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Abstract. This paper presents an approach to increase the robust-
ness of Active Appearance Models (AAMs) within the scope of human-
robotinteraction. Due to unknown environments with changing illumi-
nation conditions and different users, which may perform unpredictable
head movements, standard AAMs suffer from a lack of robustness. There-
fore, this paper introduces several methods to increase the robustness of
AAMs. In detail, we optimize the shape model to certain applications by
using genetic algorithms. Furthermore, a modified retinex-filter to reduce
the influence of illumination is presented. These approaches are finally
combined with an adaptive parameter fitting approach, which can han-
dle bad initializations. We obtain very promising results of experiments
evaluating the IMM face database [1].

Key words: Active Appearance Model, Genetic Algorithm, Retinex-
filter, Illumination, Optimization

1 Introduction

Within the scope of human-robot-interaction, it is often necessary to analyze
the identity and the emotional state of the dialog partner. Active Appearance

Models (AAM) have been established to characterize non-rigid objects, like hu-
man heads, and can be used to analyze the users state based on visual features.
Therefore, the parameters of the AAM are adapted, so that the model fits to
the current face. Afterwards, the parameters of the AAM can be utilized to
determine the expression or gender of the users face. The main drawback of
this approach is that it depends to a large extent on the current operational
environment. Especially under real world conditions with uncontrolled observa-
tion constraints a mobile robot has to cope with different problems arising from
these dependencies. This work suggests improvements of the robustness of the
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adaption step in AAMs to gain a higher independence of the operational environ-
ment. This paper is organized as follows: After a brief description of the basics of
AAMs, Sect. 3 gives an overview of the related work. Afterwards, we introduce
our contribution to increase the robustness of the fitting process. Sect. 5 shows
the results which can be achieved with the help of the proposed methods. The
paper concludes with a summary and an outlook on ongoing work in Sect. 6.

2 Basics of Active Appearance Models

Active Appearance Models, first introduced in [2], provide a good possibility to
model non rigid objects within the scope of image processing and are, therefore,
very popular to model human faces or viscera. The AAM itself is a combination
of two statistical models. First, the shape model represents the geometry of the
object. Secondly, the appearance model allows the modeling of the object texture
within the normalized mean shape of the model. The models are built by train-
ing images, which are labeled with landmark points on certain positions of the
object. These n landmark locations build up the shape s = (x1, y1, ..., xn, yn)T of
an AAM instance. Using a Principle Component Analysis (PCA) for all training
shapes, the resulting shape model can be represented by a set of shape parame-
ters p combined with the basis shapes si:

s(p) = s0 +

n
∑

i=1

pisi. (1)

Afterwards, a triangulation of the mean shape s0 is used to establish a rela-
tion between the labeled points and the surface of the object. With the help of
surface triangles, every single point on arbitrary shape si can be warped to a
destination shape sj using an affine transformation. With respect to [3] we can
describe this transformation as W (x;p), which maps a point x = (x, y)T within
the model shape to the shape defined by the parameters p. This transformation
is used afterwards to build the appearance model, which is very similar to the
shape model. The important difference is that each texture sample Ai, defined by
the training images, is warped to the mean shape s0, using the described affine
transformation. The texture parameters resulting from the subsequent PCA are
denoted as λ. Therefore the texture object is very similar to the Eigenface ap-
proach:

A(λ) = A0 +
m

∑

i=1

λiAi , ∀x ∈ s0. (2)

The resulting AAM can represent any object instance M covered by the training
data using the shape parameter vector p and the appearance parameter vector
λ using (3).

M(W (x,p)) = A0(x) +
m

∑

i=1

λiAi(x) , ∀x ∈ s0. (3)

The goal of fitting an AAM to an unknown image, as defined by [2], is to minimize
the squared difference between the synthesized model and the given image. Using
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gradient descent to solve this problem leads to a very efficient fitting algorithm.
To overcome the problem of simultaneous optimization of shape- and appearance
parameters, Baker and Matthews introduced the Project-Out gradient descent
image alignment algorithm [4]. As the exact formulation of the fitting algorithm
lies beyond the scope of this paper, the reader is referred to [3, 4] for more
detailed information.

3 Related Work

Within the last years, AAMs have become very popular for the purpose of face
tracking [5, 6] or classification tasks, like facial expression recognition [7, 8]. In
this context, the problems of illumination independence and robust fitting have
been addressed by different approaches. A common method to cope with illumi-
nation changes is to model the illumination explicitly as shown in [9]. Besides
the construction of the model, this methods add additional parameters to the
AAM, which have to be determined during the fitting process and hence increase
the complexity. A survey on different approaches dealing with illumination can
be found in [10]. The problem of fitting robustness is addressed in [6] by using a
hierarchy of models with different complexities. However, this approach involves
the toggling between different models which complicates the combination with
tracking algorithms. The problem of finding the optimal shape for an AAM,
however, has been addressed significantly less in the literature. The only avail-
able work concentrates on optimizing the landmarks in terms of their salience
as shown in [11]. To our knowledge, this is the only approach which tries to
optimize the shape of an existing shape model.

4 Increasing the Robustness

Due to the principle of minimizing the difference between the input image and
the synthesized model, the fitting process is very sensitive to differences between
the training images and the images used during model fitting [12]. Furthermore,
wrong initializations can lead the fitting process to local minima and, therefore,
may cause a bad match. This problem increases with the number of model param-
eters growing as the complexity of the error surface increases as well. Therefore,
the AAM shouldn’t exceed the needed complexity for the desired application.

4.1 Optimization of the Shape Model

The construction of an AAM is based on training images which are labeled with
specified landmark points. As a result, the model quality, defined as its ability to
fit to unknown images, depends on the quality of the landmarks and the training
images. Unfortunately, the process of adding landmarks to unknown images is
quite complex and manual work is indispensable at least to refine the landmark
positions. Yet, this process itself is very error-prone as well. Our tests have
shown that the variance of the position of hand-labeled landmark points is very
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Fig. 1. Exploiting the symmetry constraint, the 58 landmarks of the IMM database
shape [1] can be coded using a genome with 31 bits. Only the upper half of the face
landmark points are displayed.

high. Furthermore, these errors are not equally distributed, so that landmarks
in heavily textured regions can be reproduced very well. One way to find such
reliable features using their salience is described in [11]. However, building a
model based on the most salient features is not always equal to finding those
landmarks optimal for the desired application purpose. Therefore, we present a
new method to reduce the number of given landmarks to an explicit set in order
to reduce the influence of badly labeled landmarks and to reduce the model
complexity. Examples for such a reduced model can be found in [6] and [13],
where some kind of inner-face-model is used.

Ideally, to reduce a given set of landmarks to an optimal set regarding the
desired application involves the analysis of all combinations of different land-
marks. Even if the symmetry of the human face it taken into account, the search
domain is typically too large to be holistically analyzed. However, it can be
expected that the adding and removing of several landmark points from the
model have similar effects on different submodels. Therefore, it is a common
way to use some kind of evolutionary search, e.g. genetic algorithm, to analyze
the search domain in a sparse but purposive way. The different possible shape
models are coded as a genome exploiting the symmetry of the human face (Fig.
1). To evaluate a genome, the corresponding AAM is generated and applied to a
test dataset afterwards. The dataset should be designed in such a way that the
desired application (e.g. emotion recognition) can be represented as good as pos-
sible. Therefore, it should contain the respective classification task of interest.

4.2 Adding Robustness to Illumination Changes

Especially within the scope of face recognition, the effects of illumination have
been examined very well [10]. The explicit modelling of the illumination can
provide satisfying results, but is generally very complex and often not capable of
real-time processing. Nevertheless, the model free retinex filter first introduced
in [14] can achieve promising results within the scope of removing the influence
of different kinds of illumination. This filter relates each pixel of the image to
its local surroundings:

R(x) = logI(x) − log |F (x) ∗ I(x)| (4)

where I is the input image and F denotes a function representing the surround-
ings of the pixel x. Unfortunately, it is necessary to set the size of the surrounding
area to an appropriate value to avoid problems of ghost shadows and the loss of
detail or insufficient illumination normalization (Fig. 2). This problem has been
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Fig. 2. Comparison of different retinex approaches - the original retinex approach
with a surrounding of 3x3 Pixels generates ghost shadows (nostril) and reduces the
detail (eye). The retinex filter with a surrounding of 29x29 pixels in turn shows only
poor illumination normalization (eye). The adaptive retinex, however, combines the
advantages of both filter sizes due to selective combination with the help of the edge
map.

addressed with the multiscale retinex approach presented in [15], which combines
retinex filters with different sizes of the surrounding area. Unfortunately, the de-
scribed approach only diminishes the problems occurring from wrong parametri-
sation. Another approach can be found in [16], where the surrounding function is
modeled using an anisotropic filter. Unfortunately, the filter is computationally
intensive which is not desirable for real time applications. As a combination of
the approaches described in [15] and [16], we introduce a kind of adaptive retinex

filter. We combine the idea of the multiscale retinex approach with a dynamic
combination function, which depends on the local edge strength. Therefore, we
use two retinex filter R1(x) and R2(x) with different sizes of the surroundings
and add an edge detector E(x), which computes the local edge strength. If the
surrounding size of R2 is smaller than the size of R1 the combination can be
expressed by (5).

S(x) =











R1(x) K(x) < ll

R2(x) K(x) > lu
K(x)

lu
R1 + (1 − K(x)

lu
)R2 ll ≤ K(x) ≤ lu

. (5)

Where ll and lu denote the lower and upper bounds of the retinex filter with
the bigger or smaller surroundings. For edge values between the lower and upper
bound, a combination of the two different retinex filter outputs is taken. Due to
the dynamic combination of different surrounding sizes, the presented filter is
not that addicted to specific illumination conditions. Furthermore, the filter can
be computed in a much more efficient manner than the anisotropic one [16].

4.3 Adaptive Parameter Fitting

The Project-Out fitting algorithm uses gradient descent and is, therefore, very
sensitive to get stuck in local minima. One way to deal with this problem is
to apply a hierarchy of models with an increasing number of parameters, as we
have already shown in [17]. Nevertheless, it is hard to decide at which point of
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time the fitting process should switch to a more detailed model. Furthermore,
if applied to tracking purpose, the model parameters of a detailed model have
to be refused if the fitting process has to switch back to a simple model. This
paper introduces an approach for adaptive parameter fitting, which works with
only one model of the object (in detail the face).

Due to the applied PCA, used to build the shape model of the face, the
shape Eigenvectors can be sorted according to their Eigenvalues. The Eigenval-

ues in turn represent the variance of the training data in the direction of the
associated Eigenvector. So, the first Eigenvectors have a higher importance to
represent the given training data. Standard gradient descent fitting algorithms,
like the Project-Out algorithm, are based on adapting all model parameters at
the same time. However, this approach can force the model parameters, which
are associated with Eigenvectors with lower importance, to diverge. The rea-
son for this behaviour is that the first, and most important, parameters are
not yet stabilized, so that the later parameters are likely to converge into the
wrong direction (Fig. 3). We try to address this problem by dividing the model
parameters into two different groups. First, the primary parameters which are
important for the main head movements like pan and tilt, and the secondary

parameters, responsible to code the shape variance of the inner face. Then, we
can suppress changes of the secondary shape parameter during the fitting pro-
cess as long as the primary shape parameters have not been stabilized. To detect
the strength of the parameter changes, we compute the normalized parameter
changes of the n primary parameters using the Eigenvalues EV :

Ep =

n
∑

i=1

(

∆pi

EV (pi)

)2

. (6)

Afterwards, the parameter changes of the secondary parameters can be scaled
using a logarithmic coefficient which equals zero if Ep equals the squared sum
of all Eigenvalues of the primary parameters and is equal to 1 if Ep is equal to
zero. As shown in Fig. 3 the introduced adaption of the secondary parameters can
successfully smooth the parameter changes and, thus lead to a more purposive
model fitting as we intend to show in Sect. 5.
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Fig. 3. Simultaneous fitting of all parameters can lead the secondary parameter into a
wrong direction. Adaptive fitting can improve this behaviour by repressing changes of
the secondary parameters as long as the primary parameters are not stabilized (until
iteration 6).
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5 Experimental Results

This section presents some experimental results we have achieved by using the
described approaches. We decided to use the IMM face database [1] for our
studies to produce consistent and meaningful results. The database consists of 6
different images for each of 40 different people. The images contain frontal and
side views, as well as sidewise illuminated images and emotion images. To fit the
built models to the images, we use the standard Project-Out fitting algorithm as
described in [3] and start each fitting process with a frontal initialization to give
consideration to common face detectors. As the AAMs are prone to initialization
errors, we start the fitting process for each model and image for a certain amount
of rounds, whereas the initialization is perturbed in every round with increasing
variance. Afterwards, the quality of every fitting process is evaluated using a
combined measure between the mean and the maximum distance between the
ground truth shape, provided by the IMM database, and the fitted shape. This
measure is able to distinguish between converged and diverged models using
a threshold. Although this threshold appears to be seemingly at random and
makes comparisons with other papers more difficult, we found it to be a good
and meaningfull measure for quantitative comparisons of the suggested improve-
ments. The fitting rates given below always refer to the declared images of every
person within the IMM database (frontal images refer to the images 1 and 2;
sidewise view images refer to the images 3 and 4; illumination image refers to
image 5).

Optimization of the Shape This section presents the optimization of the
shape, given by the IMM database, with respect to fitting accuracy. Therefore,
we evaluate each computed genome with respect to its fitting accuracy, computed
as the mean and maximum distance between the ground truth and the resulting
shape. Thereby, the generated shapes show a significant improvement over the
complete shape with respect to the distance values. Having a closer look at the
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Fig. 4. The different landmarks of the 100 best genomes are color coded according to
their frequency of employment. The lower surrounding of the face can be represented
sufficiently by labels 22 and 28, whereas labels 23 to 27 can be ignored. For the sake
of clarity only half of the labelpoints are annotated.
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Fig. 5. Using the adaptive retinex filter significantly improves the fitting performance
for sidewise illuminated images. Unfortunately filter tends to be more sensitive to bad
initialization.

used landmark points of the 100 best shapes, it can be seen that especially the
surrounding of the face is not necessary for accurate model fitting (Fig. 4). This is
an interesting finding in contrast to commonly used AAM labeling instructions.
The landmarks in the inner face region are least affected by the shape reduction.
This points seem to be necessary for reliable model fitting given different poses
and emotions.

Robustness to Illumination Changes To show the benefit of the proposed
adaptive retinex filter we build the AAMs based on the images with frontal
illumination. The models are applied afterwards to the images with sidewise il-
lumination (Fig. 5). Although the fitting can be significantly improved for images
with sidewise illumination, the image preprocessing seems to be more sensitive
to bad initialization. The adaptive retinex filter also removes slight illumination
changes occurring from the three-dimensional structure of the head – for exam-
ple the illumination on the cheek. This seems to complicate the fitting process,
especially for rotated heads. Nevertheless, this disadvantage seems to be uncrit-
ical in most cases due to the great benefit achieved for sidewise illumination.

Adaptive Fitting The effect of applying adaptive fitting to the Project-Out

algorithm on frontal and sidewise views is illustrated in Fig. 6. While the fitting
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Fig. 6. Adaptive fitting improves the fitting performance for images with bad initial-
ization. Therefore sidewise views and models with wrong scaling initialization can be
improved. Left: Shape perturbed in x and y direction. Right: Shape with perturbed
scaling.
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Fig. 7. The combined approach achieves better fitting performance. Especially the
performace for sidewise view can be significantly improved from 50 % to 85 %.

performance remains almost the same for frontal views, it can be improved for
sidewise views. This result indicates that the adaptive fitting successfully en-
ables the algorithm to rotate the model, before the adaption of the secondary

parameters is carried out. The same improvement can be observed for a model
initialization with perturbed size parameters. Again the model is able to scale
the main shape before the secondary parameters were fitted and, therefore, is
able to produce significantly better results.

Full Optimization After having discussed the effects of each of the introduced
methods, now the results for the combined approach are presented in Fig. 7. Al-
though the different methods degrade under certain circumstances, the combined
approach produces better results for all kinds of images of the IMM database.
Although the fitting performance is only slightly increased for neutrally illumi-
nated images, it can be significantly improved for sidewise illumination condi-
tions. Therefore, the fitting performance can be increased by approximately 10
percent for frontal views, and by 35 percent for sidewise illuminated images.

6 Conclusion and Future Work

In this paper, we have presented different methods to increase the robustness of
AAMs. First of all, an approach to adapt the complexity of the shape model to
certain applications is introduced. Besides the reduction of the shape complex-
ity, this method may be used to find reduced sets of label points to speed up
the labeling process. We have successfully shown that the shape model defined
by the IMM database can be reduced from 58 points to 25 points in order to
increase fitting accuracy. Furthermore, we have introduced an adaptive retinex

filter, which is able to normalize different illumination conditions, which occur
in uncontrolled environments. To cope with fast head movements and rotated
faces, we applied an adaptive parameter fitting, to guide the model parameter
within the high dimensional error surface. The different methods show promis-
ing results for different AAM specific problems. The combination of all methods
leads to a robust and real-time capable approach which has been tested in our
lab on the mobile robot SCITOS and performs significantly better than stan-
dard approaches. Continuing our work, we will cope with the problem of shape
optimization within the scope of emotion classification.
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