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Abstract. This paper introduces the application of the feature trans-
formation approach proposed by Torkkola [1] to the domain of image
processing. Thereto, we extended the approach and identifed its advan-
tages and limitations.
We compare the results with more common transformation methods like
Principal Component Analysis and Linear Discriminant Analysis for a
function approximation task from the challenging domain of video-based
combustion optimization. It is demonstrated that the proposed method
generates superior results in very low dimensional subspaces.
Further, we investigate the usefulness of an adaptive variant of the in-
troduced method in comparison to basic subspace transformations and
discuss the results.

1 Introduction

Optimizing the combustion of coal in power plants is an important task, since
increasing efficiency equals a reduction of carbon oxides (CO and CO2), nitrogen
oxides (NOx) and other greenhouse gases in the flue gas. But all data normally
measured at a plant is insufficient to build meaningful models and controllers.
Therefore, our approach includes cameras to actively observe the flame itself.
On one hand, with this additional information about the combustion process
improved controllers can be built automatically. On the other hand, relying on
image data introduces additional challenges.

The use of the original pixel space for learning algorithms that operate on
image data is a rare occurrence. The high dimensionality of this space is a
major obstacle in this respect, because this leads to a high complexity of the
learning problem and a high number of free parameters to be estimated for an
approximation or classification task. Furthermore, the feasibility of this approach
is restricted by the computational effort required to handle the data.

Hence, preprocessing is applied to extract useful information from the original
images. One way to achieve this is the use of designed features like certain
geometric shapes, intensity values or certain texture patterns. This implicitly



requires at least a bit expert knowledge by the system designer to decide which
methods are meaningful for the given problem.

Another way to cope with the problem are feature transformation algorithms
which attempt to find an image subspace that contains much useful informa-
tion. Typically these methods are guided by a statistical criterion to achieve this
goal. Perhaps the best known representatives are Principal Component Analy-
sis (PCA) [2], Independent Component Analysis (ICA) [3], Nonnegative Matrix
Factorization (NMF) [4] and Linear Discriminant Analysis (LDA) [2]. The ba-
sic forms of these algorithms produce linear transformations only, but there are
several non-linear (e.g. kernel-based) extensions for all methods, but PCA and
ICA specifically attracted a lot of attention in this respect.

The PCA transforms data into a subspace based on the eigenvectors of the
data covariance matrix, hence this produces axes along the most variant parts of
the data. High eigenvalues mark high variant directions. The resulting subspaces
are often named according to the task, like eigenfaces or, for combustion opti-
mization, eigenflames. This technique, as well as ICA and NMF, are purely data
driven. They only consider the data intrinsic relations, but not the recognition or
approximation task to be solved. ICA tries to find subspaces that represent inde-
pendent data parts. A contrast function like Negentropy or Mutual Information
is used to measure the independence of the resulting subspace dimensions. The
NMF transformation’s unique selling point is that all subspace dimensions and
resulting data points are in fact non negative, which is a constraint for certain
application areas.

Unlike the aforementioned methods, algorithms like the LDA take the target
of the learning problem into account to find a suitable subspace representation. It
derives itself from the Fisher criterion [5] and aims at a subspace transformation
that allows a good approximation with linear learning machines.

The Maximal Mutual Information (MMI) transformation introduced by Tork-
kola [1] is similar in this respect. It takes the target values into account, but unlike
the LDA it does not make any assumptions about a specific learning machine.
Instead, it tries to maximize the information content about the target in the
new subspace. The basic ideas and mechanisms of this approach are recapped in
Sect. 2.

The application of this approach to image data is straightforward, but re-
quires the consideration of its limitations for this high dimensional domain. Ad-
ditionally, we propose an supplemental step in the algorithm to capture image
specific traits. A comparison to PCA approaches on a flame image prediction
task completes Sect. 3.

Since our intended application area, the intelligent control of combustion
processes in power plants, is non-stationary, the feature extraction’s requirements
include a certain adaptivity. A comparison of different initializations, PCA and
LDA is given, and we will discuss the use of the MMI transformation as adaptive
system and the pitfalls associated in Sect. 4.
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Fig. 1. The original image data x is transformed by some function g into a lower-
dimensional space. An evaluation criterion, the Quadratic Mutual Information, mea-
sures the correspondence to the desired target value t, e.g. the nitro oxides to the
reduced images y. From this criterion, a gradient information δI/δw is derived and
used to adapt the transformation parameters w.

2 Feature Extraction Using Mutual Information
Maximization

The Maximal Mutual Information approach of Torkkola [1] is built upon the
Information-Theoretic Learning (ITL) framework introduced by Principe [6].
The idea is to find a transformation that maximizes the Mutual Information
(MI) between the transformed data in a certain subspace and the desired target
values. A number of “forces” is computed to be used as the direction in a gradient
ascent to maximize the MI.

The basic adaption loop for the optimization process is shown in Fig. 1. The
original input data sample xi is transformed by some transformation g with the
parameters w into a lower dimensional space. The transformed data is denoted
by yi. The goal is to find those transformation parameters w that confer the
most information into the lower dimensional space with respect to the target.

The update rule for the parameters of the transformation is given by the
following equation, where α denotes the learning rate

wt+1 = wt + α
∂I

∂w
= wt + α

N∑
i=1

∂I

∂yi

∂yi

∂w
. (1)

Finding the gradient ∂I/∂w can be split into the sample wise computation
of the information forces ∂I/∂yi and the adaption of the parameters ∂yi/∂w.

The second part is the simple one, since there exists a number of suitable
transformations g, e.g. linear transformations or neural networks like Radial Ba-
sis Function Networks [1] or Multi Layer Perceptrons [7]. The only requirement
is that they have to use the gradient information ∂yi/∂w to adapt their param-
eters. All following examinations are limited to the linear transformation case,
because this allows easy comparison with PCA or LDA and a visual inspection



of the results is possible as well. The parameters w that have to be estimated
are all elements of the linear projection matrix W . The equation for the linear
transformation is given by

yi = WTxi. (2)

The size of W is dx times dy with dx > dy where dx is the number input of
dimension in X and dy is the dimensionality of the subspace. Furthermore, W
is assumed to be orthonormalized.

The calculation of the information forces ∂I/∂yi is computationally more de-
manding. The straightforward approach would be to use the well known Mutual
Information

I(Y, T ) =
∫

y

∫
t

P (y, t) log
P (y, t)
P (y)P (t)

dtdy (3)

to evaluate the correspondence between the transformed data and the target
values. But due to the associated problems of estimating this criterion in high
dimensional spaces, Torkkola proposes a non-parametric estimation based on
Quadratic Mutual Information I2

I2(Y, T ) =
∫

y

∫
t

(p(y, t)− p(y)p(t))2dtdy (4)

and kernel density estimation with Parzen windows. Application of the bino-
mial formula splits equation 4 in three parts which are interpreted as information
potentials and the derivatives as information forces.

∂I2

∂yi
=
∂VIN

∂yi
+
∂VALL

∂yi
− 2

∂VBTW

∂yi
(5)

VIN represents the “attractive potential” of all samples with the same/similar
target value, VALL is the same but for all samples, and VBTW is the “repulsive
potential” (negative sign) between samples of different target values. The deriva-
tives show the direction each sample has to move to maximize the objective
function. The actual computation of these terms is reduced to interactions be-
tween all pairwise samples using Gaussian kernel density estimates. The reader
is referred to [1] for the details that are omitted here.

In Algorithm 1 the procedure for one adaption step is given. These steps are
repeated until convergence of the parameters w.

3 Image Data Processing

According to Torkkola [1], the previously described system is suitable for small
input dimensions, but higher dimensions can be problematic. On one hand, image
data is intrinsically high dimensional, because each pixel position is considered
an input. On the other hand, treating each pixel as an independent input channel
neglects the fact that neighbor pixels from the camera are dependent on each



Algorithm 1 Maximal Mutual Information Adaption Step
Input: current transformation Wt, the input data X and the target values T
Output: new transformation Wt+1

Y = g(W,X) = WTX // computation of the transformed data
∂I2

∂yi
= ∂VIN

∂yi
+ ∂VALL

∂yi
− 2 ∂VBT W

∂yi
//estimation of the different forces

∂Y
∂W

= XT //The gradient of the linear transformation matrix W

W ‘
t+1 = Wt + α ∂I

∂W
= wt + α

PN
i=1

∂I
∂yi

∂yi
∂W

//Adaptation step

W ‘
t+1 = GaussianFilter(W ‘

t+1) //Supplemental step for images, see Sec. 3
Wt+1 = GramSchmidt(W ‘

t+1) //Orthonormalization step to ensure WTW = I

other. We assume that informative parts of the image are not defined at pixel
level, but by a more general, arbitrary shaped region, that is approximated on the
pixel level. Thus, it is very unlikely that neighboring pixel have a rank different
information content.

To cope with this problem and forcing the filter to consider these neighbor-
hood dependencies, we introduced an additional step into the algorithm. After
computing the new filter according to the gradient information and before the
orthonormalization step, we perform a smoothing with a Gaussian filter in the
two dimensional image space on the filter mask. This does not only distribute
information between neighbor input dimensions, but increases stability and con-
vergence speed, because the algorithm finds smooth solutions. An additional
benefit is the obvious reduction of measurement noise in the observations.

This approach is not suitable for images only, but every continuous domain
that is sampled and approximated at certain points and has a clear neighborhood
definition.

We used 1.440 small images of the size 40x32 pixels which equals 1.280 in-
put dimensions for each sample. All images are flame pictures taken from a coal
burning power plant. An example image with a higher resolution is shown in
Fig. 2. The respective targets are measurements like the nitrogen oxides (NOx),
carbon monoxides (CO) or excess air (O2) produced by the combustion. We
used Multi Layer Perceptrons as function approximators and evaluated the per-
formance of different instances of the ITL framework with different parameters
like the dimensionality of transformed data, and compared them with results
from PCA based transformations.

The first tests were made with a visual examination of the resulting filter
masks, similar to the well known eigenfaces. Images with obvious structures are
considered “stable” solutions, while “unstable” results are characterized by high
frequent noise and no structures in the filter masks. See Fig. 3 for examples
on a higher resolution (134x100 pixels). Interestingly, if stable solutions were
found, they tend to be similar to each other, besides differences in the sign of
the filter masks, which relates to the same axis but the opposite direction. More
discussions on this topic are following in Sec. 4.

Different initializations for the transformation parameters w result in the
clear preference for PCA or LDA, since randomly initialized filters tend to pro-
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Fig. 2. An example of a black and white image taken from the furnace of a coal fired
power plant. Clearly visible is the furnace located wall on the right. Roughly in the
middle of the images is the burner mouth were coal dust is inserted to the furnace and
ignites. Around this area on the wall, slag (molten ash) is visible.

duce unstable results. Hence the MMI method is more of an objective driven
refinement for these plausible starting guesses.

The possible dimensionality of the reduced feature space dy is greatly de-
pendent on the number of available samples. This makes sense with respect to
the curse of high dimensionality, because the higher the dimensionality, the more
difficult it is to estimate the required probability distributions. For the presented
setup of data we noticed two things: First, the bigger dy, the more it deviates
from a PCA initialization. Second we observed that the breaking point, where
it switches from stable subspace transformations to unstable results, is between
dy = 4 and dy = 5. By doubling the number of samples to 3.600, we get stable
results in the five dimensional subspace, but dy = 6 and higher remain unstable.

Further experiments where conducted with images subscaled to an even
smaller size of 10 x 8 pixels per image. The reductions of the input dimen-
sionality dx does not improve the results considerably. On the other hand, using
images with 160x120 pixels decreased stable results to 3 dimensions. This is due
to the linear connection between dx and the number of parameters w compared
to the exponential influence of dy as discussed above.

The next experiments are conducted to test whether the MMI subspace trans-
formation yields any improvements compared to PCA-based eigenflames. Taking
the previous results into account, the target dimensionality is limited to dy <= 3
and the MMI subspace search started with an PCA initialization.

The results clearly demonstrate the benefits of the MMI approach. The ap-
proximation errors are smaller or at least in the same magnitude of the PCA-
based approach. By adding more channels, the PCA can achieve similar results
to the MMI transformation, but there is always the need of additional dimen-



Fig. 3. (Left) A stable filter mask. (Right) An unstable one. Both subspace trans-
formations are the results of the optimization procedure described in this section and
depict the first dimension of the new subspace. The white areas are coding positive
values, the black regions negative ones, while the gray areas are near zero and thus
unimportant, like the round margin in the left image. One important fact to remem-
ber is, that the sign does not tell anything about the importance of this pixel, while
the absolute value does. This kind of visualization is comparable to Eigenflames pro-
duced by PCA, besides in this case it doesn’t depict the variances in the data, but the
information.

Table 1. Comparison of the same MLP trained with PCA subspace features or MMI
subspace features respectively for three different targets. All prediction errors are the
MSE from an independent test set. The high level of noise present in the data leads
sometimes to the effect of increasing errors when providing additional input features.

Prediction Error for CO Prediction Error for O2 Prediction Error for NOx
dy PCA MMI PCA MMI PCA MMI

1 3.11 3.07 0.90 0.24 28.88 25.99
2 3.33 2.43 0.25 0.29 35.50 25.00
3 4.07 2.66 0.22 0.28 27.65 30.26

sions to represent the information. Hence, we conjecture that the MMI method
is able to compress the relevant information better than the PCA eigenflames.

One negative aspect concerning the MMI approach are the computational
costs associated with the density estimation and gradient computation. While
PCA is fast to compute, MMI takes a lot of time (which is mainly dependent
on the number of input images used). For several thousand images it can easily
take one or two hours to obtain the filter masks. Hence, the MMI methods can
be applied only if there are no hard time constraints.

To conclude this section, the experiments show that it is beneficial to use the
MMI system to improve PCA based subspace transformation for image data.



4 Adaptive Feature Transformation

It is assumed that the presented system is used as a preprocessor for a controller
or function approximator which is able to handle slow adaptations itself. The
goal for the adaptive feature extraction system is to provide similar features if
the underlying process is in a similar state, and different features in different
process states.

There are several configurations of the subspace transformation parameters
w possible that achieve a maximal value with respect to the optimization goal of
maximizing the Quadratic Mutual Information even for the optimistic case of a
single, global maximum. For example, a scaling of the matrix W with a non-zero
scalar will not change the information content of the results. All but two of the
possible solutions are eliminated during the orthonormalization step. This step
restrains all configurations in the parameter space to the hyper unit sphere. The
two remaining valid solutions are w∗ and −w∗. These transformations obviously
contain the same information, since the only discriminating feature between
data transformed by the two filter is the inverted sign. This behavior is not
desired since the same state can yield two different subspace transformations
that produce opposite transformed data, which are completely different to the
system using the transformed features.

If the process is stationary, this problem can be overcome by the use of a
suitable similarity measure to compare the old filter configuration wold to wnew

and −wnew accepting the better match. But it is quite hard to define good
similarity measures and thresholds if the process is transient. The most obvious
work around is a different starting initialization. Instead of starting from the
PCA subspace, it is possible to use the previous MMI subspace as initialization
point. Assuming that the transient process changes are slow, compared to the
adaptive updates of the filter, these changes will yield slow changes of the relevant
feature areas. Thus, the subspace transformations will be similar to each other,
which justifies the use of the previous solution as a starting point.

The actual adaptivity can be achieved on different time scales. One possibility
is to adapt the current filter into the new one after a few measurements, using
the techniques described in [1](Appendix A) where not the whole available data
is used for a adaption step but only a small subset. The extreme case is the
use of two samples. Torkkola draws them randomly, while for an online system
these samples are the last measurements. For those samples one adaption step
is applied (see Algorithm 1).

For applications with very noisy measurements, this may introduce the prob-
lem that the systems tries to adapt to the noise, rather than the underlying
process changes. Hence, slower timescales change the procedure to collecting a
certain amount of data before performing a batch update of the filter.

For the online application of the system of the power plant, we are interested
mainly in very slow changes induced by wear and tear of the furnace or coal
type changes. There are other changes on a much faster timescale, but they are
even harder to detect, due to the presence of a high measurement noise. For
the experiments presented here, a daily batch update was used. We used the



Fig. 4. Each of the columns represents the results of the MMI adaption process for the
flame images and always shows the first component of the new subspace. The target
values used for the training process of the LDA and MMI are the corresponding ni-
trogen oxides (NOx) measurements. The differences in each row are the used subspace
transformations. First row: PCA. Second row: LDA. Third row: MMI initialized
with the current PCA result. Fourth row: MMI initialized with a global PCA result.
Fifth row: MMI initialized with the previous MMI result. The most interesting ob-
servations are the changes over time (from column to column), since smaller changes
are desired.

collected data of five elapsed days for training purposes, and the most recent
day as test set. We used this data to form PCA, LDA and MMI subspaces
for eight consecutive days. For the MMI method we employed three different
initialization points. First, we used the result of the PCA on that time frame
for this purpose. Second, a fixed eigenflames subspace transformation calculated
over the complete data was used, and third, the previous MMI result was used
for the initialization.

Some results of these experiments are shown in Fig. 4. The PCA results
(first row) are the most stable ones over time, the variance in the data over time
is similar. But here again is the possible pitfall of the sign inversion problem
between column 2 and 3. The LDA results (second row) identify big connected
regions, but the shapes are completely different each day. Independent of the
initialization, all MMI results share the tendency to produce less homogenous
regions. The MMI results based on the the PCA initializations (third and fourth
row) behave similar to the LDA subspace transformations, they are different
each day. Using the previous MMI subspaces as starting points (last row) yield
very useful but adapting filter masks.

These experiments show that the initialization with the previous MMI re-
sults is the most promising way to handle the adaptation task in a changing
environment.



5 Conclusion and Future Work

Our experiments using the MMI feature subspace transformations for image data
processing show that the approach is indeed useful, but has its limitations. The
information extracted is either more informative for a classifier than a PCA-
based subspace, or at least it is possible to compress the same information into
a lower dimensional subspace than PCA. But to achieve stable results the use of
PCA as a initialization is required anyway, so the MMI is in practice a objective
driven refinement of the results obtained by PCA or LDA.

These positive results only hold true for rather low dimensional subspace
constructs. If the desired transformation projects into a still high dimensional
space, the MMI approach will get stuck at a local minimum very soon or venture
into directions were stable solutions are hard to find by gradient descent. In these
cases the use of LDA or PCA is superior to the MMI method.

The stepwise gradient estimation of the MMI subspace is an advantage for
an adaptive online system. It allows the use of previous solutions to estimate a
similar subspace which captures at least some changes of the underlying process
without a complete redefinition of the channels in the new subspace.

Possible directions for future work include the investigation of the exten-
sion to nonlinear transformations like neural networks in the image domain. The
adaptive changes of the subspace transformations focus on finding that subspace
which is most important to the tasks at hand are engineered from the practition-
ers point of view. Hence investigating the connection of our proposed system to
biological inspired, attention-based systems would be an interesting venue, too.
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