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Abstract. This paper presents the overall system of a learning, selforga-
nizing, and adaptive controller used to optimize the combustion process
in a hard-coal fired power plant. The system itself identifies relevant
channels from the available measurements, classical process data and
flame image information, and selects the most suited ones to learn a
control strategy based on observed data. Due to the shifting nature of
the process, the ability to re-adapt the whole system automatically is
essential. The operation in a real power plant demonstrates the impact
of this intelligent control system with its ability to increase efficiency and
to reduce emissions of greenhouse gases much better then any previous
control system.

1 Introduction

The combustion of coal in huge industrial furnaces for heat and power produc-
tion is a particular complex process. Suboptimal control of this kind of process
will result in unneccesary emissions of nitrogen oxides (NOx) and in a reduced
efficiency, which equals more carbon dioxides emitted for one unit of energy.

Hence, optimal control of this process will not only reduce the costs but de-
crease the environmental impact of coal combustion. But finding such a control
strategy is challenging. Even today, the standard approach is a human operator,
which hardly qualifies as optimal. Classical control approaches are limited to
simple PID controllers and expert knowledge, sometimes augmented by compu-
tational fluid dynamics (CFD) simulations in the setup stage [1].

The main reason for this is the process itself. The hazardous environment
restricts sensor placements and operations. It is not possible to measure all rele-
vant values that are known to influence the process. High temperatures, abrasive
material flows, and problems like slagging (molten ash that condenses on the
furnace wall) interfere with reliability of sensor readings, thus, the measurement
noise and stochasticity of the observations is very high.

In the light of all these facts, we approach the problem from another point of
view. Our presumption is, that one has to try to extract more information from



the furnace directly and to learn from the data with Machine Learning (ML)
techniques to build the optimal controller.

This work is a complete overhaul of a previous system [2], but we are not
aware of any other work about coal combustion and its control by ML techniques.

For several reasons we follow the basic idea of our approach to explicitly avoid
the usage of expert knowledge. First, for many applications there is no expert
knowledge available, especially if new information about the process comes into
play. Secondly, industrial combustion processes usually are time varying due to
changing plant properties or different and changing fuel-characteristics. Thus,
initially available expert knowledge becomes invalid over time and needs to be
updated too often. In consequence, we prefer a self-organizing, adaptive and
learning control architecture that develops a valid control strategy based on
historical data and past experiences with the process only.

We will give an overview of the complete control system (and the tasks it
learns to solve) in Section 2. A more detailed explanation of the subsystems
involved is given in the Sections 3 to 5. Finally, the adaptivity of the overall
system is discussed in Section 6, and first results of online operation are shown
in Section 7.

2 System Overview

The system that is presented in this paper is designed with the goal in mind to
deploy it to existing power plants. Hence, it operates on top of the infrastructure
provided by the plant and the main interface is formed between the Distributed
Control System (DCS) of the power plant and the developed system. Besides
additional computer hardware, special CMOS cameras are installed to observe
the flames inside the furnace directly. The video data and the traditional sensor
readings from the DCS are fed into the system, which is depicted in Fig. 1.

To handle the high dimensional pixel data generated with the cameras, a fea-
ture transformation is applied to preserve the information bearing parts while
discarding large amounts of irrelevant data. Details and further references can be
found in Section 3. Thereafter, a feature selection is performed on the extracted
image data, the spectral data, and the sensory data from the DCS to reduce
the number of considered inputs even more. A fairly simple filter approach is
used for this task, which is presented in Section 4. For the adaptive controller
itself, several approaches with different control paradigms were considered. We
compared Nonlinear Model Predictive Control (MPC), Bayesian Process Con-
trol (BPC) and Neuroevolutionary Process Control (NEPC). Some basics about
these approaches are presented in Section 5. Due to the nature of the combustion
process (e.g. fuel changes), a certain life-long adaptivity of the system is urgently
required. Hence all of the submethods must be able to adapt themselves given
the current data, which we discuss in Section 6.
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Fig. 1. This figure shows the data flow of a complete control step. The distributed
control system (DCS) provides different measurements like coal feed rates or settings
of the coal mill, while cameras are used to directly observe the process. Beside images
from the burners, the cameras provide spectral information about the flames. Both are
transformed by an Information Theoretic Learning (ITL) approach that will reduce
dimensionality while maximizing the kept information about the targets. The results
as well as the sensor data from the DCS are subject to a feature selection. All selected
features are the inputs for two different control strategies, Bayesian Process Control
(BPC) and Neuroevolutionary Process Control (NEPC). The Model Predictive Control
(MPC) is fed with handselected features chosen by an human expert and is included
as a reference. The selected outputs are fed back into the control system of the power
plant using the DCS.

3 Image Data Processing

Using the CMOS cameras, images from the flames inside the furnace are cap-
tured. For transforming these images into information channels useful for the
controller, an adaptive subspace transformation scheme based on [3] is applied.
This Maximal Mutual Information approach is built upon the Information-
Theoretic Learning (ITL) framework introduced by Principe [4]. The idea is to
find a transformation that maximizes the Quadratic Mutual Information (QMI)
between the transformed data in a certain subspace and the desired target values.

The basic adaptation loop for the optimization process is shown in Fig. 2. The
original input data sample z; is transformed by some transformation ¢ (linear,
neural network, ...) with the free parameters w into a lower dimensional space.
The transformed data is denoted by y;. The goal is to find those transformation
parameters w that confer the most information into the lower dimensional space
with respect to the controller’s target variables.

The update rule for the parameters of the transformation is given by the
following equation, where « denotes the learning rate

w =w +ag*w +aN 5[83/1-
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Fig. 2. The original image data is transformed into a lower-dimensional space. An
evaluation criterion measures the correspondence to the desired target value (in this
case NOx). From this criterion, a gradient information is derived and used to adapt
the transformation parameters w.

Finding the gradient 0 /0w can be split into in the sample wise computation
of the information forces 0I/0y; and the adaption of the parameters dy;/ow.
The second term is dependent on the used transformation, and is quite simple
for the linear case, where the transformation is computed as:

Yi = WT.’IIi. (2)

For the derivation of the update rule of the transformation parameters w,
especially for the information forces 9I/0y;, we refer to details presented in [3].

Due to the intrinsic problems of learning in high dimensional input spaces like
images, we compress the images to a subspace of only three dimensions, which
was shown to achieve stable results. Furthermore, it was shown in [5] that this
kind of transformation is superior to classic approaches like PCA for function
approximation tasks in the power plant domain.

The camera system in use allows high frequency analysis of grey values, too.
Image patches are observed in the frequency domain of up to 230 Hz. Using the
same feature extraction technique, we were able to identify different parts of the
temporal spectra that are relevant for targets like NOx.

All these new features generated from images and spectral data are sent to
the feature selection module, which is described subsequently.

4 Feature and Action Selection

All features generated from images and those coming from other sensors (e.g. coal
feed rates) as part of the DCS are subject to a feature selection step. The main
reason for this module is the required reduction of the input space, and there
are several channels that are not important or mostly redundant, which can be
eliminated. A smaller input space allows an easier adaptation and generalization



of the controller. For this step, we employ the MIFS algorithm [6], which is a
simple approximation of the Joint Mutual Information between features f and
the control targets y. This approximation uses pairwise Mutual Information only,
and is hence, easily to compute.

Features f; that maximize the following term are iterativly added to the
subset of used features f;

argmax(I(fi,y) =B Y I(fi, fs)). (3)
fi fs€8

The first term describes the information between the feature and the tar-
get value and represents the relevance, while the second term represents the
information between the feature and all features already in use. This represents
the redundancy. The parameter 3 is used to balance the goals of maximizing
relevance to the target value and minimize the redundancy in the subset.

With the help of this selection technique the number of inputs is trimmed
down from more than 50 to approximately 20-30 features used by the controller
as problem-relevant input.

The same methods were applied for action selection to reduce the number of
manipulated control variables (mainly different air flows settings), but unfortu-
nately all manipulated variables proved to be important in the 12-dimensional
action space.

5 Control Strategy

In the following, we describe how to bridge the gap between the selected informa-
tive process describing features at one hand and the selected effective actions on
the other hand by an adequate sensory-motor mapping realized by the controller.
Practically, we tested three different control approaches.

5.1 Model Based Predictive Control

Model Based Predictive Control (MPC) is a well known approach for advanced
process control of industrial processes [7]. Its basic idea is to build a mathematical
model of the process to be controlled. Based on that process model, a control
sequence is computed, that drives the process into the desired state within a
given prediction horizon. We tested a simplified version of the MPC-family, that
uses a feedforward neural network as process model. It operates with inputs
defined by a human expert, rather than an automatic feature extraction.

5.2 Bayesian Process Control

Since real world processes usually are partially observable and noisy, we tested
an architecture, that was designed to deal with these drawbacks. Probabilistic
models [8] explicitly approximate stochastic processes. Practically, our proba-
bilistic control approach first estimates from historical data joint probability



density functions of all control, state, and target variables of the industrial pro-
cess. The resulting probabilistic process model is used afterwards to build a
factor graph [9]. During the so called inference process within that factor graph,
a control sequence is calculated, that most probably drives the process into the
desired target state, which is a minimum of NOx produced and 02 used in the
combustion.

5.3 Neuroevolutionary Process Control

In addition to both control approaches described before, we also tested a neu-
roevolution method called Cooperative Synapse Neuroevolution (CoSyNE) [10].
CoSyNE applies evolutionary strategies to evolve a nonlinear controller based
on recurrent neural networks, that drives the process as fast and accurate as
possible into the desired target state. Unfortunately, evolutionary algorithms
for control require extensive tests of the individual controllers with the plant
in order to determine their performance, the so called fitness. Obviously, that
extensive testing is not applicable for industrial processes with their real-world
constraints like irreversibility and control cycle periods. Thereto, we extended
the original approach proposed by [10] by a couple of alternative process models,
that replace the real plant for the extensive closed-loop controller tests. Instead
of a single process model, we favor a couple of different models, because that
diversity ensures the development of a robust controller. On the contrary, op-
erating on a single process model would be suboptimal, since any failure of the
model may mislead the evolutionary search process for an optimal controller to
a suboptimal solution or even a dead-end.

6 Adaptivity

As mentioned before, the industrial process to be controlled is time-varying for
several reasons. In consequence, a suitable control system needs to be adaptive
to cope with these changes automatically. Thereto, we introduced an automatic
adaptivity of all components of our overall control architecture shown in Fig. 1.
Starting with the feature extraction from high dimensional image or CMOS-
spectra data, we automatically retrain the underlying filters based on new data.
This recalculation takes place every 6 hours and operates on image and spectral
data of the last three days. This way, any change caused by either process vari-
ation, fuel change, or even camera function is taken into account automatically.
At the next stage, the feature selection is updated every 12 hours. Thereto,
both process data and adaptively extracted features of the last three weeks are
taken into consideration. Thus, less informative features or process measure-
ments can be excluded from further calculation in the controller. In this way,
malfunctioning sensors or even uninformative features from cameras temporarily
blocked by slag will be sorted out from further observation automatically. On the
other side, previously unused, but currently relevant features can be included.
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Fig. 3. Left: Comparison of NO, emissions with different controllers plotted over Os-

concentration in the waste gas. Right: Comparison of efficiency factors for different

controllers plotted over plant-load. The lower the Oz, the higher the efficiency factor
of the plant.

Again every 12 hours or whenever the adaptive feature selection changed,
also the corresponding controller is adapted to the new data by a retraining
based on most recent process data of the last three weeks. In this way, the
corresponding controller is adapted to new process properties of changed input-
situations automatically.

7 Results of field trials in a coalfired power plant

The adaptive and self-organizing control architectures described before, are run-
ning on a real process, namely a 200MW hard-coal fired power plant in Hamburg,
Germany. The task is to minimize the nitrogen emissions (NO, ) and to increase
the efficiency factor of that plant. Thereto, the controllers have to adjust the to-
tal amount of used air and its distribution between the 6 burners of the boiler. In
total, 12 different actuators have to be controlled. Both amount and distribution
of coal were given.

For comparison, the three control approaches Model-based Predictive Con-
trol (MPC), Bayesian Process Control (Bayes), and Neuroevolutionary Control
(CoSyNE) have been tested against normal plant operation without any intel-
ligent air optimization by an Al system (no control, only basic PID control
provided by the plant control system). All controllers have been tested sequen-
tially from April, 9th until April, 20th in 2009 during normal daily operation of
the plant including many load changes.

Figure 3 shows, that the Model-based Predictive Controller (MPC), operat-
ing with manually selected inputs, can outperform the operation without any
air control for both targets NO, and Os. The Probabilistic Controller (Bayes)
operating on automatically extracted and selected features performs even better.
The same holds true for the evolutionary Neuro-Controller (CoSyNE), which as



well as the Bayesian controller operates on automatically extracted and selected
inputs.

Obviously, these self-organizing and adaptive control architectures, namely
the Bayesian and the Neuroevolutionary Controller (at least for the more im-
portant overall Oy value), are able to control complex industrial processes. Fur-
thermore, their superior performance is also stable during permanent automatic
adaptation of feature extraction, feature selection, and controller retraining us-
ing recent process data. In this way, these control architectures are able to cope
with a large spectrum of typical real-world-problems ranging from sensor drift
to time-varying processes.

8 Conclusion and Future Work

In this paper, an adaptive system for controlling a dynamic industrial combus-
tion process is presented. Despite the potentially difficult handling of adaptive
systems, we were able to show a superior performance compared to classical con-
trol approaches. An implementation of the methods presented here is successfully
operating a real coal power plant.

Over time, the application of this system will result in considerable savings
in coal consumption and emissions of greenhouse gases. Hence the application of
Machine Learning techniques in this field have high economical and ecological
impact.
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