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Abstract—This paper addresses the problem of finding people
in domestic environments utilizing a mobile robot. Companion
robots, which should provide different services, must be able to
robustly estimate the user’s position. While detecting people in
an upright pose is mainly solved, most of the users’ various poses
in living environments are hard to detect. We present a tracking
framework that incorporates state-of-the-art detection modules,
but also a novel approach for visually detecting the presence of
people resting at previously known seating places in arbitrary
poses. The method is based on a contextual color model of the
respective place in the environment and a color model of the
user’s appearance. The system has been tested by evaluating the
robot’s capability to find the user in a 3-room apartment in a
hide and seek scenario.

I. INTRODUCTION

This work is part of the CompanionAble1 project, which
aims to develop a personal robot for assisting elderly people
with mild cognitive impairments. The goal of the project is
to increase the social independence of users by means of a
combination of a smart home and a mobile robot. Therefore,
the system provides different services, like e.g. day-time
management or video conferences with medical attendants,
relatives, and friends. Furthermore, it recognizes emergency
situations, like falls, and tries to prevent progression of the
cognitive impairments by providing interactive stimulation
programs. To offer these service functionalities, the robot sys-
tem provides several autonomous behaviors. First, observing
the user in a non-intrusive way allows to facilitate services that
require interaction or to react on critical situations. A second
behavior is following and approaching the user if interaction
is desired. Third, the robot must seek for the user if a reminder
has to be delivered or a video call comes in and the user is
not in direct proximity of the robot. This work addresses the
last mentioned behaviour.

A prerequisite to these behaviors is the robust detection
and tracking of the user in the apartment. In contrast to
other interaction applications in public environments, people
in home environments often do not face the robot in an up-
right pose but sit on chairs or lie on sofas. Therefore, our
system combines state-of-the-art methods for up-right pose
people detection with a module to detect users independent
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of their pose at places, where they usually rest. The key idea
of this module is to learn color-based models of the user’s
appearance and predefined resting places beforehand. In the
detection phase, the current visual impression is compared to
both of these models to decide if the learned user is present.
Given a seeking task, the robot system is optionally supported
by infrared motion sensors of the smart home system. These
sensors detect motion in the apartment and can be used as a
hint where to search first. Evaluation of the approach has been
done by playing games of hide and seek. This means that the
user “hid“ somewhere in the apartment and the robot had to
find her or him starting from a fixed location. Success rate
and search time were used as performance measures, because
reminders and incoming video calls should be delivered fast
and accurate by the robot. Therefore, the contribution of this
work is two-fold: First, we present a novel method for mobile
robots that goes beyond the state-of-the-art by detecting people
in situations not captured by common detection and tracking
systems in living environments. Secondly, the performance of
the tracking framework and its modules is extensively eval-
uated in multiple hide and seek runs. These experiments are
to assess the reliability of the autonomous mobile companion
robot under real-world conditions.

The remainder of this paper is organized as follows: Sec-
tion II summarizes previous work carried out on the research
topic. Sec. III presents the tracking framework. Sec. IV ad-
dresses the innovation of detecting lounging people at places
in detail. The subsequent section describes the integration of
infrared motion sensors to enhance the robot’s search behavior.
Afterwards, Sect. VI gives a description of the experiments
carried out, while Sec. VII summarizes our contribution and
gives an outlook on future work.

II. RELATED WORK

People detection and tracking are prominent and well-
covered research areas, and impressive results have been
accomplished in recent years. Considering the constrained
hardware of mobile robots, two main fields for people de-
tection have been established – range-finder-based and visual
approaches. Arras et al. [1] employ AdaBoost on laser range
data to combine multiple weak classifiers to a final strong
classifier that distinguishes human legs from the environment.
Visual approaches mainly focus on the face or the human body
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shape. The most prominent up-to-date face detection method
was presented by Viola&Jones [2]. It utilizes AdaBoost to
learn a cascade of simple, but very efficient image region
classifiers to detect faces in camera images. Histograms of
Oriented Gradients (HOG) [3] have been established as the
state-of-the-art method for upright people detection. The basic
idea is to compute block-wise histograms of gradient orien-
tations, resulting in robustness to slight spatial variation of
object shape, color, and image contrast. The histograms inside
a detection window are concatenated into a high-dimensional
feature vector and classified by a linear Support Vector Ma-
chine. Further extensions to the original HOG method focus
on upper body detection [4] or use deformable sub-parts,
which increase detection performance given partial occlusion
[5]. Detection, segmentation and pose estimation of people
in images is addressed by Bourdev et al. [6] who combine
HOG features with the voting scheme of the Implicit Shape
Model [7]. Schwartz et al. [8] augment the HOG features with
color and texture information achieving impressive results on
outdoor data sets. Unfortunately, the latter two approaches are
far beyond real-time capabilities.

Plenty of research has been done to develop methods for
people tracking on mobile robots in real-world applications.
Most of these approaches focus on pedestrian tracking and
single poses [3], [7], [9]. Yet, few approaches handle the
detection and tracking of people in home environments,
especially on mobile robots [10], [11]. Often smart home
technologies like static cameras with background subtraction
methods [12] or infrared sensors [13], [14] are applied, which
facilitate the problem of detection. In conjunction with these
findings, we rely on infrared motion sensors to support the
tracking system of the mobile robot. On occasion, approaches
working with mobile robots process the data captured offline
to apply computationally heavy detection methods [9]. The
CompanionAble project aims to develop a mobile robot com-
panion that is able to react on and interact with the user
during movement. Therefore, all those approaches employing
background subtraction or a retro-perspective analysis are not
applicable.

III. USER DETECTION AND TRACKING

Typical scenarios in a home environment include the user
walking to another room, or the user sitting on a chair or
lying on a sofa. In the first case we are interested in tracing
the user’s trajectory to follow her or him or have a clue where
to search first when an event calls for that. The detection of
the user in the latter case is described in the next section.

Our tracking system comprises a multi-modal, multi-cue
tracking framework based on the Kalman Filter update regime
similar to an earlier approach of us [11]. The advanced
system handles a set of independent 3D position hypotheses
of people, which are modeled by Gaussian probability dis-
tributions. Adding the velocity results in a six dimensional
state space s = (x, y, z, vx, vy, vz) for each hypothesis. We
use the head of the user as the reference for alignment.
Therefore, z denotes the height of the user’s head. The
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Fig. 1. Overview of the tracking framework. In this work, we used 4 different
observation cues to feed the tracker. The innovation is a module to detect
people lounging at places. Furthermore, optional infrared motion sensors can
guide the behavior of the robot.

tracking system is designed in a framework-like fashion to
incorporate the detections of arbitrary observation modules.
New (asynchronous) position observations are transformed to
the 3D representation of the tracking system. When using
range-based detection modules, a Gaussian is created at the
x, y position of the range measurement with a height value set
to the common size of a person z = 1.70. In case of visual
detection modules, we transform the bounding box of the user
into a 3D Gaussian by using the parameters of the calibrated
camera and estimating the distance through the size of the
bounding box. The detection quality of the respective sensor
is incorporated into the covariance of the Gaussian distribution,
i.e. laser-based detection results in low variance in distance and
direction but in large variance in height while visual detections
have a high variance in distance estimation. Each resulting
detection is associated with the closest hypothesis in the
system. If a distance threshold is exceeded, a new hypothesis
is introduced. Once the system knows the associated source
for that observation, the position of that hypothesis is updated
using the Kalman filter technique.

In this work, we apply laser-based leg detection and multiple
visual detection modules (Fig. 1). The first module is based
on the boosted classifier approach of [1] and discovers legs
in laser-range data. By searching for paired legs, the system
produces hypotheses of the user’s position. The face detection
system utilizes the well-known face detector of Viola&Jones
[2]. The motion detection cue [10] is only active when the
robot is standing still and utilizes a fast and simple image
difference approach. Furthermore, we apply a combination of
a full-body HOG detector [3] and an upper body detector [4].
The system described so-far is able to detect and track upright
standing people (mainly through legs and HOG) and people
sitting in frontal-view (mainly through face and upper-body
HOG) in the surroundings of the robot. In the following, we
present a training-based method for detecting people in more
difficult poses.

IV. DETECTION OF LOUNGING PEOPLE AT PLACES

Lounging people are encountered quite frequently in a
domestic environment, e.g. when the user is watching TV,
reading newspaper, making phone calls, working or sleeping.
Therefore, we developed a method that first learns the ap-
pearance of places in the apartment where the user usually
rests. Afterwards, the deviation of occupied places from the
respective models and the similarity to an up to date user
model are used for detection.



(a) Place in occupancy map (b) Projection to camera image

Fig. 2. Place definition. (a) Bounding box of place in the occupancy map.
The robot is in its observation position (red circle). (b) Place’s bounding box
projected into the camera image.

A. Definition of Places

We define places as positions in the apartment where
the user is usually encountered, e.g. chairs, sofas, working
desk. Each place P is represented by a 3D box b =
(x, y, z, dx, dy, dz) with x, y, z being the center coordinates of
the box and dx, dy, dz denoting the width in each dimension.
Figure 2 shows an exemplary place position in the world
centered occupancy map used for navigation and the 2D-
projection of the place box into the current camera image of
the robot. The projection is done by using the robots current
position in the aparment given by Monte Carlo localization
[15] and the projection matrix of the calibrated camera.
Naturally, the content of the place-boxes looks completely
different in the camera image, if observed from different
positions. Since the system is learning the appearance of a
number of places in the apartment, we need to restrict the pose
from which the robot is observing them. Therefore, each place
is assigned n observation poses O = (o1, . . . ,on), where
o = (x, y, φ) with x, y representing the world coordinates
of the robot’s position and φ denoting the heading of the
robot. The restriction of the number of observation positions
ensures that the variance of the place appearance is limited.
Additionally, some kind of feature description modelM of the
place is added, where the nature of the description is variable.
In this work, we use a contextual color histogram. Thus, the
full description of a place is given by P = (b,O,M).

B. Color-based User Detection at Places

The color-based feature model comprises the appearance of
each place in multi-modal histograms. Each place is observed
from different, but predefined view-points given different
illumination conditions, e.g. ambient day-light and electric
lighting in the evening. Therefore, the color model must be
learned for each day-time and observation angle, indepen-
dently. Instead of storing the histograms for each context
(day-time, view-point) in a vector, a more efficient way is
using a set containing only the observed appearances and the
corresponding context. The size of this set can be limited
by merging similar entries and keeping only distinctive ones.
Therefore, we use a multi-modal color model augmented by
a discrete context distribution capturing the circumstances of
the histogram’s acquisition.

1) Multi-modal Contextual Color Model: The model is de-
fined by M = {κ1, . . . , κn}, where κi = (Hi, Ci) represents

(a) Place model (b) User color model (c) Place examples

Fig. 3. (a) Place model with 9 color histograms and context distributions.
(b) User color model with 9 color histograms. (c) Example of place given
different illumination conditions and the user wearing different clothes.

a component in the model with Hi denoting a color histogram
and Ci being a multi-dimensional discrete context distribution.
The histogram is 3 dimensional in RGB color space with 8
bins in each dimension (HSV and Lab color space showed no
significant difference in performance). The context distribution
captures arbitrary aspects of the origin of the histogram in
separate dimensions. In this work we use view-point and
day-time, which are represented by discretized Gaussians to
account for slight variations in the aquisition. The mean of the
view-angle Gaussian is given by the place’s position b and the
current observation position oi ∈ O (discretized into 9 bins)
and sigma is set to 1.0. The mean of the day-time Gaussian is
set to the current hour of the day with σ = 1.5. These values
were determined empirically. Figure 3a displays the state of the
two dimensional context distribution in two small lines above
each color histogram. Red color indicates the probability of
a state in the corresponding dimension. We set the maximum
number n of components in M to 9. At the start of training,
the model comprises zero components. At first a histogram
is extracted from the box of the non-occupied place in the
camera image and added as a new component to the model.
Once the number of components exceeds n, the model must
be pruned by merging similar components. This is done by
first calculating the pairwise similarity s of all components:

s = BC ([Hi, Ci], [Hj , Cj ]) , (1)

where [H,C] is the concatenation of the histogram distribution
and the context distribution and BC(p, q) denotes the Bhat-
tacharyya coefficient of two distributions:

BC(p, q) =
∑
x∈X

√
p(x)q(x) . (2)

The components with the highest similarity are merged by
averaging the histograms and adding the context distributions.
For example if two components have similar color histograms
and are taken at similar time but from different view-points, the
merged component represents the place for both view-points.
The model M is learned for each place P in multiple teach
runs including different day-times and illumination conditions.
In the process of learning, the model maintains unique and
distinctive representations of a place, but merges similar
descriptions. Figure 3a shows an exemplary color histogram of
a place on the couch. Each bin in the 3 dimensional histogram
is plotted as a 2D area with its corresponding mean color with



(a) (b) (c)

Fig. 4. User segmentation and sample detection. (a) Background subtraction
output (binary image) and GrabCut refinement (color image) to learn a color
model of the user. Shadow is removed very well and the segmentation is
improved. (b) parts of the person are removed corrupting the segmentation.
(c) Sample detection with place’s bounding boxes (red), best fit correlation
window (green). Smaller place to the right is not beeing checked because the
robot is not on an observation position for that place.

the area size corresponding to the bin height. The histograms
capture different lighting conditions (cf. Fig 3c), e.g. the couch
normally appears in yellow-green (third column), bright given
sunlight (second histogram in top row) or very dark at evening
(histogram in the middle). Note that the model contains similar
color histograms, but with different context distributions (first
column).

2) Learning of the User Model: The color model of the
user is similar to the aforementioned color model of places, but
without the context distribution. Model learning is done by first
creating a Gaussian Mixture background model [12], when the
robot is standing still and no hypotheses are in front of the
robot’s camera (given by the tracker output). This background
model is used for background subtraction once a hypothesis
is visible in the image. To remove shadows and to refine
the segmentation we apply the GrabCut algorithm [16]. The
algorithm is automatically initialized with foreground pixels of
the segmentation and background pixels in the bounding box
of the person. A problem is the consistent segmentation of the
user in the image. Although the GrabCut algorithm usually
produces satisfying segmentation (Fig. 4a), from time to time
background pixels are misclassified in the segmentation, or
parts belonging to the person are left out (Fig. 4b). Therefore,
at the moment and as a kind of interim solution, we trigger
the learning of the user model once per day when the robot
is standing in front of a white wall. The user is then asked
to walk in front of the robot’s camera. Figure 3b shows an
exemplary learned color model of the user capturing mostly
blue clothing which appear green under artificial light. With
nine components, the user model can only represent a limited
variety of different clothes. However, we observed that elderly
people usually wear clothes in similar coloring. Yet, one
drawback remains: the color of the user’s clothes has to differ
from the place’s color, otherwise the method is likely to fail.

3) Recognition of the User: Once the place models and
the user model have been trained, the system is able to
detect the user in arbitrary poses at the learned places. For
that purpose, the robot drives to the predefined observation
positions and checks each place. By comparing the current
appearance to the place and user model, the system decides
if the place is occupied by the user. Therefore, the robot

Fig. 5. Infrared sensor activation. Triangles indicate the positions of infrared
motion sensors in the map of the apartment. Red color codes the time since
the last movement sensor was activated by the user (brighter means more
recent).

first extracts the current color histogram Hc from the place’s
box in the camera image. Furthermore, a context distribution
Cc is created including current day-time and view-angle. The
system now calculates the similarity of the current observation
histogram Hc to the color histogram Hl of the place model
using the Bhattacharyya coefficient:

s = BC(Hc, Hl) , (3)

where Hl is the histogram of the best matching component κl
in the place model with l selected by:

l = argmax
i=1,...,n

{BC ([Hc, Cc], [Hi, Ci]) } . (4)

Consequently, Eq. (3) is also used to calculate the similarity
to the user model. Yet, a direct comparison of the complete
histogram Hc to the user model’s histograms would result in a
very low match value, because the user usually only occupies
a small region in the place’s box and many background pixels
are included in Hc. Therefore, the similarity to the user model
is calculated by using a correlation window inside the place’s
bounding box and shifting it in a sliding window fashion to
find the highest similarity. A possible way to determine the
best size of the correlation window online would be to just try
different sizes sequentially and use the one with the highest
similarity. Yet, in this work, we used an empirically determined
fixed size window with a width equal to 40% of the place’s
width while the height was kept (Fig. 4c). To select the best
matching component κl from the user model, Eq. (4) is applied
again, but in this case the context distribution is omitted and
only the histograms are used.

If the user is present, this results in low similarity to the
place model, because the appearance of the place is partially
covered, and a high similarity to the user model, because the
correlation window fits to the position of the user. If the user is
not present, the results are vice versa. Proper decision criteria
must be defined for both similarities to decide if a place is
occupied. To this end, we trained a single linear Support Vector
Machine (SVM) [17] on data of multiple labeled runs with
empty and occupied places. The resulting SVM then decides
for each place if the user is present given the similarities to
both the place and user model. If the training data is diversified
enough, the SVM is generally applicable to other scenarios
with different place and user models without the need of
retraining. We also tried to only use the similarity to the place
model for decision making, which would obviate the need of a



0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
Po

si
tiv

e
R

at
e

luck
cv data (area = 0.94)
ind. data (area = 0.87)

(a) ROC (b) Overlapping places

0 1 2 3 4 5 6 7

Ground Truth

0

1

2

3

4

5

6

7

R
ec

og
ni

tio
n

807 1 17 12

50

76 44

75 116 2

10 43 246

17 23

10 1 73 5

26 28

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Confusion Matrix

Fig. 6. Evaluation of the place detection approach. (a) ROC curves for cross-validation and independent data. (b) Overlapping place’s boxes (red) induce
confusions. Correlation windows on person detection (green) and no detection (blue). (c) Confusion Matrix of multiple independent test runs. Classes 1− 7
represent different places, class 0 denotes user was not present.

user model. Unfortunately, the resulting performance was very
poor compared to the results presented in Sec. VI. Another
motivation of the two model approach is that it prevents false
positive detections when objects, e.g. pillows or bags are left
on the sofa, because they usually differ from the user model.

V. INTEGRATION OF INFRARED MOTION SENSORS

Every time the user needs to be sought in the apartment,
because she or he got out of the range of the robot’s sensors, a
proper search strategy is needed. Therefore, the robot checks
each of the aforementioned observation positions for the user’s
presence using the tracking framework including the place-
detection module. The tracking system also detects a standing
user while driving from one observation point to another.
Generally, if no data is available from the motion sensors,
the robot starts with the observation position closest to the
last known position of the user.

By incorporating optional infrared motion sensors to the
system, a more sophisticated search strategy can be applied.
Each of the stationarily installed sensor fires in a 6-second-
cycle when anybody is moving in a 90◦ area within a maxi-
mum range of about 4 meters in front of the sensor. The data
is transmitted to the robot via Wi-Fi. By means of overlapping
sensor areas, the spatial resolution can be slightly increased.
Despite that, the achievable spatial accuracy of the sensors is
not sufficient for fine user detection for interaction purposes,
but more than enough to decide where to search first. The map
shown in Fig. 5 is created by the robot using the most recent
activation of each sensor. A history cue is built up for decision
making. In the given example, a person has been sitting on
the couch in the living room and moved to the kitchen where
she or he is resting. On a given seek task, the robot starts
with the place with the most recent activation (kitchen) and
goes on to the ones with older activation (dining room, living
room). If two observation positions yield the same time due
to the large areas covered by the sensors, the closest one to
the last known user position and the current position of the
robot is used. When the robot arrives at a certain position,

the place is marked as visited and it gets suppressed in the
next selection cycle. By means of that selection algorithm,
the complete apartment will be checked for the user. Gen-
erally, using the sensor information decreases seeking time
enormously, because the robot usually drives directly to an
observation position close to the user. Furthermore, the overall
detection performance of the system is increased since the
robot often instantly checks the right place occupied by the
person lowering chance of false positives on empty places.
This is experimentally examined in more detail in Sec. VI-B.

VI. EXPERIMENTS

We separately evaluated the place detection module alone to
detect lounging people (all other modules of Fig. 1 disabled) in
Sec. VI-A and the complete tracking framework (all modules
enabled) in Sec. VI-B.

A. Evaluation of User Detection at Places

We first learned the appearance of seven predefined (empty)
places of the apartment (60 m2, 3 rooms) in multiple training
runs including three different lighting conditions – ambient
day light, bright sunlight, and artificial light at evening.
Furthermore, a multi-modal user model was trained with the
user wearing two different clothes, which she or he also wore
in the test runs. In the test scenario, the robot was placed on a
fixed starting position and was searching for the user, who was
either lounging at one of the places or not in the apartment.
The robot checked each place for the user’s presence and
logged the similarities to the place and user models. The
aforementioned linear SVM was trained and tested via 5-fold
cross validation on the collected data of similarities of all
places. The ground truth of the user’s presence was labeled
manually. For evaluation, we calculated the probability of the
test examples belonging to the two classes of the SVM model
(user present and not). By varying the probability threshold
that is required to assign an example to one class, an ROC
curve can be plotted (Fig. 6a). The blue curve shows the ROC
of the cross-validated data used for training and validation. The



red curve was generated on data from multiple independent
test runs not seen by the system before. The high true positive
rate and a low false positive rate of the red curve indicate that
the system is actually able to robustly detect the user on the
places. Furthermore, we evaluated the detection performance
of the place detection system on the independent data sets
used to generate the red ROC curve. The trained SVM is
used to decide if the user is present or the place is empty.
Each place is considered as one class and classification rates
are calculated. Since the robot checks different places for the
user’s presence, it can wrongly detect the user at a place
different from the ground truth. Additionally, sometimes more
than one place is visible in the robot’s camera image (Fig 6b).
Hence the detection of places can be confused. Therefore, for
evaluation a confusion matrix is chosen (Fig. 6c). Class 0 is
used to denote that the user is not present (accumulated over
all places). The classes 1− 7 correspond to places in the hall,
at desk, 2 couch positions, 2 chair positions and an arm chair,
respectively. Detection rates for each class are given in the
main diagonal of the matrix. The average classification rate
is above 85% with the biggest outliers in classes 3 (couch)
and 7 (arm-chair). When the user is resting on the couch,
he occasionally occupies two places (class 3 and 4) due to
overlapping boxes (Fig. 6b). This results in high similarities
to the user model in both couch places leading to the relative
high confusion in class 3. In the case of class 7, direct sunlight
caused the camera to overexpose and proper color extraction
was hardly possible. This drawback, however, is inherent to
all color-based approaches. Additionally, some false positive
detections occurred (non-0-predictions of class 0).

B. Hide and Seek Scenario with Tracking Framework

We also tested the actual performance of the robot to
localize the user in the apartment, once she or he got out of
the robot’s vicinity. Because the robot should deliver reminders
and incoming video calls, it should robustly find the user as
quickly as possible. For evaluation, we played several games
of hide and seek a month after the aforementioned experiments
without training new place models. We calculated the average
search time and the success rate of over 100 different hide
and seek games. In these games, the tracking system of the
robot applied all detection modules shown in Fig. 1. Unless
stated otherwise, the infrared sensors were used to sequence
the observation positions as described in Sec. V.

Each game (or test run) started with the robot situated
on a fixed starting location. The user then ”hid” somewhere
in the apartment by resting on one of the learned places.
Occasionally, the user did not occupy any of these places,
but stood somewhere in the apartment. Furthermore, in a few
games the user was not present at all. The ground truth of the
user’s position was labeled manually. The robot then started
searching for the user by driving to each observation position
and checking for the user’s presence. The initial observation
position was selected by using the output of the infrared
sensors. If the user was not found on a specific place, the
robot went on checking the other places. If the robot found

TABLE I
RESULTS OF DIFFERENT HIDE AND SEEK SCENARIOS.

games suc. games suc. rate avg. time

(a) lounging/standing 73 54 0.74 27.8 s
(b) standing 15 13 0.87 32.2 s
(c) w/o motion sensors 19 8 0.44 37.2 s
(d) user not in apart. 18 3 0.15 25.4 s

the user lounging at a resting place or standing somewhere in
the apartment, it logged the detection position and the time
at which the detection was made and returned to the starting
location to end the game. Once the user moved to another
location, a new game was started. If the user was not present
in the apartment or the robot failed to detect her or him on the
specific place, the robot returned to the starting location after
checking all places, logging the moment of arrival. Table I
shows the results of these experiments. We regarded a game
as successful if the Euclidean distance of robot’s detection
to the ground truth was below 1 m or if the robot returned
to the starting location after checking all places, if the user
was not present. We calculated a success rate by dividing the
number of successful games by the total number of games.
Table I(a)-(c) summarizes independent games, where the user
was always present somewhere in the apartment. Tab. I(a)
depicts games in which the user was mostly lounging at
different places and occasionally just standing. The success
rate was rather high with over 0.70. Errors mostly occurred
when the user was in an unfavorable position (cf. Sec. VI-A
and Fig. 7) and proper histogram extraction was impossible.
Furthermore, if the latest active smart home sensor covered
multiple observation positions, the robot might check some
places before the right place increasing the chance of falsely
detecting the user on the wrong place. The average time over
all successful and unsuccessful games was 27.8 seconds with a
minimum of 5 and a maximum of 122 seconds (only 2 search
runs took longer than 60 s). We also tested the performance of
the system in addtional games, in which the user was always
standing somewhere in the apartment (Tab. I(b)). Compared
to the aforementioned games, where the user usually lounged
at a place, the success rate increased to 0.87. This is because
the range-based and HOG-based detection modules are partic-
ularly dedicated detecting standing people. The average time
to find the user increased a little, because the user was not
on one of the predefined places but had to be found by the
robot when driving from one observation point to another in
the perception area of the IR-sensor activated as the last. When
disabling the infrared motion sensors (Tab. I(c)), the success
rate dropped down to 0.44 and the average time to finish a
game increased from 32 to 37 seconds. Without the initial hint
of the IR-sensors, the robot had to check each place, increasing
the average search time and the chance of false positives. From
the findings of Sec. VI-A, we assume the probability of a
correct classification for a single place to be p(c) = 0.80.
Since, the robot checks multiple places, the probability of
correct classification is given by: p(x) = p(c)n , where n is
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Fig. 7. Hideout examples. Easy hiding places: (a), (b), and (c). Difficult
hiding places: (d) great distance, (e) overexposure, and (f) small area in place.

the number of places visited and p(c) is the mean classification
rate for one place. Hence, the more places the robots needs to
check before reaching the place occupied by the user, the lower
the probability of a successful game. This becomes extreme, if
the user is not at home, in which case the robot should check
all places and return to the starting location. Given the seven
places in our apartment and a mean classification rate of 0.80
for each place, the expected probability of a successful run is
only 0.21. This explains the low success rate when no person is
present in the apartment (Tab. I(d)). Ideally, the average time of
these games should be the duration it takes the robot to check
all places in the apartment and return to the starting location.
In our experiments the average time over all games was only
25 seconds. The reason for that is that the aforementioned
false detections mostly occurred on places checked early by
the robot. To raise the success rate, one could increase the
influence of the IR-sensors. If one assumes that the sensor
hint is very certain, the robot could only check the area of the
latest sensor activation for the user’s presence. Hence, only a
small number of places would have to be checked lowering the
chance of false detections. Furthermore, if the motion sensors
were assumed to be very reliable, the robot would not need to
check for the user at all if no sensor is active. Integrating user
feedback could further diminish the problem of false positives.
When detecting a user at a place, the robot could verify its
estimation by prompting the user for a feedback. This may
lead to some scenarios where the robot talks to empty chairs,
but the overall robustness would be highly increased. Yet, the
problem remains if the user should be observed passively and
silently.

VII. CONCLUSION AND ONGOING WORK

We presented a tracking framework for mobile robots to
detect people in home environments. Besides the integration
of state-of-the art detection modules in a real-time capable
framework, a novel method for detecting lounging people
independent of their resting pose at predefined places was
presented. The idea of the method is to learn a color-based
appearance model of the user and predefined places in the
apartment, beforehand. Then SVMs are trained to decide if a
place is occupied by the user. Afterwards, the system is able
to autonomously detect the user in the given environment.
Like most color-based approaches the method assumes that
the color of the user’s clothes differs from the color model
of the places. Experiments on multiple independent test runs

substantiate that the approach actually improves person de-
tection performance in living environments by detecting the
user also in situations not captured by state-of-the-art detection
and tracking systems on mobile robots. The performance of
the tracking framework to continuously observe and find the
user in the apartment was tested in over 100 hide and seek
games. Assisted by infrared motion sensors, the robot was
able to correctly find the hidden user in more than 70% of
all games. In future work, we want to replace the manual
definition of places by an interactive training guided by the
user. Furthmore, the robot could learn which observation po-
sition is most suitable to robustly detect the user on a specific
place. Additionally, we want to increase the success rate to
find the user in the apartment by limiting the search to those
areas given by the infrared motion sensors or incorporating
user feedback to verify the detection. Last but not least, we
are working on a HOG-based [3] representation of each place
to be unsusceptible against illumination and color changes.
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