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Autonomous Robot Cameraman - Observation Pose Optimization for a
Mobile Service Robot in Indoor Living Space

Christof Schroeter, Matthias Hoechemer, Steffen Mueller, Horst-Michael Gross

Abstract— This paper presents a model based system for a
mobile robot to find an optimal pose for the observation of a
person in indoor living environments. We define the observation
pose as a combination of the camera position and view direction
as well as further parameters like the aperture angle. The
optimal placement of a camera is not trivial because of the
high dynamic range of the scenes near windows or other
bright light sources, which often results in poor image quality
due to glare or hard shadows. The proposed method tries
to minimize these negative effects by determining an optimal
camera pose based on two major models: A spatial free space
model and a representation of the lighting. In particular, a task-
dependent optimization takes into account the intended purpose
of the camera images, e.g. different inputs are needed for video
communication with other people or for an image-processing
based passive observation of the person’s activities. To prove the
validity of our approach, we present first experimental results
comparing the chosen observation pose and resulting image
with and without respect to lighting in different observation
tasks.

I. INTRODUCTION

The work presented here is developed in the context of a
mobile robot assisting elderly and solitary people in their liv-
ing space, which serves as an interaction partner and provides
services like reminders for medicaments or cognitive and
physical stimulation programs. Another important function
is the possibility for the user to stay in contact with relatives,
friends and doctors or care givers through the use of video
phone technology. For many of these purposes, the robot has
to observe the person by means of a camera, either to extract
information from the input image or to relay the video data
to a communication partner. In this paper, we will consider
only two exemplary observation tasks specified as follows:

Video Conference: The person is using the robot as a
mobile video phone terminal. For that purpose, the robot
must stand close to the user, in order to allow him a good
view of the attached display. Furthermore, the image aquired
by the robot should provide a high contrast view on the
person’s face and the upper part of the body. The image
quality must be targetted at the human observer.

Passive Observation: This is an important task for the
mobile robot, e.g. to estimate the state of the observed person
and detect alarm conditions. In this operation mode, the robot
should choose a non-disturbing location in the background.
The observable area should be large to avoid the need
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for position changes when the person moves around. The
necessary image quality depends on the employed machine
vision algorithms.

Notice, however, that the proposed approach is not limited
to these two tasks, any number of tasks with different
requirements can be defined and integrated.

Most existing methods for an autonomous task driven
camera positioning system (active camera control) take into
account only the pose of the target and focus on detecting the
position of persons. For mobile robot applications, some ap-
proaches additionally consider obstacles in the environment
[1], [2]. However, most of them assume that the resulting
image quality depends on the image composition only.

In contrast to that, we claim that the quality of natural
images is mainly determined by the illumination and its
distribution. A minimum amount of illumination is needed
in order to take a picture of a scene, while too bright light
can result in glare effects. The central issue in human living
space is the high dynamic range of the scenes, particularly
for digital camera systems. Unlike the human eye, digital
cameras have strong limitations in reproducing scenes with
high contrast. One possible solution is the use of high
dynamic range (HDR) cameras. Other proposed solutions,
like the automatic sensor placement presented in [3] and [4],
depend on a high—precision CAD model of the environment
and extensive control over scene lighting, which is not
available in mobile robot applications. Another aspect that
has not been considered before is the convenience of the
cameraman pose for the user, e.g. if the person is glared by
direct sunlight during interaction with the robot, the pose is
suboptimal even with good camera image quality.

In this paper, we will take some aspects for granted, which
we have expertise in, but will not further discuss here:

e a metric representation (map) of the environment [5]

o self-localization of the robot within the environment [6]

o navigation skills of the robot like path planning and
obstacle avoidance [7]

o pose estimation [8] and segmentation [9] of persons

II. OVERVIEW

The aim of this work is to optimize the pose for an
autonomous cameraman. The variable to optimize is called
observation pose, which theoretically consists of the position
of the camera (x,y, z), yaw ¢, pitch 6 and aperture angle
~. However, due to memory complexity and update cost, in
this work we only consider a two—dimensional environment
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Fig. 1. Overview of the proposed system: The robot continuously updates
the illumination model (while driving) using camera images. After receiving
an observation task, the robot optimizes the quality function () to obtain a
possible video pose and drives to the target.
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model, which results in a restricted observation pose as well:

Pvid = (557%%’7) (1)

Therefore, we only require a fixed mounted camera at a
mobile robot with control of the aperture (focal length).
With a more complex modelling of the lighting, it is also
possible to include actions which allow illumination control,
e.g. switching light sources or window blinds.

The problem of finding an optimal observation pose for a
task can be formulated as a general optimization problem.
The aim is to find a camera pose providing an optimal image
quality, while taking into acount the constraints given by the
observation task and the environment. In general, there are
three optimization approaches: model free, model based and
hybrid systems. For a predictive approach, a model of the
environment is needed. In the absence of any model, the
robot would either have to randomly select camera poses
and evaluate the quality of the images, until a sufficient
pose is found, or it could apply local optimization methods
like gradient descent [10]. Both approaches could result in
a lengthy search process, and would not guarantee global
optimality. In contrast, the environment model should allow
the robot to predict the expected image quality at any position
and find an optimal pose for a given task before starting to
move. To that purpose, the lighting model is generated and
constantly updated from observations (section III).

In order to allow the evaluation of the overall quality of
a certain pose, we define metrics for the respective influ-
ence factors (subsection IV-A). A task-dependent optimality
criterion is defined, and, given the metrics, an optimization
process is employed to find the best observation pose (sub-
sections IV-B, IV-C). Fig. 1 shows a system overview.

III. ILLUMINATION MODEL

The illumination model will be used to predict the image
quality at a given location within the operational area.
For this purpose, the luminance (brightness) distribution of
relevant object surfaces is modelled. As we are assuming
a camera with fixed height and no pan angle, a two-
dimensional illumination model is sufficient, similar to a 2D
obstacle grid map. For the basics of photometry, we refer the
reader to [11]. The luminance of an object surface at position
(z,y) depends on the observer direction ¢:

L= f(x,y,¢) (2)
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Fig. 2. Model representation of luminance distribution (virtual light
source) at a certain position (x,y). Lambertian after one observation (left),
multimodal distribution after three observations (right).

The surfaces for which the luminance distribution is
represented must be pre-defined, e.g. by manual labeling
or automatic extraction from the environment map, usually
these are the walls and large static obstacles. The lighting
upon these surfaces is represented by virtual discrete light
sources (Fig. 2 and 6). Each virtual light source [ is defined
by its position (x;,%;) and a luminance distribution L;(¢).
While for most secondary light sources (reflectors), like
walls, the assumption of a lambertian characteristic L;(¢) =
c is justified, this is not sufficient for primary light sources,
like lamps and also windows. Obviously, for a lambertian
object the luminance distribution L;(¢) is known from a
single observation at any view angle . In order to allow
estimation of a precise distribution from a small number of
observations for objects with unknown luminance charac-
teristics, we introduce the so-called generalized lambertian
model (Fig. 2).

A. Generalised Lambertian Model

The generalised lambertian model allows an approxima-
tion of the luminance distribution L(¢) from a small number
of observations from different directions ¢ (Fig.2). The
model is based on the following principles:

« assume lambertian characteristic if only one observation
is available

o estimate a multi-modal distribution from multiple ob-
servations

« influence of observations decreases with time elapsing

The first principle is a good approximation for the un-
known emission characteristics of surfaces observed only
from one direction. If observations from more directions are
available, the model has to adapt, in order to estimate a
more realistic luminance distribution. The third assumption
is based on the fact that the luminance distribution of light
sources may change over time (e.g. windows due to sun
movement), therefore older observations have lower prob-
ability of reflecting the current luminance correctly.

These requirements are met by a reference observation
based model of the lighting: The continous direction space in
the range of /2 (relative to the surface normal) is divided
into N discrete sectors. Each sector 7 stores for its respective
direction the most recent observed luminance L{ and the
observation time t¢. The estimated luminance L¢%! for an
arbitrary direction (sector i) can now be inferred at time ¢
from the stored observations as follows:
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Fig. 3.

Calculation of a luminance image from a sequence of exposures t1 < t2 < t3: Each image covers a particular lumination range. An HDR image

(right, false color rendering) is computed using only non—saturated pixels from each image. The number of images in the sequence should be determined
adaptively by histogram evaluation. The average luminance value L° over a column of the HDR image is used to update the 2D illumination model.

L8 - d(i, §) - w(t,19)

D= T e ©
d(i,j) = exp (—(i — j)* - 07 ?) 4)
w(t,t°) = exp (—(t —t°)* - 77?) 3)

The estimated luminance L¢%' is a weighted mean of
all observed values, with distance weights d(i,j) for two
sectors 4,7 and time weights w(¢,¢°) for current time ¢
and observation time ¢°. Initialization is done by setting all
observation times ¢7 — —oo.

B. Illumination Model Update from Observations

In the model description we assumed that we are able to
observe the luminance of an object. Actually, the computa-
tion of luminance values from camera images is not trivial.
The illuminance E on the camera’s sensor is described by

T Topt - L

TRz o5 () (6)

Ecam (7) =
where 7, is the optical transmission, L is the luminance
of an object, K is the aperture (f—number) and v is the
light’s arriving angle. €2 is the unit solid angle and is just
used as a unit normalizer. Note that vignetting effects have
to be corrected for consistent luminance measurements over
the entire image and that the resulting intensity value I is
not dependent on the illuminance but on the exposure H.
For short exposure time t., H is a linear function of FE.
Finally, the pixel intensity value I produced by the camera
is a function of exposure H, which can be determined by
calibration:

I:f(H):f(Ecam'te) @)

With known relation f between exposure and gray value,
the observed luminance L° can be computed combining eq.
(6) and (7):
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The function f can only be inverted for non-saturated
(black or white) intensities, however, because of the high dy-
namic range of indoor scenes with daylight, camera images
tend to have many saturated pixels. One solution would be
a High—-Dynamic—Range (HDR) camera with local exposure
control. Unfortunately, these are more expensive and have
other limitations like lower resolution, which results in the
need to have multiple dedicated cameras for different pur-
poses. Instead, our approach is to employ HDR techniques
with a standard CCD camera [12], [13]. The basic idea is to
compute the luminance of a scene not from one single image
but from a sequence of exposure times . (Fig. 3), in order
to exceed the physical dynamic range of the camera.

With the resulting HDR luminance image, a particular
virtual light source can be updated calculating L{ as the
average luminance over the respective image column. The
update is done for all visible virtual lights in the model.

IV. OBSERVATION POSE PLANNING
A. Factors of influence

For a quality estimation of observation poses, a number of
aspects must be considered. In this subsection, the different
classes of influence factors ¢; for the suitability of a given
observation pose are discussed.

1) Areal conditions: An important factor for mobile
robots are all kinds of areal conditions. The robot has to
consider obstacles and unreachable positions due to path
obstructions. In order to visually observe the person, it is also
important to check for visual occlusions. This can be done
based on the object surface information which is also used
in the illumination model. Note that not all obstacles in the
scene need to result in visual occlusions, but most obstacles
higher than the camera do so. All these areal conditions
will be considered as constraints in the optimization process
(subsection IV-C).

2) Orientation & Composition: Another important aspect
for a cameraman is the image composition. Here, the person’s
location in the image and their size related to the image
size have to be considered (Fig. 4). The robot view direction
with respect to the person’s location is called Robot—Person—
Angle .. For oo = 0 the robot looks straight at the observable
person, resulting in a centered alignment. As the composition
is directly affected by a, we can use it as a factor of influence
for the image quality (eq. (9)).
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Fig. 4. Relative robot and person orientations (left) and definition of the
relative person size (right) by aperture angle vy and person view angle ;.

The so called Person—Robot—Angle [ is also an influence
factor on the quality of the observation pose (Fig. 4 left). For
[ = 0 the observation pose is directly in front of the person.
0 # 0 means the person has to turn his/her head to interact
with the robot, which is inconvenient and there is a hard
limit of possible head turn. The quality of the observation
pose is directly affected by 5 (eq. (9)).

Furthermore, the relative person (face) size with respect
to the size of the image is very important for the image
composition (Fig. 4, right). It can be computed as the ratio
of the camera view angle -y and the person view angle -,,.

Based on these observations, quality measures are defined:

GrRPA = QPRA =B Gsize = Vp/7Y 9

3) Illumination: A further important group of factors are
illumination metrics. The image quality strongly depends on
the available illumination. First of all, a minimum amount of
light is needed to record naturally looking images, however,
too bright light or too strong contrast affect image quality
negatively. Here, we mainly focus on avoiding glare and bad
visiblity caused by directional light (Fig. 5).

Because of the high dynamic range of indoor living scenes,
the major glare component is relative glare. To avoid this
effect, we have to limit the difference of the face luminance
and the luminance of the image background. The prediction
of the background luminance Ly, is computed directly
from the illumination model by determining all virtual lights
visible from the hypothetical observer’s position. Lp,.; can
then be computed simply as the average luminance value,
or a weighted sum taking into account the dependency of
glare on view direction (glare at the image border is far less
influencing quality than in the image center). In contrast to
that, the face luminance L,; is not represented in the model,
but the effect of indirect illumination from the virtual lights
can be computed, using the photometric distance law:

Li (’)/Li) - A-cos 1,i
Bobj = Z 2

(10)
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Fig. 5. Degradation of image quality due to strong glare (left, center) and
directional light (right).
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Fig. 6. 2D Illumination model with discrete light sources upon the walls.
Left: Calculation for glare metric ggiqre. Light results in total illumina-
tion E on the person’s face. The contrast can be computed against the
background luminance. Right: Illumination distribution E(3) for visibility
measure G-

Here, L; (1) is the luminance of a virtual light source 4,
A is its surface area, 71 ; is the angle between virtual light
surface normal and person, 2 ; is the angle between persons
orientation and light source, and r; is the distance between
light source and person.

With known object reflectivity pop; and the assumption
that the object’s reflectivity is lambertian (approximately true
for human faces), the object luminance L,,; follows:

o "Eo'
e (11)

The glare metric can now be defined as the dynamic range:

Lback )
Qglare = lO 1+
! g ( Lobj

For an optimal observation pose, we need to take into
account glare of the robot and glare of the observed person,
because for long interactive tasks, like a video conference, a
convenient position should be ensured.

Besides glare, the visibility of the person’s face determines
the image quality. An unbalanced illumination results in hard
shadows (Fig. 5, right). The description of this aspect is
similar to the calculation of face illuminance F.,; in eq.
(10), but in this case the full distribution of the illumination
E(B) is regarded for the range —7 < 8 < 7:

12)

EB) = Z Litna)- 1;1 AR cos (y2,: +B3) - Qo

5

(13)

The resulting distribution is compared against a desired

distribution F(3) taking into account the desired symmetry

and the preference for lateral over frontal lighting (Fig. 7):
E(8) E(5)
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4) Others: Other quality measures which cannot be clas-
sified in the previously described groups are the Task Valid
Area qrys describing a valid area for task execution, the
Wall Distance ¢4, which is a measure describing the
closeness to the walls (for an unobtrusive placement, e.g.
in passive observation) and the Inhibited Areas g;,;, wich
define regions not to use for observation pose (e.g. doors).




B. Optimality criterion

Each of the influence factors describes one aspect of the
observation pose quality. To obtain a total quality metric (cost
function), these are integrated in a weighted sum:

QTask (Pvid) — Z U)iTaSk . iTGSk (Qi) (15)

with q; = {qobstacles; 4PRA; 9RPA > Qsize; QTVA;

leare,R; qglare,P; Quis; qpath; Guwall; Chnh}

Note that this is not just a linear combination of the influ-
ence factors, but the single metrics ¢; will be transformed by
a commonly non-linear and task dependent transfer function
fFask The purpose of this transfer function is to scale
the influence factors, define their setpoints and model the
nonlinearity of influence factors to observation quality. As
an example, task dependence is illustrated for the relative
person size ¢s;,. in Fig. 8.

C. Optimization

Using eq. (15), the quality criterion can be evaluated for
any given observation pose. With the definition of task de-
pendent weights and transfer functions, the quality measure
can be adapted to reflect the specific requirements of any
observation task. Finally, the optimization must be solved:

P = arg min (Q7*** (Py4))
vid

(16)

For this purpose, we found the Constriction Factor Par-
ticle Swarm Optimization (CPSO) [14], [15] to be a good
algorithm that robustly finds good optimum positions and
performs better than other optimization approaches, like
evolutionary algorithms, in terms of computation time.
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Fig. 7. Observed face illumination distribution E(3) and desired distri-
bution E(3). A good illumination for faces should be symmetrical and
stronger from the side than in the front. A quality measure is defined based
on the difference of E and E.
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Fig. 8. Two occurrences of the nonlinear transfer function for the relative
person size qs;.e With respect to two different observation tasks. An optimal
value for a passive observation task is smaller than for a video conference,
while a larger tolerance region is admissible for passive observation. This
is reflected by the two different cost functions.

V. EXPERIMENTAL RESULTS

We present experimental results that prove the ability of
the proposed approach to find a good observation pose and
illustrate the need to take into account the scene illumination.
A typical situation is regarded here: a person is sitting in
front of a table with a window in the background. In order to
demonstrate the task dependency of the optimal observation
pose, the optimization process was applied for a video con-
ference task and a passive observation task, respectively. The
impact of considering illumination is highlighted by doing
each optimization once with and once without including
the illumination in the quality function (i.e., only the areal
conditions, orientation and image composition and “other”
factors from subsection IV-A remain).

Fig. 9 shows results for the optimal pose in the context of a
video conference task. The optimization was done 80 times,
in order to show the stability of the optimization algorithm,
the found optimal locations of all runs are marked as dots.
Optimization without consideration of the illumination re-
sults in an optimal pose directly in front of the person (green
dots), the respective camera image is shown in Fig. 9(b).
Inclusion of illumination metrics in the optimization prefers
a slightly offset position (red dots), which allows a better
image quality, as can be seen in Fig. 9(c). In addition to the
proposed observation position, the optimal aperture angle is
shown for selected poses.

The same examinations were done for the passive obser-
vation task. The results are shown in Fig. 10. Note that the
optimal pose is not the same as in the video conference task,
due to different definitions of the task-dependent transfer
functions for quality metrics. Without consideration of light-
ing, four different possible locations were found (green dots
in Fig. 10(a)). All of them are near walls and have similar
quality values (). However, the two left-most positions result
in inferior image quality due to strong glare effects (Fig.
10(b)). With the integration of illumination metrics in the
optimization criterion, only the two right-most positions are
found to be optimal. A resulting camera image is shown in
Fig. 10(c).

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we described a novel approach for a task
dependent observation pose optimization for indoor living
space. Beside the areal conditions and poses of actors, it
was demonstrated that an illumination model is necessary
for a planning behavior and good image quality results. The
update of the illumination model can be done easily by the
use of a sequence of exposures with a standard camera,
avoiding the need for special light measurement hardware.
The optimization process — and therefore the planning time
— with a particle swarm optimization is very fast and can be
done within fractions of a second. As a next step, we will
verify the promising experimental results in a combination
with a reactive (model free) image quality assessment on an
autonomous robot under real-life conditions.

For the future, there are interesting extensions for the
optimization to be examined: With known effect of room
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(a) Proposed optimal observation locations are marked with dots (green =
without considering illumination, red = including illumination metrics, 80
independent runs each). Orientation and aperture angle are shown for two
representative poses. With inclusion of the illumination metrics, a position
lateral to the person is preferred to minimize glare from the background
light.

(b) Image from a frontal pose (green (c) Image from side position (red

dots). Backlight glare causes low dots) and with reduced aperture an-

face contrast and an unbalanced light gle, decreasing the number of over-

distribution. saturated pixels and resulting in im-
proved image quality.

Fig. 9. Pose optimization results for video conference task.

lights and roller blinds on the illumination, in a ”smart home”
the robot will be able to influence the lighting to obtain best
image quality. Furthermore, a better observable pose can be
determined, if no observation pose is available for the current
user’s position, and the robot can give positioning directions
to him/her. That way, the robot would undertake even more
of the tasks of a real cameraman.

REFERENCES

[1] Bodor, R., Drenner, A., Janssen, M.,Schrater, P. and Papanikolopoulos,
N., Mobile Camera Positioning to Optimize the Observability of
Human Activity Recognition Tasks, Int. Conf. Intelligent Robots and
Systems (IROS), 2005, pp. 1564-1569

[2] Huang, Q., Cui,Y. and Samarasekera, S., Content Based Active Video
Data Acquisition Via Automated Cameramen, Int. Conf. Image Pro-
cessing, 1998, pp. 808-812

[3] Ellenrieder, M. M., Optimal Viewpoint Selection for Industrial Ma-
chine Vision and Inspection of Flexible Objects, VDI Verlag GmbH,
University of Bielefeld, ISBN: 3-18-376310-9, 2005

[4] Trucco, E., Model-Based Planning of Optimal Sensor Placements for
Inspection, IEEE Trans. Robotics and Automation, vol. 13, num. 2,
April 1997, pp. 182-194

[5]1 Schroeter, Ch., Boehme, H.-J. and Gross, H.-M., Memory-Efficient
Gridmaps in Rao-Blackwellized Particle Filters for SLAM using Sonar
Range Sensors, Eur. Conf. Mobile Robots, 2007, pp. 138-143

[6] Schroeter, Ch., Koenig, A., Boehme, H.-J and Gross, H.-M., Multi-
Sensor Monte-Carlo-Localization Combining Omnivision and Sonar
Range Sensors. Eur. Conf. Mobile Robots, 2005, pp. 164-169

Window

(a) Optimized locations for a passive observation task (green = without
considering illumination, red = including illumination metrics, 80 inde-
pendent runs each). Unlike in the video conference task, a larger variety
of good positions exists.

(b) Image captured from the left- (c) Image captured from the right
most pose in Fig. 10(a) (optimiza- pose in Fig. 10(a): contrast and total
tion result without illumination): image quality are clearly improved.
The person is hardly visible.

Fig. 10. Results for passive observation task

[7] Gross, H.-M., Boehme, H.-J., Schroeter, Ch., Mueller, St., Koenig, A.,
Martin, Ch., Merten, M. and Bley, A. ShopBot: Progress in Developing
an Interactive Mobile Shopping Assistant for Everyday Use. IEEE Int.
Conf. Systems, Man and Cybernetics, 2008, pp. 3471-3478

[8] Mueller, St., Schaffernicht, E., Scheidig, A., Boehme, H.-J. and Gross,
H.-M. Are you still following me? Eur. Conf. Mobile Robots, 2007,
pp. 211-216

[9] Martin, Ch., Gross, H.-M. A Real-time Facial Expression Recognition
System based on Active Appearance Models using Gray Images and
Edge Images. IEEE Int. Conf. Face and Gesture Recognition, 2008,
paper no. 299

[10] Marchand, E., Control Camera and Light Source Positions using
Image Gradient Information, /EEE Int. Conf. Robotics and Automation
(ICRA), 2007, pp. 417-422

[11] DeCusatis, C., Handbook of Applied Photometry, AIP Press, ISBN:
978-1563964169, 1997

[12] Haraldsson, H.B. and Tanaka, M. and Okutomi, M., Reconstruction
of a High Dynamic Range and High Resolution Image from a Multi-
sampled Image Sequence, Int. Conf. Image Analysis and Processing,
2007, pp. 303-310

[13] Won-ho, Cho and Ki-Sang, Hong, Extending dynamic range of two
color images under different exposures, Proceedings of the 17th Int.
Conf. Pattern Recognition, 2004, vol. 4, pp. 853-856

[14] Eberhart, R.C. and Shi, Y., Particle swarm optimization: developments,
applications and resources, Int. Congress on Evolutionary Computa-
tion, 2001, pp. 81-86

[15] Mendes, R. and Kennedy, J. and Neves, J., The fully informed particle
swarm: simpler, maybe better, I[EEE Trans. Evolutionary Computation,
June 2004, vol. 8, num. 3, pp. 204-210



