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Abstract. In our previous work on visual, appearance-based localiza-
tion and mapping, we presented in [14] a novel SLAM approach to build
visually labeled topological maps. The essential contribution of this work
was an adaptive sensor model, which is estimated online, and a graph
matching scheme to evaluate the likelihood of a given topological map.
Both methods enable the combination of an appearance-based, visual
localization and mapping concept with a Rao-Blackwellized Particle Fil-
ter (RBPF) as state estimator to a real-world suitable, online SLAM
approach. In this paper we improve our algorithm by using a novel prob-
ability driven approximation of the local similarity function (the sensor
model) to deal with dynamic changes of the appearance in the operation
area. 2

1 Introduction

Using mobile robots in everyday life, robust map building and self localization
plays a central role while navigating the robot in its environment. In the realm of
visual SLAM two types of methods are typically used: landmark-based methods
and appearance- or view-based approaches. While landmark-based methods re-
quire the extraction and reassignment of distinct visual landmarks, appearance-
based methods use an description of the view at a certain point, leading to a
more global impression of a scene. Appearance-based approaches compare the
appearance of the current view with those of the reference images to estimate
the robot’s pose ([16],[19]).

Feature/Landmark-based approaches: In many SLAM approaches, the map rep-
resentation is assumed to be a vector of point-like feature positions (landmarks)
[18]. The advantage of feature/landmark-based representations for SLAM lies in
their compactness. However, they rely on a priori knowledge about the struc-
ture of the environment to identify and distinguish potential features or land-
marks. Furthermore, a data association problem arises from the need to recognize
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Fig. 1. A manually built map of the operation area, a regularly structured, maze-like
home improvement store with a size of 100x50m2 (taken from [13]). The dots (nodes
of the map) show the positions of stored observations.

the landmarks robustly not only in local vicinities, but also when returning to
a position from an extended round-trip. In the field of visual landmark-based
SLAM algorithms, Lowe’s SIFT-approach [15],[10] has often been used so far.
Further important feature/landmark-based approaches are those proposed by
Davison using stereo vision [5] or monocular vision [4]. To estimate the land-
mark positions, popular methods like the Extended Kalmanfilter (EKF) [4] or
Rao-Blackwellized Particle Filters (RBPF), [6] like FastSLAM [3], are applied.

Appearance-based SLAM/CML approaches: The Concurrent Map-building and
Localization (CML) approach of Porta and Kroese proposed in [17] was one of the
first techniques to simultaneously build an appearance-map of the environment
and to use this map, still under construction, to improve the localization of the
robot. Another way to solve the SLAM-problem was proposed by Andreasson et.
al. [1]. Here, a topological map stores nodes with appearance-based features and
edges, containing relations between observations and their poses. An essential
drawback of this approach is the required offline relaxation phase to correct the
nodes’ spatial positions by using the found observation matches. The method
to estimate the pose difference between images applying the image similarity
introduced by Andreasson [1] has been picked up and extended in our SLAM
approach. Further approaches that use a topological map representation are
described in [2], where a Bayesian inference scheme is used for map building,
and in [7], where a fast image collection database is combined with topological
maps allowing an online mapping, too.

Contribution of this paper: In our previous approaches ([12],[13]), dealing with
an appearance-based Monte Carlo Localization, a static topological model of the
environment was developed (see Fig. 1). The nodes of this environment model
were labeled with appearance features extracted from an omni directional im-
age. The essential contribution of our approach presented in [14] was the com-
bination of the appearance-based, visual localization concept with a RBPF as
state estimator to a visual SLAM approach, to estimate a topological map of
the environment. Instead of a single observation, typically used in the field of
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Fig. 2. The map representa-
tion of the particles in our
approach: Each particle mod-
els its current pose estimation,
an estimation of the complete
global map, and a local map.
Some maps are more likely to
be correct than others.

appearance-based localization and mapping, another key idea of our approach
was to utilize local graphs to perform the evaluation step. These graphs contain-
ing the last n observations in n nodes, representing a kind of short-term memory
of the very latest observations and pose estimations (see Fig. 2). Another novel
idea consisted in online estimating an environment-depending sensor model to
evaluate the likelihood of each map. In continuation of this work, we developed a
method to further reduce the demand on memory of the environment model and
prevent the algorithm from collecting new observations infinitely. Furthermore,
we are introducing a method to deal with dynamical changing environments to
improve the reliability of the sensor model.

2 Appearance-based SLAM approach with RBPF

In this section the basic idea of our algorithm presented in [14] is explained
briefly. Particularly, the graph matching process to determine the likelihood of
the map to be correct will be described more precisely. Furthermore, the adaptive
sensor model is discussed.

2.1 RBPF with local and global graph models

Our appearance-based SLAM approach utilizes the standard Rao-Blackwellized
Particle Filter approach to solve the SLAM problem, where each particle contains
a pose estimate xi (position x, y and heading direction ϕ) as well as a map esti-
mate (see Fig. 2). The environment model (map) used in our appearance-based
approach is a topological graph representation, where each node i, representing a
place xi in the environment, is labeled with appearance-based features zi of one
or more omni directional impressions at that node. To solve the SLAM problem,
the RBPF has to determine the likelihood of the graph-based maps in the par-
ticles to be correct. Therefore, our approach uses two different types of maps: a
global map mG =

〈
x1:(l−1), z1:(l−1)

〉
, which represents the already known envi-

ronment model learned so far and a local map mL = 〈xl:t, zl:t〉 representing the
n latest observations and the local path between them (e.g. the last two meters
of the robot’s trajectory). To prevent the filter from under-/oversampling of the
estimated probability distribution we use the KLD sampling technique (see [11])
to adjust the particle count as needed.



  
 

 

 

Fig. 3. Basic idea of our map matching algorithm: the likelihood of a given map con-
figuration is determined by using the spatial distances dij and visual similarities Sij

for comparison between each pair of nodes i (in the local graph) and j (in the global
graph).

2.2 Graph matching

In the context of RBPF, the probability distribution of the sensor model is de-
termined directly by comparing the local and global map, giving the importance
weight w ≈ p(z|x,m) of a particle. For this purpose, corresponding pairs of
nodes

〈
eLi , e

G
j

〉
in both maps are selected by a simple nearest neighbor search in

the position space, where each node eLi of the local map is related to the nearest
neighbor node eGj of the global map. To keep the computational complexity for
the nearest neighbor search as small as possible, we use a quad-tree-like struc-
ture for indexing the nodes, so the search does not depend on the total count of
nodes. The relation between each selected pair of corresponding nodes

〈
eLi , e

G
j

〉
provides two pieces of information, a geometric one, the spatial distance dij ,
and a visual one, the visual similarity Sij (see Fig. 3). Both aspects are used
to determine a matching weight wi for the respective node eLi of the local map.
Assuming an independence between the node weights of the local map, the total
matching weight w[k] for a particle k is simply calculated as follows:

w[k] =
n∏
i=1

w
[k]
i (1)

with n describing the number of nodes in the local map. To evaluate the
matching weight wi we have to compute the probability that two observations i
and j got a similarity Sij by a given distance dij .

2.3 Adaptive sensor model

To compute the matching weights between corresponding nodes, an adaptive
sensor model had been developed. In the context of appearance-based observa-
tions, the visual similarity between observations is not only depending on the
difference in the positions but also on the environment itself. If the robot moves,
for example over a wide plane, the appearance will not change at all when mov-
ing a short distance. While moving along narrow hallways the appearance of the
scene will change more significant.
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Fig. 4. The histogram model with mean value and σ per bin. The bins are not equally
spaced. Points in the light green area (dij > dmin) are always included as new nodes.
If points in the dark green area (dij ≤ dmin) are within the model expectation (red
area) they need not be included, otherwise they extend the local model by adding a
new appearance variant to the node.

Hence, our sensor model estimates online the dependency between environ-
ment specific visual similarities Ŝij of the observations zi and zj and their spatial
distance d̂ij . Fig. 4 shows an example of such a function. Again the use of a local
map is of help here. The samples to built such a model are taken from the nodes
of the local map where each node is compared the others. We assume here that
the resulting statistic represents S(d) in the local map as well as in the global
map. In [14] different approaches to approximate the model were investigated,
e.g. the Gaussian Process Regression (GPR) of Rasmussen [9], while we used a
parametric polynomial description of the sensor model and its variance. In this
paper, we use an non-parametric histogram-based sensor model to create a more
general model. For that purpose the distance d is divided in bins of different size,
and for each bin the mean similarity and its variance are computed (see Fig. 4).
The non-linear size of the bins is required to get a higher resolution for small
distances, resulting in a higher accuracy of the matching process. The bin index
idx is computed by a parametric exponential function idx(d) = α · (d+ β)γ − 1.
The likelihood that two nodes i and j of particle k are matching the sensor model
S(d) is computed as follows, where Ŝ and σ̂ are derived from the sensor model:

w
[k]
i = p (Sij |dij) ≈ exp−

(
Sij − Ŝ (dij)

)2

2 · σ̂(dij)2
(2)

For our experiments we decided to use SIFT feature sets as appearance-based
image description and similarity measure, because of their ability to re-detect the
position of observation with good selectivity. For this specific image description
we set the parameters of the bin indexing function to α = 8.0, β = 0.05, γ = 0.7.
These parameters are derived empirical.



2.4 Dynamic Changes

To meet the challenges of dynamic environments, we face two main problems. At
first, the map grows unlimited while observing the environment and including
every estimated position and observation. Second, the visual impression at the
same place can change due to different lighting conditions, occlusions and moving
objects. So we have to select which of the new positions and observations need
to be included into the map. If the distance d to the nearest neighbor exceeds
a distance dmin a new node with the corresponding observation is added to the
map. So we do not add nodes within a circle of dmin around existing nodes. We
just have to consider which observations have to be added to existing nodes.
Hence we extend the nodes of the global map to collect observations of different
appearance states by using the similarity model Ŝ(dij), σ̂(dij) (see Fig. 4) to
decide whether new observations have to be included into an existing node or not.
For each node of the local map eLi we assume to be in a certain position xi with
a global map m. We choose the highest similarity Sij between all observations
stored in the nearest node eGj in the global map m and the observation stored
into node eLi to evaluate the existing sensor model (Smax = maxk(Sij(k))).
According to equation 2, we can calculate the probability p (Smax|d). If this
probability is above a certain threshold ξ, the observation matches the expected
similarity (as we have seen this particular scene in a similar configuration before)
and can be ignored. If the observation does not match the model, it is associated
to the current node eGj in the global map.

3 Experiments and results

To evaluate the extensions of our approach, we used two alternative test environ-
ments with specific characteristics, the home improvement store shown in Fig. 1
with large straight hallways, and a small home-like section of our lab with narrow
rooms with little space to navigate. All data for the analysis were recorded under
realistic conditions, i.e. people walking through the operation area, shelves were
rearranged, and other dynamic changes (e.g. illumination, occlusion) happened.
In addition, laser data were captured to generate a reference map to evaluate
the results of our approach.

The resulting graph of the store (Fig. 5, left) covers an area of 120 x 50
meters and was generated by a mean value of 250 particles (max. 2000 parti-
cles) in the RBPF. Figure 5 only shows the most likely final trajectory and a
superimposed occupancy map for visualization. The home like area (see Fig. 5,
right) was much smaller (10 m x 10 m). To evaluate the visual estimated path
shown as trajectories in Fig. 5 a ground truth path and map built by means
of a Laser-SLAM algorithm were calculated (GMapping of G. Grisetti [8] taken
from www.openslam.org). The Laser-SLAM estimated reference path was used
to determine the mean and the variance of the position error of our approach,
shown in table 1. These experimental results demonstrate, that our approach is
able to create a consistent trajectory and based on this, a consistent graph rep-
resentation, too. Furthermore, in contrast to grid map approaches (up to 4GB
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Fig. 5. In the home store: The red path shows the robot’s movement trajectory only
estimated by our appearance-based SLAM approach. In the home lab: additionally the
nodes of the resulting graph are shown. For visualization of the localization accuracy,
a laser-based occupancy map was built in parallel and superimposed to the estimated
movement trajectory (visual SLAM).

Table 1. Overview of the achieved results in all environments.

Experiment Home store Home lab

Size of area 50x120m 10x10m
Total path length 2400m 20m

# of particles 250 (mean) 2000 (max) 50 (mean) 150 (max)
Error Mean/Var/Max 0.53/0.21/1.76 m 0.21/0.14/0.42 m

Time per cycle 0.250 s 0.250 s

for our home store environment), topological maps require less memory (up to
1.5GB for 4800 observations) because of the efficient observation storage. The
observation’s features are stored in a central data set and are only linked to
the nodes in all maps and only the positions have to be stored in each node.
So the memory requirements are nearly independent from the used number of
particles. The results show that in small environments, like the home-like lab,
where the robot is able to move along smaller loops, the visual SLAM approach
achieved a higher accuracy than in large loops. We are able to demonstrate that
our approach not only works in large scale environments but also in narrow home
environments.

4 Conclusion and future work

In this paper we presented extensions of our appearance-based SLAM approach
to limit the memory consumption and to deal with dynamic changes that occur
in common real-world environments. These improvements allow an appearance-
based on-line SLAM in dynamic real-world environments at long term time win-
dows. For the near future we plan to implement a visual scan-matching technique
to limit the number of required particles to close loops correctly and to further



increase the accuracy of estimated maps. Furthermore, we want to study the
influence of dynamic changes in the home environment in more detail.
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