2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

Finding the Adequate Resolution for Grid Mapping -
Cell Sizes Locally Adapting On-the-Fly

Erik Einhorn and Christof Schroter and Horst-Michael Gross

Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of Technology, Germany

Abstract—

For robot mapping occupancy grid maps are the most
common representation of the environment. However, most
existing algorithms for creating such maps assume a fixed
resolution of the grid cells. In this paper we present a novel
mapping technique that chooses the resolution of each cell
adaptively by merging and splitting cells depending on the
measurements. The splitting of the cells is based on a statistical
measure that we derive in this paper. In contrast to other
approaches the adaption of the resolution is done online during
the mapping process itself. Additionally, we introduce the Nd-
Tree, a generalization of quadtrees and octrees that allows
to subdivide any d-dimensional volume recursively with N¢
children per node. Using this data structure our approach can
be implemented in a very generic way and allows the creation
of 2D, 3D and even higher dimensional maps using the same
algorithm. Finally, we show results of our proposed method for
2D and 3D mapping using different kinds of range sensors.

I. INTRODUCTION AND RELATED WORK

In mobile robotics map building is an important prereq-
uisite for different navigational tasks. It provides a model
of the environment that is essential for collision avoidance,
path planning and localization. In the past, a variety of
different techniques for representing the environment of a
robot have emerged. They can be roughly classified into
metric and topological maps. Topological maps [1], [2], [3]
represent the robot’s environment in a graph-like structure,
where the nodes correspond to distinctive places, situations
or landmarks. Two nodes are connected by an edge if there
exists a path for traveling between the places. Topological
maps are therefore sparse and compact representations that
are suitable for highly efficient path planning and localization
in large-scale environments.

Metric maps on the other hand are accurate and fine
grained metric descriptions of the environment. Currently,
occupancy grid maps [4] are probably the most widely used
metric maps. They partition the robot’s surrounding into
regular cells, where each cell stores a probability whether
the cell is occupied by an obstacle or free. Most existing
occupancy grid mapping algorithms decompose the high-
dimensional mapping problem into smaller one-dimensional
problems by modelling the map as a Markov Random Field
of order 0, where the state of each individual cell can be
estimated as an independent random variable.

In the past, the maps usually have been built using sonar
sensors and laser range finders that are able to measure
the distance of nearby objects in a single plane only. Due

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2011)
under grant agreement #216487

978-1-61284-380-3/11/$26.00 ©2011 IEEE

to this two-dimensional characteristic, maps created using
these sensors are also two-dimensional. Recently, different
sensors like stereo cameras, time-of-flight cameras, Mi-
crosoft’s Kinect or 3D lasers have gained more importance
which are able to obtain three-dimensional information about
the local surroundings. Consequently, 3D representations
are necessary to take full advantage of these sensors. In
previous works, multi-level surface maps [5], regular voxel
representations, and octrees [6], [7] have been proposed
as a 3D alternative to 2D occupancy grid maps. However,
the common disadvantage of these existing approaches like
“OctoMap* [6] is, that they partition the environment into
regular cells with a fixed resolution. The choice of this cell
resolution is crucial. Today’s navigational tasks like inch-
perfect navigation in narrow environments require precise
maps with a high resolution. Unfortunately, an increased
resolution results in a heavy rise of the memory consumption
and the computational costs especially when using 3D maps.
On the other hand a too coarse resolution may lead to
inconsistencies and to maps with insufficient precision.

In previous works quadtrees [8] and octrees [6] are used
for reducing the amount of memory while preserving the
precision of the maps. In these approaches the trees are only
used to compress the maps after they have already been
built by fusing cells with similar occupancy probabilities.
The mapping itself is done using a fixed resolution.

In order to overcome this limitation, we here present
a novel mapping technique that chooses the resolution of
each cell adaptively depending on the measurements during
mapping. If an additional measurement becomes available
that conflicts with the current map estimate, i.e. the states
of the existing occupancy cells, the measurement is either
an outlier or the inconsistency is caused by a too coarse
resolution of the map. In the latter case the affected cells
are subdivided to increase the resolution. Simultaneously,
neighboring cells with similar occupancy values are merged
to reduce the spatial and computational complexity.

In the past approaches, different data structures are applied
for storing the occupancy values. Usually, 2D or 3D arrays
are used. Some approaches also apply quadtrees and octrees
to improve the speed for operating on the data. Here, we
present a data structure that is a generalization of quadtrees
and octrees. It is not restricted to a certain dimensionality.
Therefore, our approach can be implemented in a very
generic way and allows the creation of 2D, 3D and even
higher dimensional maps using the same implementation of
the algorithm without any additional overhead. This allows

1843

us to apply the algorithm for different range sensors that
provide two- and three-dimensional data.

This paper is organized as follows. In the next section
we specify the underlying generic data structure which is
fundamental for our mapping approach, that is described
in section III in detail. In section IV we show results that
we have obtained using the presented approach for different
kinds of sensors. Finally, we conclude with an outlook for
future work.

II. REPRESENTING MAPS USING ND-TREES

When using occupancy grid maps for path planning, obsta-
cle avoidance, localization or mapping most of the operations
that are performed on these maps include intersection tests or
require a fast traversal through the map. Obstacle avoidance
for example requires collision tests of the robot’s shape with
the occupied cells of the map. Moreover, when creating the
maps using range sensors like laser range finders, each sensor
measurement affects the cells along a ray emerging from the
sensor. Hence, all cells along that ray need to be traversed
and updated.

Since many of these operations must be processed in real-
time, computational efficiency is crucial here. Hence, storing
geometric data like occupancy grid maps in plain arrays
can be unfavorable since these data structures do not allow
efficient algorithms for intersection tests. Instead, quadtrees
and octrees are more suitable for this purpose.

Quadtrees (or more precisely region quadtrees) can be
used to represent a region of the 2D space. They decompose
the region by recursively subdividing it into four equal
quadrants. The subdivision is represented using a tree, where
each inner node has four children. The root node represents
the whole region that is covered by the quadtree. The leaf
nodes finally represent a small partition of the whole region
and contain attributes that characterize that partition. In the
case of occupancy grid maps, each leaf node contains the
occupancy probability of the region covered by the node.

Octrees are the three-dimensional analog of quadtrees.
Similar to quadtrees, an octree node is bisected in each
dimension. Hence, each node is subdivided into 2% = 8
octants.

In [9] and [10] a more generalized form of an octree is
presented. It allows to divide the nodes in each dimension by
an arbitrary number N rather than 2. The resulting structure
is called N3-tree, since each node is subdivided into N3
uniform children. The special case of N = 2 results in a
standard octree. Choosing different values for N changes
the properties of the data structure and the performance of
the algorithms working on it. While a small N produces
deep trees that are well suited for intersection tests, a large
N results in shallow trees that are more convenient for
tree traversals but are less memory efficient. By adapting
N a trade-off between efficiency for intersection tests and
traversal efficiency is possible.

Based on the above N3-tree we present the N%-tree as
a more general data structure in the following, that is not
restricted to a certain dimensionality. Instead it can be used

to represent an occupancy map M C R with an arbitrary

dimensionality d.

The N-tree is a connected graph 7' = (N, E) without
cycles, consisting of nodes N and edges E with the following
properties:

(1) Each node n € N represents a certain partition V(n) C
M of the entire map M. For two-dimensional maps this
partition is a square region. For three or more dimensions
the partition in general is an axis-aligned cube-shaped
volume or hyper-volume that has the same extent in each
dimension. In accordance to occupancy grid maps these
volumes are also called cells in the following.

(2) The volume of each inner node n is subdivided along
each dimension into N intervals resulting in a total
number of N¢ uniform sub-volumes.

(3) Each sub-volume is associated to a child of the node.
Hence, each inner node n has N¢ children. Each child
cU) can be retrieved by the function child(n, j) for j =
0,...,N%—1, where (n,c%)) € E.

(4) The sub—volurzles of the node are complete and disjoint,

Ni-1
ie. V(n) = |J V(child(n,j)) and
=0
V(child(n, j)) N V(child(n, k) = 0,5 # k.

(5) There’s exactly one root node ng that has no parent.

(6) Nodes that are not further subdivided are called leaves.
For each leaf n an occupancy value occ(n) is assigned
that specifies the probability of the volume V(n) covered

by the node n being occupied, similar to each cell of a
regular occupancy grid map.

u® u
diag(N)
child(n, 6) | child(n,7)
idx = (0,2)|idx = (1,2)
diag(...)
16
child(n, 3)
idz = (0, 1)
diag(1)
]
]
child(n,0) HHH
ide — (0,0) mEE
diag(0)

1

Fig. 1. Example of an N%tree with N = 3 and d = 2. The outer
root node is divided into 3 x 3 child nodes, where some of these children
are further subdivided. For some children their Euclidean index in the grid
is indicated. Moreover, the diagonal vertices are shown that are used for
computing the extents of each sub-volume when splitting the node.

A. Addressing child nodes

In the above definitions each child node child(n, j) is ad-
dressed using an integral index j € [0, N — 1]. However, in
some algorithms it is convenient to use a different addressing
scheme, that can be derived as follows. Splitting the volume
of each node by subdividing it along each dimension into N
intervals results in a regular d-dimensional grid, where each
sub-volume of each child has its definite position as shown
in Fig. 1. This position can be described using an index

1844

idr = (i1,...,iq) € I with I = [0, N—1]¢. Each component
ix, of the index specifies the location (row, column, etc.) of
the sub-volume along the k-th dimension in the parent’s grid.
Consequently, the j-th child node child(n,j) can also be
addressed by child(n,idx) with idz = (i1, ...,%q), Where

d
j= kN
k=1

Vice versa, an inverse mapping from the integral index j to
the Euclidean index idx = (i1,...,1q) is given by:

. J
1 = \‘]\WJ mod N

B. Splitting Nodes

One of the most important operations that is required by
our mapping approach is the splitting of nodes. When a
node is split, the volume V(n) covered by the node n must
be subdivided in order to create its child nodes. Since the
volume is cube-shaped and axis-aligned it can be described
by its lower vertex 1 € R% and upper vertex u € R¢. For
subdividing the volume the extents of the sub-volumes need
to be computed. Therefore, we first compute the positions
of N + 1 vertices diag(i) € R¢ along the diagonal passing
from 1 to u according to:

N —
diag(m) = Tml + %u,

As indicated in Fig. 1, using these diagonal vertices
diag(m) = (diag,(m),...,diagg(m))7, the sub-volume

m=20,...,N

of the j-th child node with index idx = (i1,...,%4q) can
be specified by its lower vertex 1) = (lgj), ceey ll(ij))T and
upper vertex ul) = (ugj), e ,u((ij))T as follows:

l,ij) = dlagk(zk)

u = diagp(iy, +1), k=1,....d
C. Growing

When mapping the environment on-line on the robot, the
map being created needs to be resized constantly in each
dimension. One big advantage of representing occupancy
maps using a tree as presented in this paper is that this can be
done dynamically without reallocating or copying the whole
memory that is used to store the map. In order to increase
the area that is covered by the map, a new node needs to
be created that has a coarser resolution than the root node.
Its volume will be N times bigger in each dimension than
the volume of the root node. The current root node will then
become a child of the newly created node that itself becomes
the new root node. This procedure is repeated until the map
covers the desired area.

D. Ray Casting

For inserting sensor measurements into the map, the
nodes need to be traversed efficiently in order to update all
cells along the sensor beam. For this purpose we apply a
hierarchical ray casting algorithm. The ray casting starts a the
origin of the ray. Therefore, the leaf that contains the origin
is searched in top-down descent. Afterwards, all neighboring
siblings on the same level are traversed along the direction

of the ray using a similar algorithm as described in [11].
When all children of a certain node have been traversed, the
traversal continues on a coarser level. If a new node on a
coarser level is entered, the algorithm checks if the node
is subdivided into sub-nodes. In that case the traversal is
again performed on the finer level by visiting the children of
that node as shown in Fig. 2. This hierarchical ray casting
ensures, that all leaf nodes along the ray are visited while the
number of inner nodes that need to be entered is minimized.

Fig. 2. Hierarchical ray casting in an N%-tree with N = 3,d = 1. Leaf
nodes are indicated as yellow regions, while inner nodes are shown in white.
They are further subdivided and their children are drawn on a lower level.
When performing a ray cast from left to right, the algorithm will traverse
the tree along the indicated path in order to visit all leaf nodes in the correct
order.

III. ADAPTIVE-RESOLUTION MAPPING

As stated above, most mapping algorithms treat each cell
of the occupancy map as independent random variable and
estimate its occupancy probability individually. Moreover,
they assume that each cell is either entirely occupied by an
obstacle or completely free. Partially occupied cells are not
considered. These assumptions are also valid for our mapping
approach for range-based sensors that we describe in the
following.

In this approach we use the N¢-tree that was described
in the previous section. For mapping we usually start with
an empty map that contains a single root node ng only. The
occupancy value of the root node is set to occ(ng) = 0.5 to
indicate that nothing is known about the robots environment.
The extent of the root node determines the minimum reso-
Iution of the map, i.e. new cells that are added to the map
have an equal size or are smaller.

Each measurement that should be inserted into the map
is defined by the sensor’s origin o, the direction of the
measurement given by the vector d and the measured range
r that indicates the distance of the obstacle in that direction.
Using this information the end point of the measurement can
be obtained by e = o + rd.

When inserting a new range measurement z; the map
is grown as described in the previous section, until the
origin and the end point of the measurement fit into the
volume that is covered by the map. Similar to the initial root
node the occupancy value of all newly created leaf nodes
is initialized with 0.5. Afterwards, all cells along the sensor
beam are traversed using the described ray casting algorithm
in order to update their occupancy probability. Since the
measurements are error-prone we apply a probabilistic map
update that integrates the sensor measurements over time in
order to reduce the effects of noisy measurements. The new

1845

occupancy probability occ(n;) = p(n;|z1.¢) of each traversed
leaf node n; can be updated recursively from its previous
value p(n;|z1.t—1) (which only takes previous measurements
z1:t—1 into account) using Bayes rule [4] as follows:

p(nilzie—1) p(nilz)

1=p(nilz1:4-1) 1=p(n;|2t)

where p(n;|z;) denotes the inverse sensor model. Here, we
apply a one-dimensional inverse sensor model that takes the
Gaussian error distribution of the measurements into account.
While most researchers use an approximated sensor model,
we derived our inverse model analytically. It can be described
by:

p(nilzie)=1—|1+

p(nz‘zt) =F (ﬁia 5702) - %F (ﬁla S, 0—2)

x
where F (x, I, 02) = f N (p, 0?) is the cumulative normal
— 00

distribution. Moreover, 7i; and 17; denote the distance to the
entry and exit point of the sensor beam with the volume
covered by the node n;. The variance o2 expresses the
uncertainty of the measurement.

A. Splitting

When using the mapping algorithm described so far, all
created leaf nodes will have the same fixed extent that was
defined by the initial root node as described before. However,
it was already mentioned that a fixed resolution has several
disadvantages. Therefore, we add a mechanism that splits
nodes to increase the resolution when this is appropriate.
For each node we additionally store a histogram that contains
the number of hits and misses. Hits are those measurements
that end in the volume associated to the node. They indicate
that the volume is occupied by an obstacle. Misses are the
measurements that pass through the volume and end in a cell
somewhere behind. They indicate that the volume is free.

If we assume a volume that is entirely occupied, a noise-
free sensor would obtain exactly n hits and 0 misses out of
n measurements. Vice versa, it would yield exactly n misses
and O hits, if the volume was completely free. However, if
the volume is partially occupied, some measurements will
hit the obstacle while others will miss it and hence, both the
number of hits and misses will be non-zero. Consequently,
the number of hits and misses can be used to determine
if a certain node violates the assumption that its volume is
either entirely occupied by an obstacle or completely free.
In this case the node needs a further refinement and must be
subdivided.

However, in practice the sensor measurements are error-
prone. Due to erroneous measurements, a real sensor usually
will yield misses even if the volume is entirely occupied. In
the following the error rate for those false negative detections
is denoted by the probability p(miss|occ). Additionally, the
sensor may obtain hits even if the volume is completely free.
The error rate for these false positive detections is expressed
by the probability p(hit|free). Both probabilities can be
measured for a given sensor. Using these probabilities we
can now compute the expected number of hits and misses

for a certain number of n measurements. For an entirely

occupied volume one would expect the number of hits and

misses to be as follows:
E(hits|occ)
E(misses|occ)

=n-[1 — p(miss|occ)]
= n - p(miss|occ)

The corresponding discrete distribution is shown in Fig.
3a as a histogram. Vice versa, the number of hits and misses
for an entirely free cell is expected to be:

E(hits|occ) = n - p(hit|free)
E(misses|locc) =n-[1 — p(hit|free)]

The corresponding histogram is indicated in Fig. 3b.

p(misses|oce) p(hits| free)

hits misses hits misses hits misses

(@) (b) (©
Fig. 3. Histograms of the expected distributions of hits and misses. (a)
Expected distribution for an entirely occupied cell that is measured with a
noisy sensor. (b) Expected histogram of hits and misses for a completely
free cell. (c) Histogram of actual measured hits and misses for a node that

most likely is partially occupied and needs to be split, since the histogram
differs significantly from both histograms shown on the left.

If the counted hits and misses of a node differ considerably
from the two expected distributions above, the discrepancy
cannot be explained by erroneous measurements since these
errors are already modeled in the expected distributions.
Instead it must be caused by a violation of the assumption
that the volume is entirely occupied or free. For testing if the
measured distribution differs significantly from the expected
ones, we apply the Chi-square test. Therefore we compute

the values of the test-statistics as follows:
2

2 [hits—E(hits|occ)]? + [misses—E(misses|occ)]
Xoce = E(hits|occ) E(misses|occ)

2 __ [hits—E(hits|free)]?
Xfree - E(hits| free) +

[misses—E(misses|free)]?

E(mzisses| free)

Finally, a node needs to be split if min(xﬁcc,xime) >
X%,0.00S» i.e. if the measured distribution differs significantly
from both expected distributions with a statistical signifi-
cance of a = 0.995. The occupancy value of the newly
created child nodes is set to 0.5.

One drawback of the applied statistical test is that it
will also yield significant differences to the expected his-
tograms, if the obtained sensor measurements contain less
erroneous measurements than expected. If for example all
measurements of an entirely occupied cell coincidentally are

1846

hits while at least some measurements are expected to be
misses, the resulting histogram may differ significantly from
the expected ones. We handle these cases where the sensor
measurements are more accurate than expected separately
and skip the statistical tests to prevent an unnecessary
subdivision of the cell.

B. Merging

Beside splitting, we also merge nodes to reduce the
number of leaf nodes and to achieve some kind of lossless
compression similar to [6]. The child nodes c\9) of a node
n can be merged, if all occupancy values occ(c(j)) are
either very close to 0 or very close to 1. In the first case
all child nodes are assumed to be free with a very high
probability and in the second case all child nodes are most
likely occupied. In both cases a significant change in the
probability of any child is unlikely. Hence, the region covered
by the children can also be represented by their parent node
without any information loss. This is achieved by pruning
the child nodes. The parent node n will then become a leaf
and its occupancy value is set to the mean of its former
children: occ(n) = = > oce(cl?)). This merging process is
done after each measurement update cycle for all updated
nodes that fulfill the above requirements.

Using the proposed method for splitting and merging
nodes adaptively, the cell resolution of the created map
will be adjusted adequately. Regions that are homogeneously
covered by obstacles or that are entirely free are represented
by coarse cells, while more fragmented regions are mapped
using fine-grained cells in a higher resolution. The maximum
resolution usually is restricted by the sensor noise only.
The subdivision of cells will stop automatically if no higher
precision can be achieved by further subdividing a cell due to
the sensor’s noise. Additionally, the resolution can be limited
by specifying a maximum level of subdivision.

IV. RESULTS

We have tested the proposed algorithm for adaptive reso-
lution mapping using three different sensors on our mobile
robot platform. Fig. 4 shows 2D maps that were created using
a 2D laser range finder. The maps cover an area of 26 m x
16 m. In Fig. 4a the leaf nodes of the created N %-tree map are
indicated. The width of the shown cells varies from 1.6 m to
0.05 m. Hence, the effective resolution of the map is 0.05 m.
This high precision takes full advantage of the accuracy
of the laser range finder. Fig. 4b shows the same N%-tree
map, where the leaf nodes are colored according to their
occupancy value. Occupied cells are shown in white while
free cells are shown in black. Gray indicates an occupancy
value of 0.5. For those cells it is unknown whether they are
free or occupied since they have not been observed by the
laser range finder.

For comparison, a normal occupancy grid map with a
fixed resolution of 0.1 m is shown in Fig. 4c. It was created
using the same sensor data. When comparing Fig. 4b and
Fig. 4c, it becomes apparent that the N%tree has a higher
level of detail due to its high resolution of up to 0.05 m.
Moreover, some fine-grained structures are not even visible

ol =
Al —————

el Dl SR

R,

o

oy
N e

.
i

o d_I' .
r | R]
j | Ly RAENE R |
1 L‘_,r [t :-- .qul-—-l"l'-E.'"‘Hl
o e e S| L Bl Y

ks

A B
T inaTr e e 1

(= - .

[—— e

Fig. 4. (a) Leaf nodes of an N%tree map with N = 2,d = 2 (b) Same
N-tree map where the leaf nodes are colored according to their occupancy
value. (white=1, black=0) (c) Grid map with a fixed resolution of 0.1 m

in the fixed-resolution grid map. Additionally, the fixed-
resolution grid map consists of 42,120 cells, while the N?-
tree contains 21,857 nodes, where only 16,390 nodes are leaf
nodes. Hence, using our approach a reduction of approx. 50%
in the required amount of memory can be achieved for the
shown map while doubling the effective resolution.

In Fig. 5 and 6 two 3D maps are shown that were created
using the same adaptive mapping approach. Due to the
generic characteristic of the N?-tree we were able to use the
same implementation as for creating the 2D maps above. The
three-dimensional measurements for the map in Fig. 5 were
obtained using a Kinect depth camera. The measurements
for Fig. 6 were generated using a feature-based shape-from-
motion approach [12] that is able to obtain a reconstruction
of the local surroundings using a monocular camera. Each
reconstructed feature is used as a range measurement and
inserted into the map. In both 3D maps only those cells that
were estimated as occupied are shown using different colors,
where the color codes the height of each cell.

1847

Fig. 5. 3D map based on an N%-tree with N = 2, d = 3 with a resolution
of up to 0.05 m. The 3D data was obtained using a Kinect depth camera.

Fig. 6. 3D map with a resolution of up to 0.10 m. The data was obtained
using a monoclar approach for scene reconstruction [12]

Fig.7 shows a comparison of our adaptive mapping ap-
proach with a mapping algorithm that uses a fixed resolution
(e.g. “OctoMap” [6]). We compared the number of cells in
the final maps shown in Fig. 4 and Fig. 5. For the 2D map
the number of cells reduced to 16,390 which is only 13%
of the cells needed when using a fixed resolution approach.
For the 3D map the adaptive resolution approach requires
about one third of the cells compared to a fixed resolution
algorithm for representing the same content. The decreased
number of cells results in less memory consumption and also
in a significant reduction of the computational costs during
mapping, since less cells need to be updated when inserting
new sensor measurements. This is shown in the lower part of
the table, where the total number of cell updates is compared.
Our adaptive approach needs to update only 30%-50% of the
cells compared to a fixed resolution approach leading to a
performance gain of the factor 2-3.

V. CONCLUSION

In this paper we have presented a data structure and
algorithms for creating occupancy maps with an adaptive
resolution. During mapping the appropriate resolution is
chosen dynamically by splitting cells of the map when the
number of conflicting measurements exceeds the expected
number of erroneous measurements due to sensor noise. The
maps created using the proposed approach provide a high

2D map (Fig. 4) | 3D map (Fig. 5)

» | adaptive 16,390 93,815

g fixed 120,346 252,582

ratio 13.6% 37.1 %

$ | adaptive 10 - 108 71-106

S | fixed 33106 141 -10°

- ratio 33% 49%
Fig. 7. The total number of cells and cell updates for the 2D and 3D

maps shown in Fig. 4 and Fig. 5. The number of cells and updates needed
by the proposed adaptive approach is compared with a fixed resolution
algorithm. Lower values correspond to less memory consumption and less
computational costs.

accuracy and are suitable for high precision navigation. Ad-
ditionally, the number of cells that are necessary to represent
the maps can be decreased. This results in a reduction of the
memory consumption and the computational costs. We have
shown that the same algorithm can be used to create two-
dimensional maps using a laser range finder as well three-
dimensional maps using depth cameras and monocular scene
reconstruction.

Beside the statistical Chi-square test for detecting if a
cell needs to be further refined, different measures could be
applied. At the moment we are working on a probabilistic
measure that computes the probability whether a cell is
partially occupied. Combined with an information theoretic
merging procedure, that merges those cells where only a
small loss of information is expected, we try to further
improve the presented approach.

REFERENCES

[11 M. Liu, D. Scaramuzza, C. Pradalier, R. Siegwart, and Q. Chen, “Scene
Recognition with Omnidirectional Vision for Topological Map using
Lightweight Adaptive Descriptors,” in IROS, 2009.

[2] H. Jacky Chang, C. S. George Lee, Y. Charlie Hu, and Yung-Hsiang
Lu, “Multi-Robot SLAM with Topological/Metric Maps,” in IROS,
2007, pp. 1467-1472.

[3] S. Thrun, “Learning Metric-Topological Maps for Indoor Mobile
Robot Navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21-71,
1998.

[4] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and
Navigation,” Computer, vol. 22, no. 6, pp. 46-57, 1989.

[5] R. Triebel, P. Pfaff, and W. Burgard, “Multi-Level Surface Maps for
Outdoor Terrain Mapping and Loop Closing,” in IROS, 2006.

[6] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A Probabilistic, Flexible, and Compact 3D Map
Representation for Robotic Systems,” in ICRA, Workshop on 3D
Perception and Modeling, 2010.

[7]1 P.Payeur, P. Hébert, D. Laurendeau, and C. M. Gosselin, “Probabilistic
Octree Modeling of a 3-D Dynamic Environment,” in /CRA, vol. 2,
1997, pp. 1289-1296.

[8] G. K. Kraetzschmar, G. Pages Gassull, and K. Uhl, “Probabilistic
quadtrees for variable-resolution mapping of large environments,” in
Proc. of the 5th Symp. on Intelligent Autonomous Vehicles, 2004.

[9] S. Lefebvre, S. Hornus, and F. Neyret, GPU Gems 2. Addison-Wesley
Professional, 2005, ch. Octree Textures on the GPU, pp. 595-613.

[10] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “GigaVoxels :
Ray-Guided Streaming for Efficient and Detailed Voxel Rendering,”
in Proc. of the Symp. on Interactive 3D Graphics and Games, 2009,
pp. 15-22.

[11] J. Amanatides and A. Woo, “A Fast Voxel Traversal Algorithm for
Ray Tracing,” in Proc. of Eurographics, 1987, pp. 3-10.

[12] E. Einhorn and H.-M. Schréter, Gross, “Monocular Scene Reconstruc-
tion for Reliable Obstacle Detection and Robot Navigation,” in Proc.
ECMR, 2009.

1848

