
Ensembles of Neural Networks for Robust Reinforcement Learning

Alexander Hans
Neuroinformatics and Cognitive Robotics Lab

Ilmenau University of Technology
Ilmenau, Germany

Email: alexander.hans.ext@siemens.com

Steffen Udluft
Intelligent Systems and Control

Siemens AG, Corporate Technology
Munich, Germany

Email: steffen.udluft@siemens.com

Abstract—Reinforcement learning algorithms that employ
neural networks as function approximators have proven to be
powerful tools for solving optimal control problems. However,
their training and the validation of final policies can be
cumbersome as neural networks can suffer from problems
like local minima or overfitting. When using iterative methods,
such as neural fitted Q-iteration, the problem becomes even
more pronounced since the network has to be trained multiple
times and the training process in one iteration builds on the
network trained in the previous iteration. Therefore errors
can accumulate. In this paper we propose to use ensembles
of networks to make the learning process more robust and
produce near-optimal policies more reliably. We name various
ways of combining single networks to an ensemble that results
in a final ensemble policy and show the potential of the
approach using a benchmark application. Our experiments
indicate that majority voting is superior to Q-averaging and
using heterogeneous ensembles (different network topologies)
is advisable.

I. Introduction

In reinforcement learning (RL) [1] one is concerned with
an agent interacting with an environment. The agent has the
ability to observe the environment’s current state and can
influence it by carrying out actions. Each action causes a
transition to a new state. Along with the transition the agent
receives a reward, giving it a hint as to how useful that
transition was. However, this reward is not necessarily only
dependent on the last action. Instead, it usually is delayed
and therefore the result from a series of actions.

Often an RL problem is formulated as a Markov decision
process (MDP), consisting of a state space S , an action space
A, a transition probability distribution PT : S × A × S 7→
[0, 1], and a reward function R : S × A × S 7→ R. When all
components of the MDP are known, an optimal policy can be
determined, e.g., using dynamic programming. Otherwise,
observations from the MDP must be sampled by interacting
with it (exploration).

One distinguishes an online and an offline setting in RL.
While in the online setting the interaction with the MDP and
the determination of the optimal policy are performed by
one agent, potentially using every observation immediately
to update the policy, in the offline setting one is given a set of
observations generated by an arbitrary exploration strategy

and has to try to derive an optimal policy from that set. In
this paper we deal with the offline setting (also known as
batch-mode RL).

To determine the optimal policy, many RL methods cal-
culate a so-called Q-function as an intermediate step. The
Q-function gives the expected long-term reward of a given
state-action pair for a fixed policy. The aim is then to utilize
the Q-function to derive the optimal policy, e.g., by dynamic
programming. If the state and action spaces are discrete and
the number of states sufficiently small, the Q-function can be
stored and calculated in a tabular way. If, however, one deals
with large discrete or continuous state spaces, it is inevitable
to resort to function approximation, for two reasons: first
to overcome the storage problem, second to achieve data-
efficiency (i.e., requiring only few observations to derive
a near-optimal policy) by generalizing to afore unobserved
states-action pairs.

The class of fitted Q-iteration (FQI) methods [2] has
proven particularly data-efficient. Implementations of FQI
used, for instance, tree-based regression [3], linear archi-
tectures on features [4], and neural networks [5]. In FQI
one formulates the problem of learning the Q-function as a
set of regression tasks. In each iteration an approximator is
first learned and then used to determine the targets for the
next iteration. This is repeated until the desired precision is
reached.

However, function approximators like neural networks
suffer from a number of problems and can fail at finding
the correct mapping from input to target data. Dietterich [6]
gives three sources of failure: 1) The statistical problem:
when only few training patterns are available, a solution
that nicely fits both training and validation sets can still be
away from the real function. 2) The computational problem:
many algorithms try to optimize a non-convex error function
that exhibits local minima; by starting from different points
in the parameter space and randomly selecting patterns for
training, even given the same training data different instances
of the same algorithm can arrive at different solutions. 3) The
representational problem: the function approximator might
be unable to represent the actual function. In supervised
learning ensembles of learners have been successfully used
to tackle all of those three problems, both for classification

2010 Ninth International Conference on Machine Learning and Applications

978-0-7695-4300-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICMLA.2010.66

401

in: Proc. Ninth IEEE Int. Conf. on Machine Learning and Applications (ICML 2010), Washington DC, USA, pp. 401-406, IEEE 2010

niuser
Textfeld

and regression [6].
We believe that RL can also benefit from ensembles.

However, so far only few contributions exist that employ
ensembles for RL. Wiering and van Hasselt used ensembles
of quite different algorithms trained with the same data
for discrete MDPs in an online setting [7]. Each algorithm
determines its own policy, the final policy is determined from
the individual policies, e.g., using majority voting. Ernst et
al. used ensembles of regression trees in an FQI approach
[3]. Instead of using only one regression tree to represent
the Q-function in each iteration, they used an ensemble of
trees (random forest) [8].

In this paper, we propose to use ensembles for neural fitted
Q-iteration, an FQI method employing neural networks. We
name various ways of combining single networks and give
empirical results for the pole balancing problem.

II. Neural Fitted Q-Iteration

Neural fitted Q-iteration (NFQ) [5] is an instance of
the fitted Q-iteration (FQI) [2] approach. FQI does value
iteration based on samples of the MDP. When dealing with
a discrete MDP, value iteration means repeatedly applying
an update rule based on the Bellman optimality equation:

Qk+1(s, a) :=
∑
s′∈S

P(s′|s, a)
[
R(s, a, s′) + γmax

a′∈A
Qk(s′, a′)

]
,

where γ is the discount factor. Starting with an arbitrarily
initialized Q0, e.g., Q0 := 0, with k → ∞, Qk converges
to Q∗, the Q-function of the optimal policy π∗(s) :=
arg maxa Q∗(s, a). If the state space is large or continuous,
one has to resort to function approximation to represent
the Q-function. FQI then means repeatedly training a new
function approximator for the Q-function and using the
learned approximator to determine the targets for the next
iteration (for the first iteration the Q-function is assumed
to be constantly zero and only the rewards are learned).
Figure 1 summarizes the FQI algorithm. Note that the sum
over successor states and transition probabilities are not
considered explicitly here. Instead, they are implicitly given
by the set of observations ((s, a, r, s′) tuples).

The main characteristic of NFQ is using a neural net-
work (multi-layer perceptron) as function approximator. The
generalization capabilities of neural networks are excellent,
therefore it is possible to produce near-optimal policies with
only few observations of the MDP [5]. Another powerful
approach is neural rewards regression (NRR) [9]. NRR uses
a special architecture with shared weights and can learn the
Q-function in a single step without the need for iteration.

However, for both, NFQ and NRR, one has to choose a
suitable network topology (e.g., number of hidden layers,
number of neurons in each layer) and learning algorithm.
Moreover, one can influence the learning process, e.g., either
learn using a constant learning rate or start with a large
learning rate and reduce it later.

Figure 2 shows the NFQ implementation used in this
paper. In each iteration the targets are scaled to lie within
[−1, 1], before using the output of a network, the scaling is
reversed. In the first iteration only the rewards are learned
by assuming Q0 = 0.

• Q̂0 := 0
• i := 0
• while the desired precision is not reached

– input j := (s j, a j)
– target j := r j + γmaxa Q̂i(s j

′, a)
– Q̂i+1 := train(input, target)
– i := i + 1

• return Q̂i

Figure 1. The basic FQI algorithm. Q̂k is a function approximator, Q̂k(s, a)
gives the value of Q̂k evaluated with input (s, a). input and target are arrays
containing the training samples based on the j = 1 . . .N observations of
the MDP.

• input j := (s j, a j)
• target j := r j

• target := scale(target)
• net0Q := train net(input, target)
• i := 0
• while i < M

– target j := r j + γmaxa unscale(netiQ(s j
′, a))

– target := scale(target)
– neti+1

Q := train net(input, target)
– i := i + 1

• return netiQ

Figure 2. Our NFQ implementation. Again, input and target are arrays
containing the training samples based on the j = 1 . . .N observations of the
MDP. scale() scales the targets to lie within [−1, 1], unscale() reverses the
scaling (it therefore needs to know the scale factor of the previous scale()
operation). train net() trains a neural network for the given inputs and
targets. netiQ(s, a) denotes evaluating the network netiQ using inputs (s, a).

III. Instability of the Learning Process

There have been a number of reports on problems with
the learning process with FQI in general and NFQ in
particular [10]–[13]. When using function approximation for
RL, a phenomenon called chattering can occur [10]. The
space of possible Q-functions for an MDP representable
by a function approximator contains so-called greedy re-
gions. In such a region the policy resulting from greedy
exploitation of the respective Q-function, i.e., following
π(s) = arg maxa Q(s, a), does not change. Each greedy region
contains a greedy point, during the process of learning the Q-
function represented by the function approximator moves to
that point. If the greedy point lies within the greedy region,
no problems arise. However, if the greedy point lies on the
border of another or even outside the greedy region, an

402

in: Proc. Ninth IEEE Int. Conf. on Machine Learning and Applications (ICML 2010), Washington DC, USA, pp. 401-406, IEEE 2010

oscillation can occur with the Q-function moving from one
greedy region to another. For NFQ this problem has been ob-
served as well [11] and also matches our experience. In [11]
the authors suggest doing a policy selection by monitoring
the current policy’s quality and stopping the learning process
once the quality declines. Their method works by calculating
a sample of the optimal Q-function tabularly and comparing
the ranking of actions of the tabular Q-function with the
neural one. They conclude that the closer the match, the
better the neural Q-function. While the approach is indeed
able to stabilize the learning process and produce high-
quality policies more reliably, its major drawbacks are the
limitation to discrete state spaces and the necessity of having
observed multiple actions in the same state. We believe
that in addition to chattering also the general problems of
function approximators named by Dietterich [6] contribute to
the instability of RL with function approximation. However,
for the pole balancing benchmark (see section V-A) even
with approximately 60,000 observations (10,000 episodes), a
number that here excludes the statistical problem, we could
observe oscillations. While the vast majority of iterations
produced successful policies, occasionally there was a policy
that was unable to balance the pole for the required 3,000
steps. Another effect that contributes to the problems is the
overestimation of Q-values [12]. When learning with noisy
data, the output of a function approximator will also be
affected by noise. Although the noise has a mean of zero,
an FQI-like algorithm will systematically overestimate the
Q-value as it selects the maximum Q-value over all actions
when determining the targets for the next iteration. Thus the
noise is maximized as well. This problem is also known as
the “rising Q problem” [13].

To mitigate those problems, we want to use ensembles for
more robust and reliable RL with function approximation.
This also makes the algorithm less sensitive to the possible
choices of parameters.

IV. Ensembles in NFQ

Ensembles have been used in supervised learning to
improve the performance of a single learner by combining
several ones. For classification problems a possible way to
combine the single learners is (weighted) majority voting.
If their errors are not strongly correlated, in expectation the
performance of the ensemble will in general be better than
that of any single learner. To provide the necessary diversity
among learners (and therefore hopefully not strongly corre-
lated errors), one can use ensemble methods like bagging
[14] or boosting [15]. In bagging the training set is split
into separate (possibly overlapping) partitions, each learner
is trained on a different partition. Boosting goes one step
further by training one learner after another and giving so far
misclassified examples a higher weight. This way learners
trained in the beginning cover the general “easy” training
examples and later trained learners become “experts” for

certain cases. The final decision is made by a weighted
majority voting, where the weight of each single learner
is dependent on its performance on the complete dataset.
In the case of neural networks even simply training the
network multiple times on the same training set leads to
some diversity because of the random initialization of the
network’s weights and the random selection of patterns
during learning. Other possibilities of introducing diversity
into an ensemble of neural networks include varying the
network’s topology (number of hidden layers, number of
neurons per layer, randomly sparse initialization of weight
matrices [16]), the learning algorithm, the learning rate,
and regularization techniques like weight decay or early
stopping.

To combine the networks of an ensemble to a final policy,
one can think of various possibilities. In particular, the
aggregation method can be varied.

Combination of final policies: It is possible to let each
instance of the algorithm run for itself until a final policy
or Q-function is determined and then combine those to
obtain the final policy. This method was used in [7]. It
makes no assumptions about the algorithm and is therefore
also suitable for combining algorithms that use a different
notion of a Q-function (e.g., actor-critic algorithms) or no
Q-function at all (e.g., the recurrent control neural network
[17]). An easy solution for combining policies is (weighted)
majority voting. In [7] a number of additional methods for
combining policies are proposed.

Combination of final Q-functions: When combining
learners that use a Q-function, one can combine the single
Q-functions to an ensemble Q-function and base the final
policy on that. This can be achieved by, e.g., (weighted)
averaging or median selection.

Selection of the “most agreeable” policy: Instead of
combining several policies to one, one could as well select
the presumably best policy of the ensemble. That policy
could be the “most agreeable” one, i.e., the one that is most
often among the majority [18]. This could be useful for
situations where there are two equally good ways to navigate
the MDP. One policy could come up with one way, another
policy with the other. Mixing them might produce an inferior
policy.

Ensemble representation of Q-function: Instead of let-
ting each instance run for itself, the ensemble can already
be used to generate new targets in each iteration. To do so,
after having trained all learners in an iteration their combined
output is used to generate new targets for the next iteration.
E.g., the single outputs can be combined as a (weighted)
average. This is similar to the tree-based approach of [3].

Common ensemble policy: Similar to the ensemble
representation of the Q-function, one can in each iteration
generate a common policy from the ensemble. For deter-
mining the targets for the next iteration each learner uses
its own current Q-function, but instead of maximizing it for

403

in: Proc. Ninth IEEE Int. Conf. on Machine Learning and Applications (ICML 2010), Washington DC, USA, pp. 401-406, IEEE 2010

the successor state, the Q-value of the action selected by the
ensemble policy is used. For obtaining the policy the same
methods as for combining final policies can be used, e.g.,
(weighted) majority voting.

V. Experiments

To demonstrate the usefulness of ensembles in combina-
tion with NFQ, we conducted experiments using the well-
known pole balancing problem.

A. Pole Balancing

In the pole balancing benchmark a pole attached to a cart
must be kept in upright position by applying forces to the
cart. Starting from an upright position, in each time step the
agent can choose to apply −50 N, 0 N, or +50 N to the cart.
The actions are corrupted by uniformly distributed noise n ∈
[−10, 10] N. Therefore, the trivial policy of always applying
0 N does not lead to success, even though initially the pole is
in upright position. The two-dimensional state space consists
of the pole’s angle ϕ and the angular velocity ϕ̇. A reward
of 0 is given if ϕ ∈ [− π2 ,

π
2]. If the pole leaves this area

a reward of −1 is given and the episode ends. The time
constant used is ∆t = 0.1 s, the discount factor is set to
γ = 0.95. For details on the dynamics we refer to [4]. A
policy is considered successful if it is able to repeatedly
balance the pole for at least 3,000 steps.

B. Setup

To generate observations of the MDP, we used episodes
of random exploration. When applying actions randomly,
the pole falls (and therefore the episode ends) after ap-
proximately six steps. We used data sets of 25 (≈ 150), 50
(≈ 300), and 100 (≈ 600) episodes (observations/transitions).
For each episode length we generated 50 data sets and used
those to generate policies with the different methods. To
assess a policy’s quality, it was run 100 times for at most
3, 000 steps.

C. Network Topologies and Training Procedure

We used two different network topologies. The first is a
standard 4-layer network consisting of an input layer, two
hidden layers, and an output layer. The input layer contains
five neurons, two for coding the state (angle and angular
velocity) and three for binary coding the action (input
for action 1: (+1,−1,−1), input for action 2: (−1,+1,−1),
input for action 3: (−1,−1,+1)). Each hidden layer contains
five neurons. The input and output layers use the identity
as transfer function, the hidden layers use the hyperbolic
tangent as transfer function.

The other topology is a deep, cascaded neural network
that contains eight hidden layers with ten neurons each.
In addition to a connection to the next layer each hidden
layer is connected to the output as well (figure 4). This
constrains upper layers to combine features of a lower

layer to compensate residuals of the lower layers as all
layers contribute to the output. Although this topology does
not enable NFQ to determine better policies on the pole
balancing benchmark in general, we added it to increase the
diversity of the ensemble.

The training algorithm used is VarioEta [19]. Every
network training was performed in phases with decreasing
learning rate. The training with each learning rate was
stopped when the improvement on the validation error fell
below a threshold. The available data was split randomly in
70% training and 30% validation data. See figure 3 for more
details.

In addition to the two different network topologies we
introduced variety into the ensemble by randomly initializing
the weights of the networks (uniformly in [−0.2, 0.2]) and
randomly splitting the data in a training and validation set for
each network training, thus realizing some form of bagging
[14].

• set η = 0.1
• learn to min(num epochs = 30, ε = 10−4)
• set η = 0.01
• learn to min(num epochs = 30, ε = 10−5)
• set η = 0.001
• learn to min(num epochs = 30, ε = 10−6)

Figure 3. The procedure for training a neural network. η denotes the
learning rate of the VarioEta learning algorithm. learn to min() trains the
network in blocks consisting of num epochs epochs until the improvement
of the validation error from one block to another drops below ε.

D. Results and Discussion

The results of the experiments are shown in three tables as
number of successful policies and the average and standard
deviation of the number of steps balanced. Table I shows
the results using single networks. 4L denotes the standard
4-layer network, 10LD the deep, cascaded architecture. The
other two tables show results of ensembles consisting of
single network policies. For the results in table II majority
voting was used (i.e., the action that most ensemble members
would choose is selected as final action), for the results
in table III Q-averaging was used (i.e., for each action the
estimated Q-values from each ensemble member are aver-
aged and the action maximizing this averaged Q-function is
selected).

The performance of our networks when using 50 random
episodes as training data approximately matches the perfor-
mance reported by Riedmiller for his NFQ approach [5].
He does not give results for 25 episodes, our performance
for 100 episodes is significantly worse (Riedmiller achieved
48/50 successful trials). With more optimization of the
learning process it would probably be possible to further
improve the results for 50 and 100 episodes. In particular,
we suspect an adaption of the num epochs parameter w.r.t.

404

in: Proc. Ninth IEEE Int. Conf. on Machine Learning and Applications (ICML 2010), Washington DC, USA, pp. 401-406, IEEE 2010

in hid 1 hid 2 hid 3 hid 4 . . . hid n out

Figure 4. Deep, cascaded neural network where each layer is connected to the output layer. Each circle represents a layer of neurons, each arrow denotes
a weight matrix realizing a full connection of the respective layers.

Table I
Ratio of successful policies (first line) and average (standard deviation)
of the number of steps balanced (second line) using single networks. 4L
denotes the standard 4-layer network, 10LD the 10-layer deep cascaded

network.

number of episodes
25 50 100

1x 4L 24/50 (48%) 20/50 (40%) 37/50 (74%)
2139 (1208) 2061 (1259) 2852 (455)

1x 10LD 14/50 (40%) 22/50 (44%) 24/50 (48%)
1656 (1384) 1837 (1294) 2051 (1291)

to the number of training examples to be crucial (we used a
fixed value of 30; first experiments using num epochs = 15
for 50 episodes (not reported here) showed a significant
improvement of single policy quality). However, when look-
ing at the results of table II it becomes obvious that by
combining different networks to ensembles it is possible
to match (100 episodes) or even surpass (50 episodes) the
performance of a fairly optimized standard NFQ approach.

Adding networks to the ensemble increases the perfor-
mance to a certain point, which is not always reached
here (adding even more networks than our maximum of
20 would be required). Among networks of the same type
there seems to be already enough variety to benefit from
an ensemble, but combining networks of different types is
better—not only are the heterogeneous ensembles containing
the most members (15x 4L & 15x 10LD and 20x 4L
& 20x 10LD) better than all homogeneous ensembles, in
11/12 cases heterogeneous ensembles perform better than
homogeneous ones of the same size. Comparing the aggrega-
tion techniques, majority voting is superior to Q-averaging.
While for the ensembles of 4L networks both perform
equivalently, for combination of 10LD networks and the
heterogeneous ensembles majority voting is clearly better
(8/12 and 12/12 cases, respectively). A reason for this might
be that the different networks’ Q-functions have different
ranges. Another reason for majority voting being superior
might lie in the fact that a single really bad Q-function can
dominate the average (drastically decreasing or increasing
it); with majority voting, the bad Q-function has only one
vote, the magnitude of the Q-values plays no role.

VI. Conclusion

While RL with neural networks as function approximators
has proven to be very powerful, it is still difficult to handle
in practice. In this paper we proposed to use ensembles to

Table II
Ratio of successful policies (first line) and average (standard deviation)
of the number of steps balanced (second line) of ensemble policies derived

by majority voting.

number of episodes
25 50 100

5x 4L 28/50 (56%) 38/50 (76%) 43/50 (86%)
2410 (1062) 2673 (866) 2956 (200)

10x 4L 32/50 (64%) 37/50 (74%) 45/50 (90%)
2414 (1079) 2689 (792) 2995 (19)

15x 4L 33/50 (66%) 38/50 (76%) 46/50 (92%)
2503 (935) 2718 (756) 2990 (43)

20x 4L 34/50 (68%) 37/50 (74%) 48/50 (96%)
2589 (881) 2691 (772) 2992 (51)

5x 10LD 24/50 (48%) 26/50 (52%) 37/50 (74%)
2189 (1070) 2357 (1082) 2736 (711)

10x 10LD 30/50 (60%) 35/50 (70%) 45/50 (90%)
2599 (843) 2748 (674) 2868 (561)

15x 10LD 30/50 (60%) 37/50 (74%) 45/50 (90%)
2658 (811) 2777 (661) 2910 (433)

20x 10LD 32/50 (64%) 40/50 (80%) 48/50 (96%)
2694 (757) 2793 (653) 2966 (182)

5x 4L &
5x 10LD

33/50 (66%) 36/50 (72%) 47/50 (94%)
2655 (831) 2795 (708) 2998 (13)

10x 4L &
10x 10LD

37/50 (74%) 43/50 (86%) 50/50 (100%)
2673 (812) 2915 (425) 3000 (0)

15x 4L &
15x 10LD

36/50 (72%) 43/50 (86%) 50/50 (100%)
2700 (790) 2895 (495) 3000 (0)

20x 4L &
20x 10LD

39/50 (72%) 45/50 (86%) 50/50 (100%)
2709 (787) 2904 (471) 3000 (0)

make the learning process more robust and reliable and less
dependent on fine-tuning of various parameters. We showed
various ways of aggregating single learners to a common
policy and demonstrated the potential of the approach. As
it turns out, majority voting is superior to Q-averaging and
using different network topologies is advisable.

Future work will include experiments with other RL
problems and other aggregation schemes. Furthermore, it
would be beneficial to have some quality measure for a
single policy that could be used for a weighted majority
voting. According to our experiments, the validation error is
not sufficient to asses the quality of the resulting policy.

References

[1] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[2] G. J. Gordon, “Stable function approximation in dynamic pro-
gramming,” in Proc. of the Int. Conf. on Machine Learning,
1995.

405

in: Proc. Ninth IEEE Int. Conf. on Machine Learning and Applications (ICML 2010), Washington DC, USA, pp. 401-406, IEEE 2010

Table III
Ratio of successful policies (first line) and average (standard deviation)
of the number of steps balanced (second line) of ensemble policies derived

by Q-averaging.

number of episodes
25 50 100

5x 4L 31/50 (62%) 36/50 (72%) 43/50 (86%)
2560 (878) 2592 (932) 2911 (356)

10x 4L 31/50 (62%) 32/50 (64%) 48/50 (96%)
2647 (708) 2643 (793) 2996 (20)

15x 4L 36/50 (72%) 31/50 (62%) 49/50 (98%)
2606 (790) 2675 (711) 2999 (2)

20x 4L 34/50 (68%) 35/50 (70%) 50/50 (100%)
2616 (812) 2754 (623) 3000 (0)

5x 10LD 24/50 (48%) 37/50 (74%) 36/50 (72%)
2250 (1172) 2381 (1072) 2626 (884)

10x 10LD 31/50 (62%) 33/50 (66%) 40/50 (80%)
2474 (1004) 2579 (985) 2652 (887)

15x 10LD 29/50 (58%) 37/50 (74%) 41/50 (82%)
2497 (1002) 2500 (1086) 2671 (835)

20x 10LD 30/50 (66%) 37/50 (78%) 42/50 (84%)
2520 (991) 2562 (985) 2734 (814)

5x 4L &
5x 10LD

30/50 (60%) 31/50 (62%) 43/50 (86%)
2673 (792) 2647 (806) 2898 (463)

10x 4L &
10x 10LD

31/50 (66%) 39/50 (78%) 43/50 (86%)
2640 (806) 2654 (903) 2882 (483)

15x 4L &
15x 10LD

31/50 (66%) 40/50 (80%) 44/50 (88%)
2586 (920) 2592 (965) 2816 (667)

20x 4L &
20x 10LD

33/50 (66%) 40/50 (80%) 44/50 (88%)
2619 (877) 2685 (804) 2819 (651)

0

25

50

#
po

lic
ie

s

1x 4L 1x 4L

0

25

50

#
po

lic
ie

s

5x 4L 5x 4L

0

25

50

#
po

lic
ie

s

5x 4L & 5x 10LD 5x 4L & 5x 10LD

0 1,000 2,000 3,000
0

25

50

steps balanced

#
po

lic
ie

s

20x 4L & 20x 10LD

0 1,000 2,000 3,000

steps balanced

20x 4L & 20x 10LD

25 episodes 50 episodes

Figure 5. Histograms showing the distributions of policy quality for single
networks (top row) and various ensembles.

[3] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch
mode reinforcement learning,” Journal of Machine Learning
Research, vol. 6, pp. 503–556, 2005.

[4] M. G. Lagoudakis and R. Parr, “Least-squares policy itera-
tion,” Journal of Machine Learning Research, pp. 1107–1149,
2003.

[5] M. Riedmiller, “Neural fitted Q-iteration – first experiences
with a data efficient neural reinforcement learning method,”
in Proc. of the 16th European Conf. on Machine Learning,
2005, pp. 317–328.

[6] T. Dietterich, “Ensemble methods in machine learning,” Mul-
tiple classifier systems, pp. 1–15, 2000.

[7] M. Wiering and H. van Hasselt, “Ensemble algorithms in
reinforcement learning.” IEEE transactions on systems, man,
and cybernetics, vol. 38, no. 4, 2008.

[8] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[9] D. Schneegass, S. Udluft, and T. Martinetz, “Neural rewards
regression for near-optimal policy identification in Markovian
and partial observable environments,” in Proc. of the Euro-
pean Symposium on Artificial Neural Networks, 2007.

[10] G. J. Gordon, “Reinforcement learning with function ap-
proximation converges to a region,” Advances in neural
information processing systems, pp. 1040–1046, 2001.

[11] T. Gabel and M. Riedmiller, “Reducing policy degradation in
neuro-dynamic programming,” Proc. of the European Sympo-
sium on Artificial Neural Networks, 2006.

[12] S. Thrun and A. Schwartz, “Issues in using function approx-
imation for reinforcement learning,” in Proc. of the 1993
Connectionist Models Summer School, Hillsdale, NJ, 1993.

[13] C. Gaskett, “Q-learning for robot control,” Ph.D. dissertation,
The Australian National University, 2002.

[14] L. Breiman, “Bagging predictors,” Machine learning, vol. 24,
no. 2, pp. 123–140, 1996.

[15] Y. Freund, R. Schapire, and N. Abe, “A short introduction
to boosting,” Journal of the Japanese Society for Artificial
Intelligence, vol. 14, pp. 771–780, 1999.

[16] H.-G. Zimmermann, R. Grothmann, A. M. Schaefer, and
C. Tietz, “Modeling large dynamical systems with dynamical
consistent neural networks,” in New Directions in Statisti-
cal Signal Processing: From Systems to Brain, S. Haykin,
J. Principe, T. Sejnowski, and J. McWhirter, Eds. MIT Press,
2006, pp. 203–242.

[17] A. M. Schaefer, S. Udluft, and H.-G. Zimmermann, “A re-
current control neural network for data efficient reinforcement
learning,” in Proc. of the IEEE Int. Symposium on Approx-
imate Dynamic Programming and Reinforcement Learning,
Honolulu, HI, 2007.

[18] H. van Hasselt, personal communication, 2010.

[19] R. Neuneier and H.-G. Zimmermann, “How to train neural
networks,” in Neural Networks: Tricks of the Trade, G. B.
Orr and K.-R. Müller, Eds., 1996, pp. 373–423.

406

in: Proc. Ninth IEEE Int. Conf. on Machine Learning and Applications (ICML 2010), Washington DC, USA, pp. 401-406, IEEE 2010

