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Abstract. This paper presents a sequential state estimation method
with arbitrary probabilistic models expressing the system’s belief. Prob-
abilistic models can be estimated by Maximum a posteriori estimators
(MAP), which fail, if the state is dynamic or the model contains hid-
den variables. The last typically requires iterative methods like expecta-
tion maximization (EM). The proposed approximative technique extends
message passing algorithms in factor graphs to realize online state esti-
mation despite of hidden parameters. In addition no conjugate priors or
hyperparameter transition models have to be specified. For evaluation,
we show the relation to EM and discuss the transition model in detail.
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1 Introduction

Probabilistic modeling techniques provide an appropriate tool set, when dealing
with uncertainties in arbitrary systems. When tracking system states, probabil-
ity theory models the system’s belief and defines the required base operations
for state estimation [1]. Recently, graphical models have been established as a
powerful tool to visualize probabilistic models, whereat the influence of graph
theory allows efficient algorithms for probabilistic inference [2], [3], [4], [5]. As
described subsequently, this work extends factor graphs, which provide a pow-
erful representation of graphical models for inference by explicitly modeling the
model variables and their dependencies [6]. The exchange of messages in acyclic
factor graphs is made possible by sequential message passing [7], while loopy
belief propagation provides a message passing scheme for cyclic factor graphs
(8].

* This work is partially supported by EU-FP7-ICT Grant #21647 to H.-M. Gross.
M. Volkhardt, S. Miiller, H.-M. Gross are with Neuroinformatics and Cogni-
tive Robotics Lab, Ilmenau University of Technology, 98684 Ilmenau, Germany
michael.volkhardt@tu-ilmenau.de



2 Michael Volkhardt, Séren Kalesse, Steffen Miiller, and Horst-Michael Gross

Our aim is the tracking of uncertain system states modeled by arbitrary
complex probability distributions (discrete, continuous or mixed). These can be
expressed by graphical models or factor graphs, respectively. The parameters of
stationary probability distributions can be learned from data samples using max-
imum likelihood estimation (ML), maximum a posteriori estimation (MAP) or
expectation-maximization algorithm (EM). ML fits a parameter set of a prob-
abilistic model to a given data set by solving an optimization problem. MAP
augments ML with a conjugate prior distribution on the unknown parameters.
By using Bayes’ theorem, this distribution can be adapted sequentially with new
observations [9]. If the model depends on unobserved latent variables, a sequen-
tial estimation is not possible and MAP estimation fails. EM overcomes this
problem by iteratively calculating the hidden parameters in a first step and se-
lecting the parameters of interest with ML in a second step in order to maximize
the likelihood of the data [10]. Unfortunately, EM is not a sequential method
and therefore requires the complete data set of observations.

MAP as well as EM fail, if the probability distribution changes permanently.
When using Bayesian filtering for tracking states expressed by complex distribu-
tions, it is very hard to model the transition model and the conjugate prior of the
system’s state. This paper addresses these problems and implements an online
message passing algorithm in extended factor graphs that allows approximative
state tracking.

The remainder of this paper is organized as follows. Section 2 describes prob-
lems that occur while estimating a system’s state represented by a complex
probability distribution. To solve these problems, dynamic MAP estimation in
extended factor graphs is presented in Sect. 3. For evaluation we show the re-
lation of the developed method to EM algorithm. The paper concludes with a
discussion on the assumptions and limitations of the algorithm and a summary.

2 Bayesian Filtering of complex probability distributions

We assume an exemplary system state modeled by a factor graph with random
variable X that is dependent on an unobserved variable Y. The belief on the sys-
tem’s state hence is defined by factor potential p(Z) = p(XY"). This conditional
probability distribution is defined by parameters ®. To estimate the unknown
system’s state, we search for probability distribution p(®).

MAP estimation can be applied to sequentially update the unknown proba-
bility distribution p(@®) if distribution p(Z) is constant and all variables are ob-
served. In the context of state estimation, the problem of a permanently changing
probability arises. By introducing a transition model the Bayesian filter is able
to track the system’s belief over time. The recursive Bayesian filter equation
adapted to parameter estimation is defined by:

Bel(®x) = 1 p(Z = 2y|Ox) / D(ON|ON_1)Bel(Oy 1) dOy_1 , (1)
On_1

where p(Z = zy|On) denotes the observation model, p(@n|OyN_1) denotes
the transition model and Bel(®y_1) is the prior belief on the unknown pa-
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rameters. The left term of the equation describes the posterior probability and
n = p(Z = zy) is a normalization term. Figure 1 shows the parameter estimation
on the basis of the Bayesian filter in a factor graph, whereby arrows indicate the
messages sent to estimate the posterior belief.
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Fig. 1. Parameter estimation with Bayesian filter. The system state ® can be updated
by new incoming observations zy.

When using arbitrary distributions for state representation several problems
arise. First, when sending a message from variable node ®xy_; to factor node
p(OnN|®n_1) the marginal of the probability distribution p(®x_1) is required.
This corresponds to the conjugate prior of the distribution p(X|Y"). For arbitrary
distributions, modeling the conjugate prior is very hard [9]. Another problem is
the design of the conditional probability distribution p(® x|©x_1) which has to
transform the hyperparameters into a new time step. Additionally, some vari-
ables of the state representation can depend on unobserved variables.

3 MAP Estimation of Dynamically Changing
Distributions

This section presents an extended factor graph structure and a loopy belief
propagation algorithm with augmented message types, that addresses the afore-
mentioned problems. Without loss of generality, we show the state estimation of
probability distribution p(Z) = p(X|Y’), where variable Y is hidden.

Figure 2 shows the proposed architecture. We assume a two layered dynamic
factor graph, that combines the inference on latent variables in each time step
with the estimation of factor potentials over time. The lower layer represents
the system’s state in its factor potentials and corresponds to a factor graph with
conventional algorithms for message passing and inference. The upper layer re-
places the transition model and the conjugate prior of the state’s probability
distribution defined by the factor potential, which is going to develop over time
(compare Fig. 1). Thereto, every factor node of the lower layer is linked to a
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counterpart in the upper layer, where it acts similar to a variable node in con-
ventional factor graphs. We introduce a new node type denoted by the diamond
shape: the hyperfactor node. It acts exactly like a factor node in conventional
factor graphs and represents the transition model. Note that we integrated the
factor potential p(Y") in distribution p(X|Y") to receive a factor potential p(X,Y)
to simplify the example.

v T
________ A _wperlayer A
lower layer
O PO O 20

Fig. 2. Extended dynamic factor graph. The figure shows a two layered factor graph,
which avoids modeling of conjugate priors and the transition model of the hyper-
parameters by estimating factor potentials over time. The messages in the proposed
architecture are coded in terms of color.

3.1 Message Types

We apply loopy belief propagation for message passing, where each node itera-
tively calculates and updates all outgoing messages. Not yet calculated messages
are supposed to be uniformly distributed.

A message from a variable node V; to a factor node F; (yellow arrows in
Fig. 2) is defined by common sum product algorithm:

wienXv) = [ wr—vXv) (2)
Frene(Vi)\Fj

The variable node V; multiplies all incoming messages from connected factor
nodes Fy, € ne(V;), except destination node Fj.

A message from a factor node F; to a variable node V; (red arrows in Fig. 2)
is also defined by common sum product algorithm:

pr—v; (Xy;) = / g p (XF,) H v —r (X)) | dVie
Viene(F)\V; Vi€ne(Fi)\V;

(3)
The factor node F; multiplies all incoming messages from connected variable
nodes Vi € ne(F;), except destination node V; with its factor potential. The
factor potential complies with the message from the upper layer u FuF! (Xr,)
defined in (5). The result is marginalized on the correct type of the destination
node by integrating over all other variables.
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The factor potentials should be transferred in the new state by applying
the transition model in the hyperfactor nodes. Therefore, the factor potential
of a factor node F; in the upper layer has to incorporate all estimations of the
parameters and the current observation. The estimation of the factor poten-
tials p(X;-1,Y;—1) and p(X;41,Y;41) comprise the estimation of the system’s
state given observations x1,...,x;—1 of previous time steps and observations
ZTit1,--.,xn of future time steps, respectively. The knowledge of the lower layer
p(X = z;,Y) corresponds to the current observation x;.

For that purpose, a factor node F! of the lower layer has to calculate the
joint of the marginal of its local neighborhood given the current observation and
sends it to the factor node F* in the upper layer (dark blue arrows in Fig. 2):

ppimpeXe) = I mi—r®v) I weevXw) - @)
Vi€ne(F}) Vi ene(F})

The factor node multiplies all incoming messages tiy, _ gt (Xy;,) from connected
variable nodes Vi € ne(F}) and all outgoing messages tpi v, (Xy,) to these
nodes. The incoming messages from connected variable nodes correspond to
messages, that the variable nodes received themself from possible existing other
factor nodes in the lower layer and possible observations. To receive the correct
marginals of the variable nodes in the local neighborhood, the messages from
the factor node F! to the variable nodes are multiplied.

The factor node of the lower layer should use the estimation from all time
steps, except the current, to estimate its potential. Therefore, a message from
the upper layer to the lower layer (light blue arrows in Fig. 2) results in:

pro—mXe) =[] wm—rXr) - (5)
Hyene(F*)

The factor node multiplies all incoming messages from all connected hyperfactor
nodes Hy € ne(F}).

The algorithm to calculate a message from a hyperfactor node H; to a factor
node F; (dark green arrows in Fig. 2) is exactly the same as a message of a factor
node in traditional sum product algorithm:

pienXe) = [ (peea) T wnenXe) | dR
Frene(H;)\F; Frene(Hi)\F}
(6)
The hyperfactor node multiplies all incoming messages from connected factor
nodes Fy, € ne(H;), except destination node F; with its potential p(ne(H;)).
The result is marginalized on the correct domain of the destination node.
Finally, we have to define a message from a factor node F}* in the upper layer
to a hyperfactor node H; (light green arrows in Fig. 2):

pry—m, (XF,) = H pr—rr(Xp) | @ ppipe(Xp) - (7)
Hpene(F*)\H;
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The factor node F}* multiplies all messages from connected hyperfactor nodes
Hy, € ne(F}"), except the destination H;. This corresponds to the previous and
future estimations. The message from the lower layer ppi_, pu (X ;) corresponds
to the current observation. It is added by a MAP estimate step denoted by
operator @. The realization of the MAP estimation function depends on the type
of distribution used within the factor potentials. The estimate step is possible
even with hidden parameters, because the algorithm provides an estimation for
these parameters. This concept is closely related to EM.

3.2 Relation to Expectation Maximization

EM finds maximum likelihood solutions for models having latent variables. Given
a joint distribution p(X,Y|®), where variable Y is latent, the goal is to max-
imize p(X|®) with respect to @ [2]. Figure 3 shows the E step of EM inter-
preted as an inference problem in a factor graph. If one assumes a prior on the
parameters ®, the marginal p(Y|X, ®) can be inferred given all observations
X = {z1...2zn} by message passing. The factor graph in Fig. 3 matches the
lower layer of the extended factor graph presented in Fig. 2. Therefore, the cal-
culation of the marginals and the message from the lower to the upper layer
defined in (4) correspond to the expectation of an observation.

~_ inference of p(Y|X, ©) @
*
p(X’Y|®) o*

Fig. 3. Expectation step in a factor graph. The inference of marginal p(Y|X, ®) cor-
responds to the E step of EM algorithm.

With the inferred marginal p(Y'| X, ©), all parameters of the probability dis-
tribution can be treated as being observed, and the maximization step follows.
The M step evaluates ®’ with:

e = arg max (Zp(YLX, 0) Inp(X, Y|®)> (8)
1%

The two steps are iterated successively to update the estimation of the model
parameters. In the proposed architecture the M step is replaced by a MAP
estimation step, which integrates the message of the lower layer into the factor
potential in each time step in (7). Therefore, the belief of the state — represented
by the parameters of the factor potential —is updated sequentially by splitting up
the sums of the arg max operation in (8) into local operations in each time step
of a dynamic factor graph. The MAP estimation step of discrete distributions
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using conjugate priors is equivalent to a weighted sum of the distributions [2]. For
lima;—.0 we can transfer this observation to arbitrary distributions. Therefore, in
case of hardly manageable conjugate priors of arbitrary distributions we suggest
to approximate the MAP estimation step (operation @ in (7)) by a weighted
sum. In case of manageable conjugate prior distributions on hyperparameters a
regular MAP estimation step can be applied instead. The iterations of the loopy
belief propagation correspond to the iterations of EM algorithm. Additionally,
the hyperfactor node in the upper layer introduces a transition model, that has
to be considered in the estimation process.

3.3 Transition Model

Generating the transition model is very intuitive, because it acts directly on the
variables of the factor potentials instead of the hyperparameters of the model.
For convenience, we assume Gaussians for variable X with p(x|u, X). One re-
ceives similar results by using discrete or mixed distributions [2]. When using an
identical transition model the common MAP estimation can be utilized to add
the current observation to the estimation in the upper layer like in (7).

After N observations, there should exist estimations for the parameters p
and ¥ with finy and 3n. The parameter of the Gaussian after the integration
of the new observation X = x4 result in:

. N e N )
= — —_— X
KNt N+l KN N+l N+1
N . N

A~ N ~ T
BN+ = 1 3Ny + N1 (Ani1 —xN+1)(Angr —XN4+1)" - (9)

Intuitively, the new observation xy 1 is added to the estimation and weighted.
The weight accounts for the prior knowledge about the location and form of
the distribution given the previous observations. We introduce an additional
weighting factor o = [0, 1] to weaken the influence of the former observations of
the MAP estimation step in the upper layer in (7). Thus the term NLH of (9) is
weighted as follows:

alN
) 10
aN +1 (10)
The weighting factor « is set to 1 if the transition model is identical:
1 ,if®Oy=06xN_
p(On|Ox-1) = o (11)
0 ,else

Once the transition model is non identical, it blurs the unknown parameters of
the distribution in the hyperfactor nodes of every time step. Hence, the weight
of former observations has to be adopted by decreasing «. The weighting factor
is calculated empirically depending on the uncertainty of the transition model.
Therefore, a constitutes the difference between keeping previous learned known-
ledge or integrate new knowledge into the model given by an observation.
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4 Discussion and Conclusion

The used loopy belief propagation only provides an approximation of the true
marginals. Additionally, the convergence of loopy belief propagation is not proven
for arbitrary graph structures. Because the concept is closely related to EM, it
is not guaranteed that the algorithm converges to the global maximum. The
weighting of the current observation in (10) when using non identical transition
models is hardly possible if the upper layer of the extended factor graph contains
loops. This is primarily induced by circulating messages in the upper layer, which
make it nearly impossible to find an adequate value of a. The algorithm works for
arbitrary distributions as long as the MAP estimation operation of one observa-
tion to the distribution is defined or a weighted sum can be approximated. Last
but not least, the algorithm is only real time capable for small graphs with few
nodes. Otherwise, loopy belief propagation algorithm needs many computational
expensive iterations to converge.

This paper presented a concept to allow handling of online state estimation
represented by dynamic probability distributions without the need for conju-
gate priors or hyperparameter transition models. The proposed approximative
method extends loopy belief propagation in factor graphs. The key idea is to
substitute the ML in the M step of EM by a MAP estimation, which can be
applied recursively. The E step is done locally and the iterations of the EM
algorithm are shifted into the iterations of loopy belief propagation. Despite of
MAP estimators that do not work with hidden parameters or EM algorithm that
needs the complete data set of observations, our algorithm offers the possibility
to track complex non-stationary system states over time, even if they depend on
hidden parameters.
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