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Abstract. This paper’s intention is to adapt prediction algorithms well
known in the field of time series analysis to problems being faced in the
field of mobile robotics and Human-Robot-Interaction (HRI). The idea
is to predict movement data by understanding it as time series. The pre-
diction takes place with a black box model, which means that no further
knowledge on motion dynamics is used then the past of the trajectory it-
self. This means, the suggested approaches are able to adapt to different
situations. Several state-of-the-art algorithms such as Local Modeling,
Cluster Weighted Modeling, Echo State Networks and Autoregressive
Models are evaluated and compared. For experiments, real movement
trajectories of a human are used. Since mobile robots highly depend on
real-time application, computing time is also considered. Experiments
show that Echo State Networks and Local Model show impressive re-
sults for long term motion prediction.

1 Introduction

For autonomous robots, like SCITOS [1], it is important to predict the motion
of people and other robots in their environment, for example to avoid collisions.
Hence, further actions can be planned more efficiently. Most approaches in this
field focus on optimal navigation strategies [2,3]. This paper suggests to spend
more effort into prediction of the motion of the dynamic objects (i.e. in most
cases the motion of humans in the scene) instead. Often, only linear approxima-
tions or linear combinations are used to solve this problem.

Plenty of algorithms exist for time series analysis and prediction. Their fields
of application reach from prediction of economic data to climate and biologic
data, such as neural activities [4]. The new approach is the interpretation of
movement data as time series to perform a long-term prediction. For this pre-
diction, an assortment of time series analysis algorithms has been implemented
and comparatively tested.

For this, it is necessary to know the motion trajectories of the surrounding
dynamic objects. For simplification, a tracker is assumed, which is able to provide
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Fig. 1. The observed trajectory (green) is to be predicted (red) for up to 500 time
steps (about 8.3 sec. at 60 Hz). This is achieved only by exploiting the past trajectory’s
characteristics using a window (yellow) of D points equally spaced with interval T

such trajectories in real-time. A possible tracker to be used is presented in [5]. In
this case, the given trajectory of the motion can be interpreted as a time series
T with values s; for time steps ¢ = 0,1,...,n— 1: 7 = (80,81, -,Sp—1)-

The next section introduces our time series analysis approach to mobile
robotics and techniques chosen to be tested. In section 3 the comparing experi-
ments with their conditions and results are presented, while the paper concludes
in section 4.

2 Time Series Prediction

The algorithms presented in this paper are intended to be used for motion predic-
tion to enable a more anticipative mobile robot navigation in dynamic environ-
ments. Basically, for all presented algorithms the prediction for each future point
on the trajectory is done iteratively for up to 500 time steps (this corresponds
to about 8.3 sec. of motion with a sampling frequency of 60 Hz) (Fig. 1).

The prediction in general takes place with the so-called black box model
which means that no further background information or knowledge about the
motion dynamics is used than the past trajectory itself. The aspired prediction
is to follow the trajectory’s characteristics, only, which can be found in their
past. Furthermore, no explicit trajectory models are given, to be able to freely
adapt to yet unknown situations.

2.1 Echo State Networks

For prediction of time series, Echo State Networks are often used [6]. They have
some specific features which differ from ”standard” neural networks: The hidden
layer consists of neurons which are randomly connected. When the connectivity
is low, this layer provides independent output trajectories. For this reason, the
hidden layer is also called "reservoir”. Furthermore, there are neurons which are
connected to loops in the reservoir, so that past states ”echo” in the reservoir.
That is the reason, why only the actual time series value is needed as input.
Another characteristic of Echo State Networks is that only the output weights
are adapted and learned. All other weights (input, reservoir, feedback) are chosen



randomly and stay statically. For training, the net is randomly initialized, and
the training time series is used as net input step by step.

This paper suggests to use multiple instances of the network, as a kind of
simple stochastic search in the parameter space. The fixed weights are initialized
differrently in a random manner. All instances are trained using the same input
data. During the training process, the output of each network is compared with
the corresponding values of the training trajectory. The network showing the
best prediction results for the yet unknown training data is then selected for
further application.

2.2 Autoregressive Models

The next type of time series analysis algorithms introduced here are Autoregres-
sive Models (AR). These models assume a linear relation in the time series which
means that any time series value can be determined by using a linear combina-
tion of p previous values. The coefficients of the linear combination — the AR
coefficients — have to be calculated to predict future values. Several Algorithms
exist to determine these coefficients, e. g. Wiener Filter [7], Durbin-Levinson [8],
and Yule-Walker [8].

2.3 Embedding Space

For applying the approaches in sections 2.4 and 2.5, an embedding in a higher
dimensional space is necessary. This embedding can be regarded as a kind of
the well known sliding window approach. An observation window with size
T - D is put on the trajectory (Fig. 1). Each T-th time step from this win-
dow is used to generate this regular embedding. So the time series is trans-
formed into a D-dimensional space - the embedding space. To each embedding
e — (st,st,T,st,gT,...,st_(D_l)T)T belongs an output o;, which stands for
the successor sy of the selected window.

The two introduced parameters 7" and D don’t need to be defined by hand.
Time series analysis offers techniques to automatically determine these parame-
ters [4]. In our work, we used genetic algorithms to find the best suited embedding
dimension.

2.4 Local Modeling

Local Modeling, which is described in [9], is based on the aforementioned regular
embedding. The principle idea is a simple nearest neighbor search in the embed-
ding space of the last point in the time series e,,_; for which the prediction needs
to be calculated.

In the general case, a polynomial is estimated for prediction describing the re-
lationship between embedding e; and output o;. The nearest neighbors are used
to decide the polynomial’s coefficients v applying linear regression. In practice,
the polynomial degree g is usually low. Often it is enough to use g = 0 (Local
Averaging Model) or g =1 (Local Linear Model).



Fig. 2. Example of movement data from the University of Glasgow. Data is available
for the body limbs shown in (a) and an exemplary trajectory of the movement of the
left ankle while walking in circles (b).

After determining the coefficients, the prediction is calculated using the same
polynomial interpolation. To get good prediction results, it is crucial to choose
proper parameters, such as the embedding parameters T and D and the num-
ber of the nearest neighbors IN. Especially with higher polynomial degrees, the
algorithm is extremely sensitive to the choice of these parameters. Therefore, an
evolutionary algorithm was implemented which often leads to good results as
recommended in [9].

2.5 Cluster Weighted Modeling

The Cluster Weighted Modeling, which is described in [9], is also operating in
the embedding space. The viewpoint lies not on single embedding points like
in the Local Modeling. Now the embedding space is clustered and covered with
Gaussians.

An Expectation-Maximization-algorithm (EM-algorithm) can be used to op-
timize most of the algorithm’s parameters. The whole algorithm can be found
in detail in [9]. Only the number of clusters and the cluster function remain to
be chosen manually. All other parameters are initialized randomly and adapted
using the optimization. As cluster function, similar functions like the Local Mod-
eling polynomials, can be used. Since, calculation time strongly depends on the
number of clusters, the values of these parameters should not be too high for an
online application.

3 Motion Prediction

The algorithms presented in this paper are intended to be used for motion predic-
tion to enable a mobile robot navigating in dynamic environments. To be com-
parable and reproducible, movement data taken from the University of Glasgow
[10] is used. This benchmark data is available as 3D coordinate representation
for each limb of a human performing a certain action, e. g. walking (see Fig.
2). Using this data is even more challenging, because several basic motions are
combined (i. e. intrinsic movement, e. g of the foot combined with the walking
direction). The data set consists of 25 trajectories containing 1,500 up to 2,500
sampled points in Cartesian space.



3.1 Test Conditions

The movement data has a resolution of 60 time steps per second, so that an
average prediction horizon of about 500 steps corresponds a prediction of 8.3
seconds into the future at 60 Hz. Present movement prediction techniques are
designed to predict an objects position for the next time frame or at least to gap
a loss of the object during a only a few frames.

Quality Measures For comparing the prediction results, some kind of quality
measures for comparison are necessary. The used quality measures are based on
the normalized mean square error NMSE. Hence, the standard mean square
error is normalized using the variance o2 of the time series.

N
_ 1 pred orig\2 __ MSE
NMSE—N E (8?7 —87") = (1)

co2 4 v ¢ o2
=1

Since the trajectories are three-dimensional and dimensions with greater differ-
ence suppose to be more important, the highest variance of all dimensions is
used as normalization.

Two different kinds of the defined measure are used. The first one, the short
term error STFE, is responsible for evaluating a short period of the prediction. It
uses the first N = 75 prediction steps (which means 1.25 sec) with a weighting of
% for the f-th prediction step. On the other hand, the performance is evaluated
using the long term error LT FE, which uses all prediction steps with a weighting
of 1/1/f, since some of the algorithm show the tendency to drift away

Reference Algorithms Additional simple reference algorithms were used that
should be outperformed clearly to get a useful prediction. The first algorithm is
a simple repetition of the last time series value and is called constant algorithm
in the following. Also a linear algorithm is used as reference. This algorithm
simply does a linear approximation in the last two points in the time series. The
result of the better one is used as reference.

3.2 Experimental Results and Comparison

The following tests show the advantages and disadvantages of the different al-
gorithms presented here. For the application, a number of parameters had to
be decided to apply the algorithms. The values presented in the following are
chosen after extensive test, which are not discussed here.

Especially for Echo State Networks the choice of the parameters is important.
It has shown that the scaling of the weights is essential. The feedback weights
Whack must be scaled very low (ca. 10’20) to guarantee stable networks dynamics.

As input for the Wiener Filter the embedding presented in section 2.3 is
used instead of only using the last p values. Experiments show that using the
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Fig. 3. The graphs shows the STE (a) and LTE (b) plotted for each of the investigated
algorithms. The ordinate is scale logarithmically. Hence, lower values mean a better
prediction. The error bars represent the standard deviation from the mean. For the
STE, all results lie relatively close together while the reference algorithm (red line)
can only beaten clearly by the Echo State Networks. Longer predictions show more
differences in the results of the algorithms. Also the mean errors are higher than STE,
as being expected in longer predictions. The reference is beaten more clearly in general.
Local Average Models (LAM) and Echo State Networks show the best results.

embedding leads to better results. For the other Autoregressive Models values
around p = 100 for AR depth often lead to the best results.

For generating the embedding, the number of histogram bins for calculating
the mutual information has to be specified. Proper values are between 15 and
30. In most cases, the smaller value is used to keep the calculation time low. To
fasten the whole embedding procedure, not every embedding point is used for
the classification in true and false neighbors, but a random selection of around
5-10% of the time series embedding points.

In the prediction of movement data, the Echo State Networks lead to the best
results for the STE as it is shown in Fig. 3(a), while for long term prediction
Local Models have slightly better results (Fig. 3(b)). The Autoregressive Models
perform barely better than the reference. Here the Durbin-Levinson algorithm
achieves the best prediction quality. Cluster Weighted Models show the worst
performance, and their mean errors stay even behind the simple reference algo-
rithms. The best algorithms still beat the simple references clearly and are able
to predict movements for several seconds (about 100 prediction steps) very well.

The choice of the number of neurons in the Echo State Network reservoir,
for example, has only a minor effect. In tests the difference in the prediction
results of movement data between 25 and 250 neurons were insignificant. It can
be presumed that the structure of the movement data does not allow a higher
accuracy in the prediction unlike other chaotic time series [6].

The evaluation discussed in the previous paragraphs used a time horizon of
1000 time steps for training. Towards, online application such a long training
phase would mean to observe the person for several seconds. Since, this is not
possible in most cases, the tests depicted in Fig. 4 are tested with less data.
Only 300 time steps of the trajectory are used now. Those 300 points in time are
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Fig. 4. The graphs show the STE (a) and LTE (b) plotted for the most promising
algorithms of the previous tests (Local Average Model (LAM), Local Linear Model
(LLM), and Echo State Networks ESN) in a similar fashion as in Fig. 3. Each plot is
separated into 3 sections. From left to right, these sections show the results for the test
with the subsampled trajectory, the interpolated trajectory, and the comparison with
the normal trajectory.

subsampled for the three left most results in Fig. 4(a) and Fig. 4(b), as it would
be the case when using a slow tracker. As it can be expected, the prediction
quality significantly decreases (compared to the three right most results in 4(a)
and Fig. 4(b)). A logical step at this point is to use interpolation to fill the
missing gaps. A spline interpolation is used for the test in Fig. 4 to gain 300
time steps of training data again. The results can be compared to the ones using
the original trajectory (see the three midway results in 4(a) and Fig. 4(b)).

Calculation Time For any online application, the calculation time plays a big
role, since the movement is supposed to be predicted before it continues. Since,
only MatLab implementations were tested on time series with lengths around
1,000 till 2,500 time steps, only a first hint can be given here.

Autoregressive Models and Echo State Networks with lower number of neu-
rons show a calculation time of about 3-10 ms per prediction step. This is ab-
solutely complying with online requirements.

Local Models and Cluster Weighted Models need longer calculation times
between 50 and 250 ms. In the first case (Local Models), most calculation time
is spend on the search for the nearest neighors in the high number of training
data. The Cluster Weighted Models are slow because of a long optimization time
(the EM-algorithm).

4 Conclusions and Future Works

The intention of this paper was to connect the well-known field of time series
prediction and movement data handling from robotics in a consistent way. Dif-
ferent behaviors from the tested time series analysis algorithms were observed.
Generally, it can be said that movement data behaves different than periodical
and chaotic time series.



The tested algorithms show very good results in predicting several seconds
of the movement data. Echo State Networks and Local Models pointed out to
ba a suitable algorithm for movement prediction

Autoregressive Models and again Echo State Networks are able to predict
fast enough for an online application without any further adaptation. From the
current point of view, Echo State Networks are the ”winning” approach which
is able to solve the problem best. Hence, further analysis should have the focus
on this approach and on additional improvements.

The other algorithms can be upgraded as well. Local Models can be a good
alternative to Echo State Networks if they could be accelerated without loss
of quality. Besides this, enhanced versions of the Autoregressive Models such
as ARMA or ARIMA Models could be tested. Furthermore, the usage of an
irregular embedding is imaginable.

As a next step, an adequate navigation strategy exploiting the prediction
results needs to be investigated. One drawback for predicting motion data is the
fact that human beings may perform unexpected motion. Since the discussed
algorithms rely on the known characteristics, it is possible to use them for de-
tection of such unexpected behavior.
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