
A Vector Quantization Approach for

Life-Long Learning of Categories

Stephan Kirstein1,2, Heiko Wersing2, Horst-Michael Gross1 and Edgar Körner2

1 Ilmenau University of Technology
Neuroinformatics and Cognitive Robotics Lab

P.O.B. 100565, 98684 Ilmenau, Germany
{stephan.kirstein,horst-michael.gross}@tu-ilmenau.de

2 Honda Research Institute Europe GmbH
Carl-Legien-Str. 30 63073 Offenbach am Main, Germany

{heiko.wersing,edgar.koerner}@honda-ri.de

Abstract. We present a category learning vector quantization (cLVQ)
approach for incremental and life-long learning of multiple visual cate-
gories where we focus on approaching the stability-plasticity dilemma.
To achieve the life-long learning ability an incremental learning vector
quantization approach is combined with a category-specific feature se-
lection method in a novel way to allow several metrical “views” on the
representation space for the same cLVQ nodes.

1 Introduction

The target of our proposed architecture is to perform supervised, interactive,
and incremental life-long learning of several visual categories by combining in-
cremental learning of learning vector quantization (LVQ) nodes with a category-
specific forward feature selection method. Additionally we are approaching the
so-called “stability-plasticity dilemma”, which occurs when neural networks are
trained with a limited and changing training ensemble, causing the well known
“catastrophic forgetting effect” [1]. A common strategy for life-long learning ar-
chitectures (e.g. [3, 7]) is the usage of an individual node learning rate combined
with incremental node insertion. This permits plasticity of newly inserted neu-
rons, while the stability of matured neurons is preserved. The major drawback of
those architectures commonly used for classification tasks is the lack of separat-
ing coocurring visual categories. This means for natural objects which typically
belong to several different categories (e.g. red-white car) a decoupled representa-
tion for each category (for category red, white and car) should be learned. This
leads to a compact representation and higher generalization performance com-
pared to classification, which can’t be achieved with standard life-long learning
architectures. Another approach to the “stability-plasticity dilemma” was pro-
posed by [10]. Here representative input-output pairs are stored into a long term
memory for stabilizing an incremental radial basis function (RBF) like network.
Additionally it also accounts for a feature selection mechanism based on incre-
mental principal component analysis, but no category-specific feature selection is
applied, which makes it unsuitable for categorization tasks without modification.

Sabine
Textfeld
Proc. 15th Int. Conf. on Neural Information Processing (ICONIP 2008), Auckland, NZ, LNCS 5507, pp. 805-812 , Springer 2009

ix

unknown
yes
no
yes

−1

0
1

1
blue
duck

yellow

cup

Color Features

0.0
0.0

0.0

0.0

0.0

0.3

0.2
0.8

0.5

0.4

Feature Vector

...

Input Image

Categories ti

Shape Features

...red
bl

ue

green

Fig. 1. Feature extraction. Color features are extracted as histogram bins in RGB
space. Shape features are obtained from parts-based feature detector. Shape and color
features are concatenated into a single “flat” vector representation. The target cate-
gories are represented in a category vector ti for each feature vector xi.

The manuscript is structured as follows: in Section 2 we describe the feature
extraction model using shape and color features, and introduce our category
learning architecture. We show the application to a visual categorization task in
Section 3 and discuss results and related work in Section 4.

2 Memory Architecture for Learning of Visual Categories

2.1 Feature Extraction

Color Features. For the representation of color information we use the common
histogram binning method combining robustness against view and scale changes
with computational efficiency [11]. We use 6x6x6=216 histogram bins within the
RGB space, where typically only a small amount of features is active.
Shape Features. Our shape features are a set of preselected SIFT-descriptors
defining parts-based detectors as proposed by [5]. For each new object view the
response of those detectors is calculated at each location in the image using the
dot product as similarity measure. The maximum response per feature detector
is kept and stored in an activity vector, which neglects all spatial information.
The offline feature selection scheme follows the approach described in [5], where
all SIFT-descriptors of each training image are clustered into 100 components.
Out of the large number of resulting clusters an iterative scheme selects at each
step a SIFT-descriptor as new detector until a given number is reached (e.g. 500
in our case). The choice of detectors is independent from our category learning
method and is based on the highest additional gain for a certain shape category.
Combined Feature Representation. For our categorization task the color
histogram and parts-based shape representation are combined into a single struc-
tureless feature vector xi = (xi

1, ..., x
i
F) for each image with F = 716. Each vector

xi is assigned to a list ti = (ti1, ..., t
i
C) of several color and shape categories, where

each tc ∈ {−1, 0,+1} labels a xi as positive or negative example of category c.

The third state tc = 0 means unknown category membership and is required,
because we do not assume that all category labels are provided by the tutor. Due
to the nature of our feature preprocessing the data in the xi is sparse and non-
negative. For our categorization task we are particularly interested in discovering
the structure from the high-dimensional feature vectors xi. Therefore we do not
give the qualitative separation of the extracted features to the learning system as
a priori information, but rather want to obtain a flexible metrical adaptation for
the categorization. Assume you want to learn the category “fire engine”. If only
shape features are used it would be difficult to distinguish this category from
other cars and trucks, because the most distinctive feature, the red color, is not
included in the feature representation. Therefore we let the learning algorithm
decide which feature combinations are most suitable to represent a category.

2.2 Memory Architecture for Learning Visual Categories

Our memory architecture is based on a forward feature selection method com-
bined with an incremental learning exemplar-based network to allow life-long
learning of several visual categories. Both parts are optimized together to find a
balance between insertion of features and allocation of nodes, while using as few
resources as possible, which is crucial for interactive and online learning with
respect to the required computation time. In the following we refer to this ar-
chitecture as category learning vector quantization (cLVQ). The used wrapper
method for category-specific forward feature selection enables the separation of
coocurring categories, because it defines category specific metrical “views” on
the nodes of the exemplar-based network. There are three groups of feature selec-
tion methods (see [2] for an overview). The first group are filter methods, where
subsets of features are selected as a preprocessing step, independently of the
chosen classifier architecture. The second group are wrapper methods, as used
in our memory architecture. Here the methods use the learning architecture as a
black box, to score different feature subsets, but are independent of the learning
architecture. The last group are embedded methods where the feature selection
process is an integrated part of the learning architecture, typically realized with
sparsity constraints added to the error function.

Exemplar-Based Network as Memory Architecture. The exemplar-based
network part of our memory architecture is motivated from the iLVQ [7] and is
extended to deal with categorization tasks.

We denote the incrementally built up set of cLVQ representative vectors
wk as W = {wk}k=1,...,Wn

. Each wk has attached an label vector uk where
uk

c ∈ {−1, 1, 0} is the model target output for category c, representing positive,
negative, and missing label output, respectively. Each cLVQ node wk is there-
fore assigned to a vector uk of several categories. For an input xi the output
is determined for each category by the winning node wkmin(c) with kmin(c) =
arg mink∈Ac

(dc(w
k,xi)), where the minimum is only determined for representa-

tives in the set Ac = {k|uk
c 6= 0} of known category-labeled vectors. The final

model output is then given as oi
c(x

i) = u
kmin(c)
c .

A key element in the cLVQ architecture is the adaptive category-specific
distance computation dc that is strongly dependent on the integrated incremental
feature selection process. We use a weighting of Euclidean dimensions [4] with
specific weight factors λcf according to:

dc(x
i,wk) =

F∑

f=1

λcf (xi
f − wk

f)2. (1)

The category-specific weights λcf are updated incrementally, which we describe
in the following sections in more detail. We denote the set of active categories
as C = {c}c=1,...,Cn

, and the set of active features for an active category c ∈ C
as Sc. We choose λcf = 0 for all f 6∈ Sc, and otherwise adjust it according to a
scoring procedure explained later. The winning nodes wkmin(c)(xi) are calculated
independently for each category c. Each wkmin(c)(xi) is updated based on the
standard LVQ learning rule [8], but is restricted to feature dimensions f ∈ Sc:

w
kmin(c)
f := w

kmin(c)
f + µ Θkmin(c)(xi

f − w
kmin(c)
f) ∀f ∈ Sc, (2)

where µ = 1 if the categorization decision for xi was correct, otherwise µ = −1
and the winning node wkmin(c) will be shifted into the opposite direction as xi.
Additionally Θk is the node-dependent learning rate as proposed in [7].

The learning dynamics of the cLVQ memory architecture is organized in
training epochs composed of the following steps:

Step 0: Training Objects. For each epoch only a limited number of objects
are visible to the architecture, emulating a limited short term memory (STM).
All learning in the cLVQ network is based on the training feature inputs X =
{xi}i=1,...,Xn

and target category values {ti}i=1,...,Xn
of these object views.

Step 1: Feature Scoring Update. For the later feature selection in Step 3
we compute for each feature f and available category c a score rcf = Mfc/(Mfc+
M̄fc), where Mfc and M̄fc are the number of previously seen positive and neg-
ative training examples respectively. For each new training example the values
are updated with Mfc := Mfc + 1 for all xi with tic = +1 and xi

f > 0 and

M̄fc := M̄fc + 1 if tic = −1 and xi
f > 0. The score defines the metrical weighting

in the cLVQ representation space. We thus choose λcf = rcf for all f ∈ Sc and
λcf = 0 otherwise.

Step 2: Initialization of Categories. If a category c with training vectors
xi and corresponding category label tic = +1 occurs the first time, we initialize
this category c with a single feature and one cLVQ node. We select the feature
vc = arg maxf (rcf) with the largest score value and initialize Sc = {vc}. As
the initial cLVQ node for category c we select the training vector xi, where the
selected feature vc is highest activated, i.e. wWn+1 = xj with xj

vc

> xi
vc

for all i.
The attached label vector is chosen as uWn+1

vc

= 1 and zero for all other vector
entries.

Step 3: Feature Testing. The target of this step is the addition or removal
of features for the category-specific metrics, based on the observable training set
errors. For each category c we determine the set of positive errors E+

c = {i|tic =

1∧tic 6= oi
c} and negative errors E−

c = {i|tic = −1∧tic 6= oi
c}. If #E+

c > #E−
c then

we compute l+cf =
∑

i∈E
+
c

H(xi
f)/

∑
i∈E

+
c

1, where H is the Heaviside function.

The score l+cf is the ratio of active feature entries for feature f among the
positive training errors of class c. We want to add now a feature to the cat-
egory feature set Sc, which both contributes to the class c in the training
data and is very active for the encountered error set E+

c . Therefore we choose
vc = arg maxf 6∈Sc

(l+cf + rcf) and add Sc := Sc ∪ {vc}. The added feature dimen-
sion modifies the cLVQ metrics and we can now compute the total categorization
error on the training set before and after the change. If the performance increase
for category c is larger than a threshold ǫ, then vc is permanently added. Oth-
erwise is is removed and excluded for further training iterations of this epoch.
An analog step is performed, if the number of negative errors is larger than the
number of positive errors (#E+

c < #E−
c), with the difference that the feature is

removed and then again the performance gain is computed for the final decision
on the removal.

Step 4: cLVQ Node Testing. Similar to Step 3 we test new cLVQ nodes
only for erroneous categories. In contrast to the node insertion rule proposed
in [7], where nodes are inserted for training vectors with smallest distance to
wrong winning nodes, we propose to insert new cLVQ nodes based on training
vectors xi with most categorization errors over all categories, until for each erro-
neous category c at least one new node is inserted. The corresponding attached
label output vector uk = ti is only filled at category positions, where category
informations are available and is otherwise zero. This leads to a more compact
representation, because a single node typically improves the representation of
several categories.

Again we calculate the performance increase based on all currently available
training vectors. If this increase for category c is above the threshold ǫ, we make
no modifications to cLVQ node labels of the corresponding newly inserted nodes.
Otherwise we set the corresponding labels uk

c of the newly inserted nodes wk to
zero and remove nodes where all uk

c are zero.
Step 5: Stop condition. If all remaining categorization errors are resolved

or all possible features f of erroneous categories c are tested, go to Step 0 and
start the next training epoch. Otherwise go to Step 3 and test further feature
candidates and cLVQ nodes.

3 Experimental Results

3.1 Object Ensemble

For evaluating our cLVQ architecture we use an image ensemble composed of 56
different training objects and 56 distinct objects for testing (see Fig. 2), which
were never used during the training phase. For each object 300 views are taken
in front of a black background while rotating it around the vertical axis.

Overall our object ensemble contains ten different shape categories and five
different color categories (see Fig. 2). It should be mentioned that several objects

Fig. 2. Examples of training (left) and test objects (right) used for our categorization
task, where 15 different categories are trained. As color categories red, green, blue,
yellow and white are trained. The shape categories are animal, bottle, box, brush, can,
car, cup, duck, phone, tool. Each object was presented in front of a black background
while rotating around the vertical axis (bottom), resulting in 300 images per object.

are multi-colored (e.g. the cans) where not only the base color should be detected,
but also all other prominent colors. This multi detection constraint complicates
the categorization task compared to the case where only the best matching
category or the best matching category of a specified group of visual attributes
(e.g. one for color and one for shape) must be detected.

3.2 Categorization Results

We compare our proposed life-long learning architecture cLVQ with a single layer
perceptron (SLP) and a simplified version cLVQ∗. The SLP output for each cat-
egory is given as oslp

c (xi) = tanh(wc
f ∗ xi − θc), where wc is a single linearly

separating weight vector with threshold θc for each c. Training of the SLP con-
sists of standard stochastic gradient descent in the sum of quadratic difference
errors between training target and model output. In contrast to the more com-
mon used ROC curves we estimate the rejection thresholds during the learning
process, based on the average activation strength. This is required to allow cat-
egorization of new object views at any time which is an essential requirement
for interactive learning tasks. We refer to cLVQ∗ as a modified version of cLVQ,
where all features without dynamic feature weighting are used, allowing conclu-
sions about the effect of feature selection and weighting. Additionally the node
performance gain threshold ǫ was set to zero. For all experiments summarized in
Fig. 3 we trained the different network architectures with a limited and chang-
ing training ensemble composed of a visible “window” of only three objects, to
test the life-long learning ability of our cLVQ architecture. For each epoch only
three objects are visible to the learning algorithm, where at the beginning of
each epoch a randomly selected object is added, while the oldest one is removed.
This scheme is repeated until all 56 training objects are presented once to the
network architectures.

Although no prior information is given with respect to the kind of categories,
we distinguish for the performance measurement between color and shape cat-

0 5 10 15 20 25 30 35 40 45 50 55
Training Epochs

0

4

8

12

16

A
ve

ra
ge

 S
el

ec
te

d
F

ea
tu

re
s

0 5 10 15 20 25 30 35 40 45 50 55
Training Epochs

0

50

100

150

200

250

300

350

400

N
um

be
r

of
 L

V
Q

 N
od

es

cLVQ
cLVQ*

0 5 10 15 20 25 30 35 40 45 50 55
Training Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

C
at

eg
or

iz
at

io
n

P
er

fo
rm

an
ce

cLVQ
cLVQ*
SLP

0 5 10 15 20 25 30 35 40 45 50 55
Training Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1
C

at
eg

or
iz

at
io

n
P

er
fo

rm
an

ce

cLVQ
cLVQ*
SLP

d) LVQ Node Usage

c) cLVQ Feature Usage

a) Color Categories b) Shape Categories

Fig. 3. Comparison of categorization performance for SLP, cLVQ∗ and cLVQ, averaged
over five runs. The categorization performance is calculated after each training epoch,
based on all test objects. This means that the performance is calculated based on the
representation of the so far seen objects, simulating an interactive learning session. a)
For the color categories the cLVQ algorithm performed better compared to the cLVQ∗.
The SLP performance is in between both LVQ approaches. b) Compared to the color
categories the cLVQ∗ is slightly better than cLVQ for shape categories, while the SLP
performed worst. c) Shows the number of selected features, averaged over all categories,
while d) shows the allocation of cLVQ nodes during training.

egories to discuss the different quality of extracted features. The overall per-
formance of the cLVQ architecture as shown in Fig. 3 is high for both feature
modalities. For the color categories it performs much better than the simpler
cLVQ∗, while for the shape categories the cLVQ∗ performs slightly better. In
general it can be said, that the feature selection method, typically selecting less
than 5% of all available feature dimensions F = 716 (see Fig. 3.c), is able to cap-
ture the category information and also strongly reduces the necessary amount
of required resources, which is crucial for interactive learning. Despite the fact
that cLVQ typically requires only half of the nodes compared to cLVQ∗ as shown
in Fig. 3.d it is even about 100 times faster. The cLVQ algorithm is even a few
times faster than the SLP network, making it well suited for interactive learning.

The SLP performance is surprisingly high for all trained categories. This is
somehow contradictory to classification tasks, with a one-out-of-n class selection,
where the SLP approach is known for the “catastrophic forgetting effect” [1]. For
our categorization task this effect is only slightly visible for the shape categories.
Although the forgetting effect is less present in our categorization task the SLP
approach is still considerably worse than cLVQ for both feature modalities.

4 Discussion

We propose a architecture for life-long learning of visual categories, able to per-
form an automatic feature selection, feature weighting and incremental allocation

of cLVQ nodes, which is suitable for interactive learning. The wrapper method
for automatic feature selection is mainly used because the representation of cate-
gories should use as few feature dimensions as possible, which can not be achieved
with simple filter methods, where typically only a small amount of redundant
or noisy features are eliminated. There are metric adaptation methods for LVQ
networks like the GRLVQ proposed by [4] which was used by [6] as embedded
method for feature selection. Those metric adaptation methods are designed for
feature weighting but lack the ability to separate coocurring visual attributes
and are therefore not applicable to categorization tasks. Especially this sepa-
ration capability of coocurring categories combined with fast interactive and
incremental learning makes cLVQ beneficial for categorization tasks.

In comparison to many other categorization approaches we are able to learn
multiple categories at once, while commonly the categories are trained individ-
ually. Additional many computer vision approaches dealing with categorization
like the implicit shape models (ISM) proposed in [9] only uses the canonical
views of the category (e.g. only side views of cars), while we rotate the objects
around the vertical axis, which causes much higher appearance changes. This il-
lustrates that our exemplar-based method can deal with a larger within-category
variation, which we consider crucial for complex categories.

References

1. French, R. M.: Catastrophic Forgetting in Connectionist Networks: Causes, Conse-
quences and Solutions. Trends in Cognitive Sciences 3 (4) (1999) 128–135

2. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal
of Machine Learning Research 3 (2003) 1157-1182

3. Hamker, F. H.: Life-long learning Cell Structures - Continously Learning without
Catastrophic Interference. Neural Networks 14 (2001) 551–573

4. Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization.
Neural Networks 15 (2002) 1059–1068

5. Hasler, H., Wersing, H., Körner, E.: A Comparison of Features in Parts-based Object
Recognition Hierarchies. Proc. ICANN (2007) 210–219

6. Kietzmann, T. C., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Rele-
vant Features for 3D Object Recognition. Neurocomputing (2007) (in Press)

7. Kirstein, S., Wersing, H., Körner, E.: A Biologically Motivated Visual Memory Ar-
chitecture for Online Learning of Objects. Neural Networks 21:65-77 (2008).

8. Kohonen, T.: Self-Organizing and Associative Memory. Springer Series in Informa-
tion Sciences, Springer-Verlag, third edition (1989)

9. Leibe, B., Leonardis, A., Schiele, B.: Combined Object Categorization and Segmen-
tation with an Implicit Shape Model. ECCV’04 Workshop on Statistical Learning
in Computer Vision (2004)

10. Ozawa, S., Toh, S. L., Abe, S., Pang, S., Kasabov, N.: Incremental Learning of
Feature Space and Classifier for Face Recognition. Neur. Netw. 18 (2005) 575–584

11. Swain, M. J., Ballard, D. H.: Color Indexing. International Journal of computer
Vision 7 (1) (1991) 11-32

