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Abstract. In this paper we present a Reinforcement Learning (RL) ap-
proach with the capability to train neural adaptive controllers for com-
plex control problems without expensive online exploration. The basis
of the neural controller is a Neural fitted Q-Iteration (NFQ). This net-
work is trained with data from the example set enriched with artificial
data. With this training scheme, unlike most other existing approaches,
the controller is able to learn offline on observed training data of an
already closed-loop controlled process with often sparse and uninforma-
tive training samples. The suggested neural controller is evaluated on
a modified and advanced cartpole simulator and a combustion control
of a real waste-incineration plant and can successfully demonstrate its
superiority.
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1 Introduction

In the area of industrial process control most problems are still solved via con-
ventional solutions from the field of control engineering. The problem with such
conventional systems is that they are not able to adapt to changes of the systems
to be controlled. In case of a change, the expert who designed the controller has
to adapt the parameters of the controller again. For the described problem, it
is desirable to use a self-learning controller which is able to adapt to changing
dynamics.

Several approaches with learning controllers for unknown processes have been
published in recent years. Examples are Reinforcement Learning (RL) Systems
such as Q-Learning ([1]), Neural-fitted Q-Iteration (NFQ, [2], [3]) or Bayesian
RL ([4], [5]) . Unfortunately, most of the RL-approaches rely on the assumption
that it is possible to learn the optimal policy online and/or to explore different
strategies for industrial control problems, such as the control of a waste incinera-
tion plant, this assumption is not realistic. An online learning phase of an agent
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with an inefficient or too explorative strategy at the beginning could commit
serious damage to the plant. That means the learning process has to be done
completly offline based on observed data. To complicate matters further, the
observed data is taken from a closed-loop process where the acting controller is
a conventional system which reacts with exactly the same action every time it
observes the same state (see Fig. 1). This results in training data less informative
than from real exploration periods and causes serious problems for the training
of self-learning function approximators. To the best knowledge of the authors,
no RL-approach has been published so far which is able to control the key el-
ements of an industrial combustion process due to the charges and restrictions
concerning exploration and training data mentioned above.

Fig. 1. Left: Training data set with the state s and control force u from a process
controlled by a PI-Controller. Right: Action histogram at the state s = 0.4 (black boxes)
and two possible reward estimations (black and lightgrey lines). Due to the unbalanced
distribution of examples in the action space, neural networks can approximate very
different reward functions for non-observed actions. Both reward functions would show
the same approximation error but cause completly different agent policies.

In this paper, we present an RL-system which meets the demands of the de-
scribed combustion control systems. The basis of our approach is a NFQ network
as presented in [2]. We use the capability of the NFQ to add artificial data-points
to the training set to ensure a correct learning of a good policy despite of the
less informative nature of the observed data.

2 Problem Description and Experimental Setup

2.1 Application Domain

In a waste incineration plant the system dynamics are very complex and only
partially known. Due to the changing process dynamics most existing control
systems are set to cope with all appearing dynamics in general. This solution
passes up chances to optimize the combustion for each single process dynamic.
Therefore, an adaptive self-learning controller could significantly improve the
combustion control.
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We applied our controller to a plant with a forward-acting reciprocating grate
(see Fig. 2). The stirring of the firebed by the movement of the grates is the main
factor for the intensity of the combustion process and is the actuating variable
of our controller.

Fig. 2. Waste incineration plant. The feeder plunger brings the waste upon the com-
bustion grate with the speed vf . Air with the mass ma is blown into the combustion
zone. The grate elements are locomotive with the speed vg.

2.2 Cartpole-Simulator

The cartpole problem is frequently used as a benchmark for RL solutions [3].
In order to take characteristic demands of a combustion process, like aforemen-
tioned changes of the system dynamics into consideration the simulator split the
simulation into three sequent phases. In every phase, the parameters of the cart
and so the dynamics of the system are slightly different. Only the mass of the
cart (5.0kg) and the gravity (9.81 m

s2 ) are unchanged. The following table lists
the parameters of the cart simulator for every phase:

Parameter Phase 1 Phase 2 Phase 3
Mass Pole (mp) 2.0kg 2.0kg 2.5kg
Pole Length (lp) 1.0m 1.0m 0.75m
max. Random Force (Fr) 1.0N 1.0N 1.0N

Since the focus of this paper lies on training a neural controller which could
observe only data from an already controlled process, our simulator also utilizes a
conventional PID-controller for controlling the actions of the cart. The maximum
Control Force was limited to 5.0N for the NFQ and the PID-Controller.

3 Algorithm

Our approach aims at training an adaptive controller for an already controlled
closed loop process which is

1. not worse than the existing controller,
2. shows a behaviour similar to the old controller
3. but is able to adapt to changes of the process dynamics.
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The problem with data observed from a process which is controlled by a conven-
tional deterministic controller is shown in Fig. 1. To each state s the controller
only chooses very few different actions from the possible pool of actions a. A func-
tion approximator, which approximates the reward for the whole action space
can calculate very different values for the reward of actions not observed without
an increase of the training error (see Fig. 1).The policy choosen by such a net
would be very different to the policy of the old controller which is very critical
for a serious industrial application.

So, the basic idea of our approach is to label those actions which have not yet
been observed with a low reward without worsening the approximation of ob-
served actions and the generalisation-capabilities of the network for not observed
states.

NFQ as presented in [2] requires only very few parameters which can influence
the training process and have to be optimised, and offers the possibility to insert
artificial data into the training set in a very elegant and simple way. An artifical
point is a tuple (s, a, f, Q) consisting the state s, action a and Q-Value Q. A
flag f is used to signal the artifical state. We identify non-observed actions by
histogramms build over clusters in the state space of the observed dataset (see
Fig. 1). The insertion of the artificial data and the training of the NFQ is done
as follows:

1. Input = exampleset X where xi = (s, a, s′, Q), xi ∈ X , i = 1..n
2. Cluster X into m cluster C depending on the state s, Ci = (SCi , ACi , S′

Ci
,

QCi), Ci ∈ C, where SCi , ACi , S′
Ci

and QCi are sets of all s, a, s′ and Q in
the cluster Ci

3. For every Ci build a histogram with k bins of actions ACi appearing
4. If there are action bins with no examples, insert new examples xnew into the

exampleset X where xnew = (snew, anew, f, Qnew)
snew = 1

l

∑l
i=1 si, si ∈ SC , l = |SC |

anew = action value of the empty histogram bin
f = binary flag to label as artificial data
Qnew = min(QCi) − Qoffset; Qoffset = Reward-Offset to penalize non-
observed actions

5. Train NFQ as described in [2] with the new exampleset Xnew

By this algorithm, artificial examples with lower reward are created for all non-
observed actions in observed states. This prevents that a function approximator
estimates high rewards for such actions, and the policy of the trained agent does
not choose them. The number of the artificial data points inserted at a certain
state depends on the number of already observed data points in that state. This
is important because the lower reward of the artificial points is used to decrease
the value of unobserved actions, but should not change the value of a state
compared to the value of other states. If a sufficient number of new samples is
collected, the agent is retrained with the new data. So the adaptive nature of
the controller to changes of the process dynamics is realised.
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4 Experimental Evaluation of the Approach

The experiments on a real combustion process were executed on a waste incin-
eration plant in Germany with a steam production of 30 t/h. The new NFQ-
controller was trained with seven days of data observed from the conventional
controllers. After training, the NFQ was tested on the plant. The test phase
covered eight days which were split between the NFQ and the PID-controllers.
Both controllers acted with a clock of five seconds which results in 17,280 actions
per day. The achieved experimental results are as follows:

Controller ØCD Steam Max(CD Steam) ØCO ØNOx
PID-Controller 1.61% 22.2% 12.77 87.06
NFQ with art.data 1.45% 16.1% 11.21 86.95
NFQ without art.data canceled (>10%) canceled (>25%) canceled canceled

CD is the abbreviation for control deviation and is specified in % of the
total amount of steam production. The emissions of carbon monoxide (CO)
and nitrogen oxide (NOx) were measured in mg/Nm3. The NFQ which was
trained with additional data achieved a better control deviation and reduced
noxious gases better than the classical PID-controller. A comparison with a
NFQ-Controller without insertion of artificial data had to be canceled after a
while because the policy of the NFQ without artificial data was not similar to
the policy of the old controller and caused a continuous control deviation of more
than 15%. This dangerous policy was the result of a wrong reward approximation
as it was shown in Fig. 1.

The cartpole simulator was configured as described in section 2.2. At first the
cartpole was controlled by a PID-Controller. 3,000 samples of this experiment
were recorded as training samples for the improved NFQ training described in
section 3. We inserted 4 virtual points for non-observed actions per real data
point. After training, we created two instances of the cartpole simulator. Both
instances received the same sequence of random forces affecting the pole. One
of the instances was controlled by the PID the other one was controlled by
the improved NFQ. Both instances were simulated for 15,000 steps, and each
experiment was repeated 10 times with different random sequences:

Controller Balancing steps ØControl error SD Control error
PID-Controller 15,000 0.0739 0.0015
NFQ without art.data 5 1.5707 0.0001
NFQ with art.data 15,000 0.0575 0.0018

The NFQ without artificial samples in the training set was not able to balance
the pole for more than 5 steps. Contrary, the NFQ with artificial samples was
able to balance the pole and had a lower control error than the conventional
PID-controller.

As we explained in section 1, the main advantage of a self-learning conroller
is its ability to adapt itself to the process. For the next experiment we collected
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a data set of 3,000 samples from the runtime of the PID-controller and 3,000
samples of the runtime of the NFQ-controller described above. With this data
we trained a new NFQ. The results are as follows:

Controller Balancing steps ØControl error SD Control error
PID-Controller 15,000 0.0735 0.0014
NFQ with art.data 15,000 0.0469 0.0010

While the results of the PID-controller are the same as in the first experiment,
the NFQ-controller was able to improve its result from the first test by 19%. It
should be explicitely mentioned, that all results were achieved without explicit
exploration phases, all controllers were run in exploitation mode the whole time.

5 Conclusion and Outlook

The paper presents a new approach to train neural controllers with data from
closed loop processes without exploration. Through the insertion of virtual points
with state-depending Q-Values, neural controllers were able to control processes.
The same controllers failed if no virtual points were inserted. The new approach
offers the possibility to replace conventional controllers through neural adaptive
controllers without expensive exploration phases.

Our further research is supposed to concentrate on increasing the applicability
of the controller. The possibility to insert artificial data to the training set could
allow us to influence the controller in many ways. Expert knowledge about very
rare special states and the right control-action could be integrated into the con-
trollers. Such knowledge is extremly valuable because rare special states might
not be observed in the example set and the desired policy for these states may
differ from the normal policy observed in common states.
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