: At first,
people, who seem to need assistance have to be found,
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while the robot is patrolling through the operational area.
Indications for the interest of customers to interact with
the robot are given, when a person is standing still or
approaching and facing the robot for a while. During the
guided tour, the robot has to continuously observe the user
to detect, if the person keeps on following the robot. Thereto,
we developed a probabilistic approach for detection and
tracking of (potential) users in the local vicinity of the robot.
The main sources of information are the images of the frontal
and panoramic cameras and the occupancy map of the local
environment, integrating all the range information from sonar
and laser. All sensory cues are chosen to complement each
other. As visual cues skin color is used in combination
with motion (only if the robot is not moving) and face
detection. Face detection gives a further hint, that the person
did notice the robot, because only frontal faces can be found.
All sensory observations are fused in a probabilistic user
model to estimate the users’ positions and further behavior-
relevant properties, like the estimated need for interaction,
or the probability of being the current dialog partner. The
latter is a key value for controlling the robot’s interaction
behavior. Because the user’s presence is of primary interest
during a guiding tour, a particular region behind the robot
dependent on the robot’s movements is defined. If a user
hypothesis is inside this region, the probability of being the
current dialog partner is increased for that hypothesis, while
it is decreased outside. Based on both periodically updated
probability values, the robot can select its interaction and
navigation behavior appropriately. For example, if the robot
is not yet involved in a dialog or a guidance tour, and a
new strong user hypothesis is developing in the user model
because of an approaching person, the robot turns to the
potential user and offers its service by audiovisual output.
Details of the sensor cues and the probabilistic user model
are given in [6].

Autonomous Navigation: In addition to the capability of
smart HRI, robust autonomous navigation is a fundamental
base for the operation of the mobile shopping robot. Im-
portant navigation skills (see Fig. 4) are self-localization,

path planning, and motion control with collision avoidance.
Within the scope of the shopping guide project, a method
for Simultaneous Localization and Mapping (SLAM) has
been developed, which is suitable for both high-precision
laser range scanners and low-cost sonar sensors. The re-
sulting Map-Match-SLAM algorithm published in [4], [5] is
based on the well known Rao-Blackwellized Particle Filter
(RBPF) [17]. By adding a memory-efficient global map
representation [4] and dynamic adaptation of the number of
particles, an on-line learning of the environment map by joy-
sticking the robot through the operation area was possible.
Fig. 6 shows an example of an occupancy map of a home
improvement store which was built by means of our Map-
Match-SLAM approach.

After completing the on-line mapping of the whole store,
the global map of the best matching particle is stored to
be used later on in the routine operation as global map
for self-localization by MCL [18], and path planning to the
article locations. Beforehand, however, this global map had
to be labeled with the locations of all articles (about 60,000)
available in the store. As specified in Section II-A, this
can be done semi-automatically, because all article locations
are stored in the merchandize management system of the
store with an exact reference to the shelf number and the
position within the shelf. It is an essential advantage of our
approach and the used metric representation that the built
global gridmap can easily be made fitting with the metric
CAD map of the goods shelves in the marked by a simple
manual map transformation (see Fig. 2 and 6).

Path planning is done by the utilization of standard graph
search algorithms (A* algorithm) taking the specifics of
the operation area into consideration. Motion control and
collision avoidance use an enhancement of the well known
Vector Field Histogram (VFH) approach [19] in combination
with a new vision-based approach for monocular scene
reconstruction and local map building. Our approach is able
to detect obstacles that cannot be robustly observed by
distance measuring sensors (e.g. empty Euro-pallets, ladders,
shopping carts, shelves that extend into the scene, etc.). In



Fig. 6. Occupancy map of a home improvement store built by means of
our online Map-Match-SLAM approach presented in [4], [5]. The store has
a size of 120m×60m and consists of 29 parallel hallways. The entire path
driven to built the map by joysticking (shown as blue line) has a length
of about 2,300 meters and consists of more than 40 individual loops. The
figure shows the map that belongs to the best matching particle of about
1,500 particles used in this RBPF-SLAM experiment.

[20] we show that this visual obstacle detection combined
with a laser-range-finder can increase the detection rate of
critical obstacles considerably, allowing the autonomous use
of mobile robots also in complex environments.

VIII. RESULTS OF LONG-TERM FIELD TRIALS

Our long-term field trials started in April 2008 and still
ongoing (in July 2009) aim at studying whether and how a
group of interactive mobile shopping robots can operate com-
pletely autonomously without any assistance by roboticists
in an ordinary home improvement store, and how they are
accepted by non-briefed customers. To this purpose as a first
step, a home store with a size of about 7,000 square meters
situated in Bavaria was equipped with 3 robotic shopping
guides. With the objective of finding people who might need
assistance, the robots move around in the store and patrol
between particular points of interest. If one of the robots
detects a potentially interested customer during its tour, it
stops and the dialog and guidance functions are activated.
To get an impression whether the customers are pleased
with the robots as shopping guides or not, we inserted two
dichotomous questions on the last screen page appearing
after the guidance tour: First, the robot asks if the customer
was satisfied, and then, if they would use the shopping robot
again in the future.

Period I: During the first five months (April - August
2008) of this field test, there were about 210 kilometers
traveled by each of the first three robots on average. The
run-time was limited by the battery capacity and the decision
to use no more than two robots at the same time in the
store. With a full battery charge, the robots were running
between 6 and 8 hours. The mean daily run time was 4.1
hours a day. All in all, 3,764 customers were in dialog
with the robots. 5,781 times a guiding tour was started,
which is 1.53 tours per customer in average. If we adjust
this figure by subtracting the events when the customer
had manually stopped the guidance process, we get 2,799
successfully finished guidance tours. In the other 2,982 cases,
the customers did not complete the tour, for example, because
they found a similar article along the tour elsewhere, or they
were distracted by special offers, family members, etc. and

left the robot alone for a longer time causing an automatic
end of the dialog. In 83,7% of the guidance tours that
had not been interrupted by the user, the robots reached
their target points successfully. In 16.3%, they did not reach
their targets, because, e.g. hallways were blocked by groups
of customers or other dynamic obstacles, but also because
the robots sometimes lost their position hypotheses (see
Sec. IX) due to unusable measurements, e.g. in over-crowded
hallways. The results from the simple survey at the end
of the interaction were promising, however, we are aware
that they are questionable because of the missing evaluations
from those customers who did not complete their tour. About
one fifth of the users who completed their tour has taken an
interest in giving a feedback. 93.4% of them are contented
with the shopping robot, and 92% would use the robot again.

Period II: In November 2008, two further home improve-
ment stores (near Cologne) with a size of about 8,000 and
10,000 square meters were equipped with 6 more robots. So,
in three home stores 9 mobile robots have been used in field
experiments. Table I presents the results achieved in all three
home improvement stores in the period from November 2008
until February 2009. For the example of store 1, the table is to
interpret as follows: in the respective period 4,691 customers
used one of the three shopping guides installed in the store.
4,606 employed the keyword search for finding a product,
while 1,798 made use of the product group search, many of
them used both possibilities. About 8% of the customers
were interested in a price info by the on-board bar-code
scanner. The 4,691 users employed the shopping guides in
6,924 guided tours to desired products, that means each user
did start 1.48 tours in average. From these guided tours,
about 40% (2,775) reached the target position of the product
of choice. 2,298 tours (33%) were actively stopped by the
customers by pressing the ”Stop” button for various reasons
(loss of interest, similar product found elsewhere in the store,
unexpected interruptions by other events, etc.). In 1,851 cases
(27% of all tours) the robots did not reach their targets
because of the aforementioned reasons (blocked hallways,
uncooperative customers, loss of position hypotheses, etc.).
This result is not yet satisfying, therefore we are currently
re-working the localization system to reduce the number
of position losses due to unusable sensor measurements
(see above), and implement a kind of autonomous local
exploration behavior in case of losing the global position

TABLE I
RESULTS OF THE FIELD TESTS (NOV. 2008-FEB. 2009)

Store 1 Store 2 Store 3
User logins 4691 1477 3347
Keyword search 4605 1304 2923
Product group search 1798 722 1427
Price info 582 179 411
Start guide tour 6924 1996 5768
Tour stopped by user 2298 648 2060
Goals reached 2775 899 2143
Searches per user 1.36 1.37 1.30
Started tours per user 1.48 1.35 1.72
Survey: Contented? 88.2% 87.5% 87.7%
Survey: Use again? 89.4% 88.1% 87.3%



that can be self-activated by the robots.
It is obvious, that the results in the three stores are

different. Especially, the absolute numbers of user actions
(login and menu actions) and reached goal positions differ
significantly. The computed relative numbers based on the
user logins are, however, in a similar range. The reason for
the differences between the stores is, that the employees in
the stores are responsible for activating the robot. Normally,
the robot should be activated already in morning, when the
store opens, but sometimes this is not done before noon.
For this reason, the operating hours and also the absolute
numbers of users vary from store to store. All in all, the nine
shopping guides together traveled 2,187 kilometers between
April 2008 and February 2009 and successfully guided more
than 8,600 customers to the locations of their products of
choice.

During the field trials we made the experience that the
patrol mode is indeed a good choice to advise the cus-
tomers to the shopping robot, but there are times, where it
does not make sense. During rush hour it is sometimes so
overcrowded that the robots are not able to move along the
planned path. Then, they had to be taken out by the market
staff and placed in their resting area, to avoid a frustration of
the customers by shopping robots not operating as expected.

It shouldn’t be forgotten to remark that robotic experts
had to be present in the stores only one day per week in
average to adjust the navigation and HRI software and to
incorporate the hints and feedback of the market staff. During
the other time, the robots operated completely autonomously
and required only assistance by the store staff during power-
up and shut-off in the morning and evening respectively.

Based on [21], a more detailed evaluation of the inter-
action and user experiences is planned for the near future.
In particular, the utility, enjoyment and acceptance of the
shopping guides will be analyzed by means of covered field
observations and oral interviews.

IX. SUMMARY AND OUTLOOK

With this successful development of the first shopping
guide robots which are suitable for everyday and long-term
use, a further important step towards assistive robotics for
daily use has been done. In long-term field trials running
since April 2008 in one and since November 2008 in three
home improvement stores in Germany, the robots could
demonstrate their suitability for a challenging real-world
application, as well as a first positive user feedback. The high
complexity of acting as a robotic guide in a real shopping
environment, the practical utility of the developed shopping
robots, their suitability for everyday use demonstrated in
long-term field trials with more than 13,000 uninstructed
customers (in both periods), and the fully autonomous
navigation and interaction of the employed nine shopping
robots make this project an important step in mobile robotics
research. Our long-term field trials were successful in two
main dimensions. First, they demonstrated the robustness of
the hardware and the software architecture with the various
probabilistic navigation and HRI techniques in a challenging

real-world scenario. Second, they provided some evidence
towards the feasibility of using mobile robots as assistants
to people without any background knowledge in robotics.

Despite the encouraging results of the field trials, there
is still potential for improving the existing solutions. For
example, we are currently reworking (i) the localization
system to reduce the number of position losses, (ii) the
person tracker to allow detecting humans as potential users
at distances greater than 2-3 meters and (iii) to integrate a
video-based re-identification of the user if she was lost from
view.
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