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Abstract— In continuation of our previous work on visual,
appearance-based localization and mapping, we presented in [5]
a novel appearance-based, visual SLAM approach. The essential
contribution of this work was an adaptive sensor model, which
is estimated online, and a graph matching scheme to evaluate
the likelihood of a given topological map. Both methods enable
the combination of an appearance-based, visual localization
and mapping concept with a Rao-Blackwellized Particle Filter
(RBPF) as state estimator to a real-world suitable, online SLAM
approach. In our system, each RBPF particle incrementally con-
structs its own graph-based environment model which is labeled
with visual appearance features (extracted from panoramic 360o

snapshots of the environment) and the estimated poses of the
places where the snapshots were captured. The essential advan-
tage of this appearance-based SLAM approach is its low memory
and computing-time requirements. Therefore, the algorithm is
able to perform in real-time. In this paper we improve our
algorithm to deal with dynamic changes in the environment
which is typical in real-world environments. Furthermore, we
describe a method to limit the memory consumption of the
environment model that is needed for large maps. Finally, we
present the results of SLAM experiments in a dynamical and
large environment that investigates the stability and localization
accuracy of this SLAM technique.

Index Terms— Visual SLAM, panoramic vision, appearance-
based localization, view-based approach

I. INTRODUCTION

Robust self-localization and map building plays a central
role in our long-term research project PERSES (PERsonal
SErvice System) which aims to develop an interactive mo-
bile shopping assistant that can autonomously guide its user
within a home improvement store [4]. In everyday life and in
mobile robotics, two main types of visual self-localization and
mapping methods are typically used: landmark-based methods
and appearance- or view-based approaches. While landmark
based methods require the extraction and reassignment of
distinct visual landmarks, appearance-based methods use a
description of the view at a certain point, leading to a more
global impression of a scene. Appearance-based approaches
compare the appearance of the current view with those of the
reference images to estimate the robot’s pose [18, 20]. That
makes these methods so interesting for robust localization and
map building in mobile robotics.

One objective of our ongoing research is to investigate
whether appearance-based SLAM approaches are generally
suited for large-scale and uniformly structured indoor
environments, like the aforementioned home improvement
store, and if so, how they can be made capable of working
online and in real-time. In our research on vision-based

robot navigation we are preferring these approach for the
following reasons: i) In a highly dynamic, populated maze-
like environment, a robust recognition of natural landmarks
cannot be guaranteed in any case. ii) Furthermore, the need
for a robust and invariant detection of visual landmarks
often results in high computational costs and, therefore, map
building is often performed off-line by these approaches.
In our previous approaches [1, 3] on appearance-based
Monte Carlo Localization, a static, graph-based model of
the environment was developed (see Fig. 1). The nodes
(poses of the robot) of this environment model are labeled
with appearance-based observations extracted from an
omnidirectional image. Based on this environment model, we
developed an appearance-based visual SLAM approach [5]
that is using the Rao-Blackwellized Particle Filter (RBPF)
concept [7] to estimate a map. Montemerlo et. al. A more
detailed overview over related work is given in Section II.

The essential contribution of our approach presented in [5]
was the combination of the appearance-based, visual localiza-
tion concept with a Rao-Blackwellized Particle Filter as state
estimator to a real-world suitable, online SLAM approach.
Instead of single observations, typically used in the field of
appearance-based localization and mapping, another key idea
of our approach was to utilize local graphs to perform the
evaluation step, representing a kind of short-term memory or
time window of the current and the most recent observations
and pose estimations. Based on this, we introduced a graph-
matching technique to compare the local graph of each particle
with its particular global graph to determine the best matching
map. Another novel idea consisted in online estimation of
an environment dependent sensor model. In continuation of
this work mentioned above, we developed on a method to
further reduce the demand on memory of the environment
model. This is a prerequisite for building maps of larger
environments which are represented in this paper. Further-
more, we are introducing a method to deal with dynamically
changing environments. In real-world scenarios changes occur
frequently (e.g. by moving objects, changing light conditions,
walking people). To deal with these changes, most algorithms
try to make the image comparison as robust as possible. Our
way to handle this problem is to consider dynamic changes
of appearance and model these changes in the map directly.
The necessary extension of the environment model will be
explained in detail later.

The article is structured as follows: The next section gives
an overview of related work. After that, the important methods
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Fig. 1. A map of the operation area, a regularly structured, maze-like home
improvement store with a size of 100x50m2 (taken from [3]). The red dots
show the positions of stored reference observations.

of our appearance-based SLAM approach described in [5] are
recapitulated. This is needed for a better understanding of the
extensions of our algorithm to deal with dynamic changes
which are introduced in the section following. After that,
experimental results achieved with our SLAM approach in
a public large environment are presented and discussed. A
conclusion and suggestions for future work are given at the
end of the paper.

II. RELATED WORK

Many solutions have been presented in the past to realize a
robot self-localization in more or less complex environments
including methods based on feature or landmark extraction
and tracking and those based on appearance models of the
environment. A short overview of the most relevant research
is given in the following paragraphs:

Feature/Landmark-based approaches: In many SLAM
approaches, the map representation is assumed to be a vector
of point-like feature positions (landmarks) [10]. The attrac-
tiveness of feature/landmark-based representations for SLAM
lies in their compactness. However, they rely on a priori
knowledge about the structure of the environment to identify
and distinguish potential features or landmarks. Furthermore,
a data association problem arises from the need to robustly
recognize the landmarks not only in local vicinities, but also
when returning to a position from an extended round-trip. In
the field of visual landmark-based SLAM algorithms, Lowe’s
SIFT-approach [11, 12] has often been used so far. Further
important feature/landmark-based approaches are those by
Davison using Stereo vision [13] or monocular vision [14].
To estimate the landmark positions, popular methods like
the Extended Kalmanfilter (EKF) [14], Rao-Blackwellized
Particle Filters (RBPF) [15] (e.g. FastSLAM [16]) are applied.
Using such complex visual features often results in high
computational costs and, therefore, map building is often
performed off-line by these approaches. Appearance-based
SLAM/CML approaches: The Concurrent Map-building and
Localization (CML) approach of Porta and Kroese proposed
in [22] was one of the first techniques to simultaneously
build an appearance-map of the environment and to use this
map, still under construction, to improve the localization of
the robot. Another way to solve the SLAM-problem was
proposed by Andreasson et. al. [23]. Here, a topological map
stores nodes with appearance-based features and edges which
contain relations between nodes and their poses. Essential
drawbacks of this approach are, however, the required offline

relaxation phase and the computational costs for calculation of
the SIFT features on high resolution images. To avoid these
requirements, our approach uses an RBPF [7] to avoid off-
line relaxation methods. Moreover, the method to estimate the
pose difference between images applying the image similarity
introduced by Andreasson [23] has been picked up and ex-
tended in our SLAM approach. Further approaches that use a
topological map representation are described in [25], where a
Bayesian inference scheme is used for map building, and in
[26], where a fast image collection database is combined with
topological maps that allows an online mapping, too.

III. APPEARANCE-BASED SLAM APPROACH WITH RBPF

In this section, the basic idea of our algorithm presented
in [5] is explained briefly. The graph matching process to
determine the likelihood of the map to be correct will be
described more precisely. Furthermore, the adaptive sensor
model is investigated and discussed. With that background
subsection the section IV introduces an extension to model
dynamic changes in the algorithm.

A. RBPF with local and global graph models

Our appearance-based SLAM approach also utilizes the
standard Rao-Blackwellized Particle Filter approach to solve
the SLAM problem, where each particle contains a pose
estimate xi (position x, y and heading direction ϕ) as well
as a map estimate (see Fig. 2). The environment model
(map) used in our appearance-based approach is a graph
representation, where each node i, representing a place in
the environment, is labeled with appearance features of one
or more omnidirectional impressions at that node. The obser-
vation zi is extracted from the panoramic view captured at
that place and the estimated pose xi. To solve the SLAM
problem, the RBPF has to determine the likelihood of the
graph-based maps in the particles to be correct. Hence, the
likelihood of a given map m has to be calculated by comparing
the current observation z and the map m itself. Therefore,
our approach uses two different types of maps: a global
map mG =

〈
x1:(l−1), z1:(l−1)

〉
, which represents the already

known environment model learned so far and a local map
mL = 〈xl:t, zl:t〉 representing the current and the n latest
observations and the local path between them (e.g. the last
two meters of the robot’s trajectory [2]). The global map
stores all observations before the time-step l = t−n. Thus, in
extension of known RBPF techniques, in our approach each
particle (see Fig. 2) estimates and stores a local map, a global
map, and the currently estimated pose. Figure 2 schematically
shows the local and global map in more detail. Serving as
a short-term time-window of observations, the local map is
used to compute the likelihood of each global map to be
correct. This has some advantages. First, the likelihood of
a given global map can be evaluated in a simple way by
comparing the local and the global map directly. Based on
this comparison, the RBPF can determine for each particle the
likelihood of the trajectory and the global map estimated by
that particle. Second, the still more relevant advantage is, that
the local map provides geometric and visual information about
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the most recently observed places. So correct comparisons can
be made by taking spatial relations and visual observations
into consideration. Finally, this approach is more robust against
single disturbances in images (e.g. people walking by) because
not a single observation determines the likelihood of the map
but the n latest observations and their geometric relations.
That is a big difference to other approaches where a single
observation is used to detect a loop closure.

The approach assumes that a short part of the robot’s
trajectory is measured with sufficient accuracy. Hence, the
length of the local map has to be as short as possible. On the
other hand, for reliable comparison results, the graph of a local
map has to contain enough nodes for the matching process.
We achieved the best results with a local trajectory length
of about 5 meters and average distances between the nodes
of 0.5 meters. Note that these values are depending on the
accuracy of the robot’s odometry sensors. The chosen length
of the map corresponds to the distinctiveness of the given
appearance description z. While using unspecific descriptions,
the length of the local map has to be larger than on distinctive
appearance descriptions. In the first case, distinctiveness has
to be achieved by a greater number of observations. In the
shown results we use a global scene description based on a
set of SIFT features and HSV features. In our experience the
accuracy of the map depends more on the used appearance
description z with its distinctiveness than on the size of the
local map. In our experiments we found values of the length
of the local map between 4 and 10 meters useful as well as
distances between the nodes of 0.2 to 0.5 meters.

B. Graph matching
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Fig. 2. Graph-based environment representation of our appearance-based
approach: The red nodes show the global map of a single particle with respect
to the path estimated by this particle. The blue nodes represent the local map,
whose data creates a short-term time-window of observations (including the
current pose and the n latest observations) used for map matching to determine
the likelihood of the respective global map. The idea of our appearance-based
RBPF is, that only particles with correctly estimated trajectories are able
to build correct maps, so that the matching between local and global map
provides a higher matching value than wrongly estimated trajectories.

To determine the likelihood of the estimated map our
approach requires loops in robot’s trajectory, like other RBPF-
based approaches too. Instead of calculating the probability
distribution p(z|x,m) directly, here the likelihood of a given
map to be correct is estimated by comparing the local and
the global map. In the context of RBPF, this distribution
determines directly the importance weight w = p(z|x,m) of
a particle. For this purpose, corresponding pairs of nodes in
both maps are selected by a simple nearest neighbor search in
the position space. The relation between each selected pair of
corresponding nodes eL

i (of the local map mL) and eG
j (from

  
 

 

 

Fig. 3. Basic idea of our map matching algorithm: the likelihood of a
given global map (particle-specific) is determined by comparison of the spatial
distances dij and visual similarities Sij between each pair of nodes i (in the
local graph) and j (in the global graph). Corresponding nodes eL

i and eG
j are

defined by the minimum spatial distances dij . The matching weights wi per
node in the local map are calculated in dependence of the spatial distance dij

and the visual similarity Sij (for more details see Section III-C).

the global map mG) provides two pieces of information, a
geometric one (spatial distance dij) and a visual one (visual
similarity Sij), depicted in Fig. 3. Both aspects of each
relation ij are used to determine a matching weight wi for the
respective node i of the local map. Assuming an independence
between the node weights of the local map, the total matching
weight w[k] between the local and the global graph of particle
k is simply calculated as follows:

w[k] =
n∏

i=1

w
[k]
i (1)

with n describing the number of nodes in the local map.
To evaluate the matching weight wi we have to compute the

probability that two observations zi and zj show a similarity
Sij at a given distance dij . To solve this problem, we use
an adaptive sensor model, which is described in the next
section. The method described up to now can be summarized
as follows:
Estimating correct maps with RBPF approaches requires loops
in the trajectory. When the robot closes a loop, the local and
global maps overlap and the graph-matching algorithm can es-
timate the likelihood of a map. In the case of non-overlapping
maps no weights are determined by graph-matching, but set
to the a priori weight computed by the average weight of
all particles with overlapping maps. This prevents particle
depletion before a loop is closed. If there are no particles with
overlapping maps (e.g. at the start) the uniform distribution is
used for particle weighting. Note, that in the context of RBPF
no explicit loop closing detection is performed and, therefore,
no explicit trajectory (or map) correction can be done.

C. Adaptive sensor model

To compute the matching weights between corresponding
nodes, an adaptive sensor model has been developed. In the
context of appearance-based observations, the visual similarity
between observations is not only depending on the difference
in position but also on the environment itself. If the robot,
for example, moves in a spacious environment with much
free-space, the similarity between observations from slightly
different positions will be very high. In a narrow environment
with many obstacles, however, observations at positions with
low spatial distance are already drastically influenced, which
leads to a low visual similarity. Therefore, our sensor model
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estimates online the dependency between surrounding-specific
visual similarities Ŝij of the observations zi and zj and their
spatial distance d̂ij . An example for this dependency is shown
in Fig. 4. The samples (black dots) to build such a model are
taken from the nodes of the local map where each node is
compared to each other. This results in n2/2 pairs of Ŝij and
d̂ij representing samples describing the appearance variability
in the local environment. In [5] different non-parametric
and parametric approaches to approximate the model were
investigated, e.g. the Gaussian Process Regression (GPR) of
Rasmussen [27], while we used a parametric polynomial
description of the sensor model and its variance. In this paper,
our approach uses an non-parametric histogram-based sensor
model. For that model the distance d is divided in bins of
different size and for each bin the mean similarity and its
variance are computed (see Fig. 4). The bin size s is computed
by a parametric exponential function s(d) = a·(d+b)c−1. The
non-linear size of the bins is required to get a higher resolution
for small distances. That results in a higher accuracy of the
matching process. This model works like the model presented
in [5] but has the advantage that no least square optimization
needs to be done. The likelihood that two nodes i and j of
particle k are matching is computed as follows:

w
[k]
i = p (Sij |dij) ≈ exp−

(
Sij − Ŝ (dij)

)2

σ̂(dij)2
(2)

With that adaptive sensor model and the aforementioned
graph-matching algorithm, the importance weight of each
particle (the likelihood of its map) can be determined. As
mentioned in [5] a variety of image features can be used in
our approach. For the reasons discussed in Section I, we prefer
an appearance-based approach utilizing holistic appearance
features. These features are extracted from panoramic snap-
shots obtained from the omnidirectional camera located on
the top of our experimental robot platforms. The environment
observation for a given position of the robot is described by
one feature vector z of the 360◦ view. Possible feature vectors
are gradient histograms, color-histograms, SIFT feature sets,
or simple RGB mean values. For the experiments in this paper,
we chose SIFT feature sets [11, 23] as appearance-based image
description, because of their ability to determine the similarity
of observation with high accuracy.

IV. DYNAMIC CHANGES

To suit the problems of the dynamic environments we face
two main problems. At first, the visual impression at the same
place can change due to varying lighting conditions, occlusions
and moving objects. Second, the map grows infinitely while
observing the environment and including every estimated posi-
tion and observation. So we have to select which observations
or new position needs to be included in the map. Therefore
we extend the nodes to collect more than one observation. The
problem of including new nodes is solved strait forward. We
simply insert new nodes, when a distance dmin to the nearest
node is exceeded. In each new node the actual observation
is also included. The problem of including new observations
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Fig. 4. The histogram model with mean value and σ per bin. Points in the
light green area (with distance to the nearest neighbor > dmin) are always
included as new nodes. All other points are tested by the sensor model. If
they are within the model expectation they need not be included (red area),
else they extend the local model by adding a new appearance variant to the
node.

Fig. 5. Results of the node-fusion process. While in a) all observations
and places are stored in b) they are fused together. It is clear that version b)
requires less memory than a).

in existing nodes is slightly more complicated. We use the
extended nodes to collect observations of different appearance
states by taking the similarity model Ŝ(dij), σ̂(dij) to decide
to include new observations to an existing node or not. For
each particle, we assume to be in a certain position x with a
certain map m. We compare (like it is done in the weight
calculation) the similarity S and distance d from position
x to the nearest neighbor in the map m. Since more than
one appearance description can reside inside a node, we
look for the best matching similarity (Smax = maxi(Si)).
According to equation (2) we now calculate the probability
p (Smax|d). If this probability is above a certain threshold
ξ, the observation matches the expected similarity (we have
seen the observation in this configuration before) and can be
ignored. If the observation does not match the model, it is
included to the current node at x.

Now we have a mechanism to include unknown variations
of the environment regarding the appearance. Because of the
maximum selection on similarities occupied by the node, we
are sure to find any known appearances when coming to those
nodes again. The sensor model does not have to be adjusted,
since we do not care inside this model from which observation
the similarity comes, and so the model represents a function
of the distance to the best possible similarity.

V. EXPERIMENTS AND RESULTS

To investigate the extensions of our approach, we used our
default test environment [3], the home improvement store al-
ready introduced in Section I and shown in Fig. 7, where many
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Fig. 6. A few examples of dynamic aspects of our recorded map. In most
cases customers represent the dynamic changes in our mapping experiment.

dynamic effects occur. All data for the analysis were recorded
under realistic conditions, i.e. people walked through the op-
eration area (see fig. 6), shelves were rearranged,illumination
changes,and occlusion. Additionally, laser data were captured
to generate a reference to evaluate the results of our approach
(details, see below). Note, that the laser scanner in all cases
was used for comparison and visualization only but not for
mapping or localization.

The main challenge of the environment are a) the big
loop of approx. 340m the approach has to close correctly
and b) a lot of hallways with very similar appearances. The
robot was moved several times through the home store along
a path of about 2400 meters length. The problem here is,
if the robot travels in unmapped areas the particles should
not match to already mapped hallways left or right of the
correct trajectory. For a visual SLAM approach this is really
challenging, especially if the hallways are very similar. The
resulting graph (Fig. 7,red line) covers an area of 120 x 50
meters and was generated by a mean count of 250 particles
(max. 2000) in the RBPF. We use a varying count of particles
to approximate the probability density. Thus, max. 2000 global
graph maps had to be built, whereas Fig. 7 only shows the
most likely final trajectory and a superimposed occupancy
map for visualization. To evaluate the visually estimated path
shown as red trajectory in Fig. 7, in addition a reference
path and map built by means of a Laser-SLAM algorithm
were calculated (GMapping of G. Grisetti et al. [6] taken
from www.openslam.org). The Laser-SLAM estimated path
(ground truth) is used to determine the mean and the variance
of the position error of our algorithm. A first result was, that
the trajectories estimated by both SLAM approaches are very
similar. This is also expressed by a mean localization error
of 0.47 meters (with a variance σ ≈ 0.24m) compared to the
laser-based SLAM results. The maximum position error in this
experiment was about 1.21 meters. These experimental results
demonstrate, that our approach is able to create a consistent
trajectory and based on this, a consistent graph representation,
too. Furthermore, in contrast to grid map approaches (up to
4GB for our test environment), topological maps require less
memory (up to 1.5GB for 4000 obs.) because of the efficient
observation storage, where each observation’s features of each
snapshot are linked to all global maps. That means the memory
requirements are nearly independent from the used number
of particles. The particles require memory to store their own
trajectories only.

TABLE I
OVERVIEW OF THE ACHIEVED RESULTS IN ALL EXPERIMENTS AND

ENVIRONMENTS.

Experiment Home store
Size of area 50x120m

Total path length 2400m
# of particles 250 (mean) 2000 (max)

Error Mean/Var/Max 0.47/0.24/1.21 m
Time per map update 0.250 s
Building sensor model 0.300 s

To quantify the dynamic aspects of our operation area is
quite hard. We can’t measure the quality amount of dynamic
changes occurring in the environment. The only value we can
count are the numbers of multiple observation entries into each
map node. The experiments show, that a lot of nodes store
more than one observation. The other improvement of fusing
nodes during the mapping process can be shown easier. With
fusing of nodes the map contains ≈2000 nodes, compared to
≈4600 without. A final overview of the achieved results and
the computational costs of our proposed approach is given in
Table I. It becomes evident, that in such environments, like
the home improvement store, where the robot has to close
large loops, the approach is working correctly and with a high
accuracy for a visual SLAM technique.

The computational and the memory costs of the algorithm
depend linearly on the number of particles and quadratically
on the number of nodes in the local maps required for graph
matching. At a single-core CPU with 2.4GHz, the computation
of the adaptive sensor model is done in approximately 300
ms (independent from map size and particle count), whereby
10 nodes of the local map were used for the estimation of
the similarity model. The rest of the computational costs (see
Table I) is spent for map updates, weights determination, and
the resampling process. For small numbers of particles, our
approach is running in real-time. With higher numbers of
particles, the SLAM algorithm nearly works in real-time. In
this case, the robot only has to be moved a bit slower through
the environment (motion speed is limited).

VI. CONCLUSION AND FUTURE WORK

We presented some extensions of our appearance-based
SLAM approach to limit the memory consumption and to
deal with dynamic changes that occur in typical real-world
environments. These improvements allow an appearance-based
on-line SLAM in large-scale and dynamic real-world environ-
ments. The key ideas of our approach are the use of global and
local graph models per particle, the introduction of an adaptive
sensor model, and the sophisticated graph-matching technique
to compare the local graph of the particle with the respective
global graph to determine the best matching map, and with
that the best particles for the resampling step. The essential
advantages of our appearance-based SLAM approach are its
low memory and computing-time requirements. Therefore,
our algorithm is able to perform in real-time, which is a
prerequisite for all on-line working map builders or mapping
assistants.
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Fig. 7. In the home improvement store: The red path shows the robot’s movement trajectory only estimated by our appearance-based SLAM approach. The
map shows a high accuracy with only small alignment errors. For visualization of the localization accuracy, a laser-based occupancy map was built in parallel
and superimposed to the estimated movement trajectory (visual SLAM).

For the near future we plan to implement a visual scan-
matching technique to limit the number of required particles to
close loops correctly and to increase the accuracy of estimated
maps. This technique is used by many other successful SLAM
approaches (e.g. [6]). Furthermore, we want to investigate the
influence of dynamic changes in the environment (changed
filling of the goods shelves, re-arrangements in the hallways,
occlusions by people, changing illumination) on the robustness
and long-term stability of our approach.
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