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Abstract—In this paper, we present MIRA, a new middle-
ware for robotic applications. It is designed for use in real-world
applications and for research and teaching. In comparison
to many other existing middlewares, MIRA employs novel
techniques for communication that are described in this paper.
Moreover, we present benchmarks that analyze the performance
of the most commonly used middlewares ROS, Yarp, LCM,
Player, Urbi, and MOOS. Using these benchmarks, we can
show that MIRA outperforms the other middlewares in terms
of latency and computation time.

I. INTRODUCTION

Currently, most autonomous mobile robots still operate
within the safe laboratories of their developers and are used
by groups of researchers that work on single isolated robotic
tasks like navigation or human robot interaction. However,
with the recent improvements in these fields concerning
methods, algorithms or new hardware components, we are
now approaching an era where those autonomous mobile
robots are more and more employed in the real-world for
applications, where the robots are used to carry out cer-
tain tasks. For instance, mobile robots are already used as
shopping assistants in public environments, such as shopping
centers and home improvement stores [1], or as companion
to assist elderly people in their home environments [2].

Those applications can become complex very quickly due
to their large scale and scope. They range from low-level
hardware driver functions up to higher level methods for
robot navigation, user detection and tracking and finally
the application logic, user interfaces and dialog systems
that interact with the user in an intelligent way. It is not
tractable to write all these capabilities as a single monolithic
application, since it would result in complex and unmain-
tainable structures that require rewriting large portions of
the application’s code from scratch in case the development
of a different application is required.

Consequently, the above mentioned capabilities and algo-
rithms are usually written as separate software modules that
can interact with each other by passing data and messages.
In such a modular design, a so called middleware takes an
important role. It acts as the ’glue’ that ties the modules
together and provides the required mechanisms for the com-
munication between the software modules. Such a modular
design is advantageous in many ways. It allows working on
different parts of the application in parallel, makes the large
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complexity manageable [3], and results in a loose coupling
of the software modules, which is a desired goal of structured
software design to support high maintainability and re-
usability. On the other hand, the modular design results
in some communication overhead due to the creation and
transmission of messages between the modules. Therefore,
it is important for a middleware to provide high-performance
communication techniques with low CPU usage. Especially
for robotic applications, efficiency and low latency is crucial
since the computations need to be performed in real-time,
and the applications must respond and react quickly.

In this paper, we introduce a middleware for robotic
applications (MIRA) that we have developed during the
last two years and describe the implemented concepts in
detail. We compare MIRA with the existing middlewares
that are most commonly used by the robotic community
and show that it outperforms the existing middlewares in
terms of latency, computation time and usability. Another
important contribution of this paper is the first performance
comparison of the different middlewares. These benchmarks
reveal partially surprising results that need to be taken into
account by researchers and developers when designing future
robotic applications.

II. RELATED WORK

Due to the described importance of middlewares for
robotic applications, more than a dozen of such systems
have been developed in recent years, where most of them
are available as open source. A survey on this field and a
comparison of the different projects is given in [4] and [5].

Subsequently, we give a short overview of the robotic
frameworks which have the largest impact in the community.
Here, we are especially focusing on those frameworks that
we compare with MIRA in section V. A compact survey of
all examined middlewares is given in TABLE I below.

CARMEN - The Carnegie Mellon Robot Navigation
Toolkit [6] was one of the first middlewares. It supports
different software modules that are realized as separate pro-
cesses that communicate via Inter Process Communication
(IPC) based on TCP/IP sockets. Since there have not been
any updates since 2008, it can be considered as outdated and
is only listed here to give a complete overview.

Player [7] aims to provide simple and clean interfaces
to a robot’s sensors and actuators. Device modules - so-
called drivers - run in a server’s process using one thread per
driver and can be accessed by clients via TCP. By the use
of interfaces multiple different devices can be manipulated
by the same control client. The support for robot hardware
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TABLE I: Survey of the examined middlewares.

MIRA ROS Yarp LCM Urbi Player MOOS
Communication | decentralized name-/parameter | nameserver decentralized centralized client / central
Structure server driver model database
Communication | intra-process, intra-process, intra-process, UDP multicast | intra-process, intra-process, TCP
Mechanism TCP TCP, UDP TCP, UDP TCP, RTP TCP
Data Transport publisher / publisher / observer publisher / change / access publish / store /

subscriber, RPC | subscriber, RPC pattern subscriber notification read, interfaces | fetch
Message Types | any C++ types IDL using nearly any C++ IDL using C++ types, IDL using string,

and classes PODs types and classes | PODs UVars, UObjects | PODs double
Supported C++, Python, C++, Java, C++ C++, Java, C# C++, Java, C++, Java, C++, Java
Languages JavaScript, ... Python, ... Python, ... urbiscript Python, ...
Supported Linux, Win Linux, OS X Linux, Win, Linux, Win, Linux, Win, Linux Linux, Win
Platforms OS X (planned) | Win (partial) 0S X 0S X OS X

can be extended by adding new drivers. Other advantages case, TCP or UDP based RTP is used for data exchange.

include that clients can be run on different platforms and can
be implemented in many different programming languages.
It also supports a virtually unlimited number of clients
connecting to the server. However, the centralized server
approach exposes a single point of failure.

ROS - The Robot Operating System [8] is nowadays one of
the most widely used middlewares for robotic applications.
It takes up many of the ideas and design decisions of
Player. Even though it uses peer-to-peer TCP connections
for communication between the software modules - called
nodes - it needs a centralized server. This master is used for
name look up and parameter storing and represents - like
in Player - a single point of failure. ROS aims to support
cross-language development by using a simple, language-
neutral interface definition language (IDL) to describe the
messages sent between modules [8]. The used IDL is suitable
to describe plain old data structures (POD), i.e. collections
of field values, arrays, etc. However, higher level object
oriented concepts like inheritance and polymorphism can
hardly be modeled. As each node is run in a separate
process, the data transfer between nodes via TCP results
in a drawback when exchanging large amounts of data.
To overcome this limitation and to reduce communication
overhead, the concept of nodelets was introduced lately. This
concept supports running multiple modules within the same
process. Each nodelet uses its own thread, and data can now
be exchanged within the same process by sharing the same
memory. However, the user has to take care of concurrent
access and thread synchronization by themselves, e.g. by
using mutexes or by allocating new memory whenever new
data is written. This again results in a large performance
penalty as shown in our results. An advantage of ROS is that
it allows nodes to provide a service interface to others via
RPC (remote procedure calls). Also, since it is widely used
by the robotics community, many drivers, algorithms and
software is available in public repositories as open-source.

Urbi [9] consists of two parts. The first part UObject
provides a C++ API where components like drivers and
algorithms can be designed and exposed to the second part
- urbiscript. Urbiscript is an innovative event-based script
language that is used to connect the components in an
application. Urbi allows the user to decide whether to run the
components within the same process or in different processes
and on different systems transparently at runtime. In the latter

It also takes care of thread synchronization and concurrent
data access. Another advantage is that there is support of
a 0-copying mode when running components in the same
process that prevents unnecessary copying of data. However,
it reveals the same disadvantages as in Player and ROS, since
it uses a centralized approach where multiple clients connect
to a master server for executing Urbiscript code.

LCM - The Lightweight Communications and Marshalling
library [10] aims to simplify the development of low-
latency message passing systems, especially for real-time
robotics research applications. Like ROS, it utilizes the
publisher/subscriber pattern to transmit messages between
different processes using a platform- and language inde-
pendent type specification language. LCM bases its com-
munication on UDP multicast without the need of a central
communication hub.

MOOS [11] is a cross platform middleware for robotics
research. It uses a communication network with a star-shaped
topology where each client has a single communication
channel to a central server - the MOOSDB. Data is published
as named messages by a client in either string or double
format and stored in this database. Other clients can fetch
not only the latest data but also the history of changes that
were made to the data since the last read. It can be assumed
that the lack of type-safety, the additional costs for parsing
and sending human readable string data and the need to store
data in a central database before sending it to a subscribed
client leads to performance problems.

YARP - Yet Another Robot Platform [12] aims to mini-
mize the effort devoted to infrastructure-level software de-
velopment by facilitating code reuse, modularity in order
to maximize research-level development and collaboration.
Therefore, it includes support for a transport-neutral inter-
process communication model based on so-called Ports.
Ports can manage multiple connections for a unit of data
either as input or output. Each connection allows sending
and receiving of data supporting different data rates and
different protocols (e.g. TCP, UDP or shared memory). A
central server is used for maintaining a list of all ports and
how to connect them.

This overview shows that many of the reviewed middle-
wares share the same ideas and basic concepts. Most of them
also share the same disadvantage of a centralized approach.
This poses a problem especially in multi-robot scenarios.
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Here, each robot acts as an independent system that interacts
with the other systems. If the central server fails, the whole
system with all robots will stop working, even though each
robot could continue its normal operation independently.

Although the aforementioned middlewares are widely
spread within the robot community, no detailed performance
benchmarks have been carried out yet. This is quite sur-
prising since the performance of a middleware can have
a significant impact on the overall performance of the
robotic system. In [4] many robot frameworks including
their provided algorithms for navigation and mapping are
compared with each other also in terms of CPU and memory
usage. However, in those tests complete robotic applications
are benchmarked, that contain all necessary algorithms for
navigation. Consequently, the obtained results reflect the
performance of the navigation algorithms and not of the
middlewares themselves.

Due to this lack of information, we present an elaborate
performance benchmark in section V of this paper.

III. OVERVIEW OF MIRA

Keeping the weaknesses of the aforementioned middle-
wares and frameworks in mind and taking our long lasting
experience with our previously used architecture [13] into
account, we developed an alternative middleware for robotic
applications (MIRA) that is designed to be used in real-world
applications as well as for research and teaching. Therefore,
we pursued the following design goals some of which are
also mentioned in [14]:

1) High performance and low latency: the communication
techniques must have a low CPU footprint to be able to use
the middleware on robots with low computational power and
to leave enough capacity for the actual algorithms.

2) Easy to learn and use: for this reason, all functionality
should be realized by using features of the designated
programming language (C++, Java, etc.) only. In contrast
to ROS, no additional interface description meta-language is
necessary.

3) Small number of different concepts that are used for a
large number of different features to assure ease of use, e.g.
our serialization concept that is described below.

4) High usability: the features of the middleware must
be intuitive and accessible with little code and configuration
overhead.

5) Foolproof: programming mistakes like type mismatches
when using the communication techniques should be re-
ported by the compiler or at run-time instead of leading to
unexpected results.

6) Robust and reliable: the MIRA software system must
not contain a central component that - in case of failure -
might stop the entire system from working. Moreover, a high
software quality is assured by strict software reviews and by
many automated test cases.

Similar to ROS, MIRA supports fully distributed appli-
cations, i.e. the application can consist of several different
processes that can even be located on different machines.
Each process runs a MIRA Framework that provides all

functionality of the middleware. In each such process, one
or more software modules can be located (see Fig.1). Each
module is called a unit. A unit usually implements the
necessary algorithms to solve a certain task, e.g. robot
navigation or person tracking, hence a unit is comparable
to a ROS-Node/Nodelet. In contrast to ROS, however, units
can be freely placed with other units in any process at run-
time without any code changes. If several units are located
within one process, each unit runs in its own thread. MIRA
will automatically take care of multi-threading and data
synchronization.

Process with MIRA-Framework Process (MIRA-FW)

[ Unit
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Fig. 1. In MIRA software modules (units) can be distributed across different
processes, where each process runs a MIRA Framework that provides the
middleware. MIRA automatically chooses methods for intra- or inter-process
communication that are fully transparent to the units.

MIRA itself is written in C++, but it is designed to be
interoperable with other programming languages like Java,
Python and others.

A. Serialization and Reflection

A central concept of MIRA that is used in many dif-
ferent use cases is serialization and reflection. Reflection
is also known from higher level programming languages
like Java and C#. It allows both to retrieve information on
the structures of the program at run-time and to query the
names and types of variables, and methods of classes. This
information is used by MIRA to realize serialization. This
is the process of converting a data structure or object into a
sequence of bits so that it can be stored in a file or memory
buffer, or transmitted across a network connection link to
be “resurrected” (deserialized) later in the same or another
computer environment. Unfortunately, C++ does not support
reflection and serialization natively. For this reason, MIRA
provides an easy to use mechanism that adds both features.
An arbitrary class can be reflected and serialized by adding
a reflect method as in the following example:
class Foo {

int value;

Bar* ptr;

template<typename Reflector>

void reflect (Reflectorg r) {

r.member ("Value", value, "An int member");
r.member ("Pointer", ptr, "polymorphic pointer");
bi )

This mechanism is used for efficient serialization of the
transported data when inter-process communication is used,
for parameter marshalling in remote procedure calls, persis-
tence, i.e. storing and loading of states of objects, real-time
modification of the parameters of algorithms for easy online
“parameter tuning” and many more. If a class again uses non
trivial members they are reflected recursively. This enables
users of MIRA to compose, store and transmit complex
objects, objects with pointers and, by the use of a class
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factory, even instances of polymorphic classes. It allows
to use the complete object-oriented programming paradigm
all over the whole distributed application, which offers the
realization of completely new ideas: beside simple data now
very complex objects like robot-models, GUI-components or
even software modules can be transported to the remote side
where they add new functionality. That means, beside simple
data, functionalities can now also be transmitted. In other
middlewares, object orientation always ends at the point
when data is transmitted and where they have to fall back to
PODs that are restricted to carry plain data only.

B. Interoperability

The use of the serialization technique makes it easy to
add interoperability with other programming languages and
middlewares. At the moment the serialization formats XML,
JSON and binary are supported. Through JSON MIRA offers
connectors to Python and JavaScript. In order to make
the variety of algorithms provided by the ROS community
accessible and to allow one to use our middleware without
the need for porting existing software an adapter to ROS’s
topics is available using serialization.

IV. COMMUNICATION MECHANISMS

As already stated before, the major role of a middleware
is providing communication mechanisms. For this purpose,
MIRA offers two different techniques: message passing and
remote procedure calls (RPC). Both will be described in this
section. MIRA will automatically choose high performance
intra-process communication if the communicating units are
located within the same process and inter-process communi-
cation via TCP/IP if the units are distributed across different
processes (see Fig.1).

The details of the underlying communication technique
are fully transparent for the units. Hence, no changes in the
code are necessary if a unit is used together with other units
in a single process or in a distributed application. This is
a big advantage in comparison to ROS which differentiates
between nodes and nodelets.

In contrast to ROS, Urbi and other existing robot middle-
wares, MIRA does not need a central server for name lookup
and other management tasks. It is fully decentralized, and the
different MIRA processes connect to each other in a peer-to-
peer architecture. Hence, there is no single point of failure.
This is an important advantage in terms of robustness and
reliability.

A. Message Passing and Channels

Units can communicate with each other and exchange
messages and data via named channels. Channels have
globally unique names and are strongly typed, i.e. when
storing data in the channels the type information will be
maintained. If a user accidentally mixes types, this will be
reported by the compiler or at run-time and will not lead
to unexpected results. A unit that provides information and
data can publish it to a channel. On the other hand, units
that are interested in a certain kind of data can subscribe to
the corresponding channel using either polling or automatic
notification via callbacks whenever new data is available.

There can be one or multiple publishers and subscribers for
the same channel. Hence, channels allow one-to-one, one-to-
many and many-to-many connections.

When multiple publishers and subscribers access the same
data, MIRA will automatically take care of concurrent multi-
threaded access. For optimal performance, we developed
a mechanism that avoids unnecessary copying of data and
blocking whenever accessing the data for reading or writing.
Therefore, each channel is realized as a queue of data. Each
queue entry is called slor. It is large enough to store one
element of the data. The slot concept allows units to access
the same channel for reading and writing without interfering
each other.

t-4 3 2 1
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New data is written and will
overwrite data in oldest slot at -4
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Fig. 2. Each channel consists of a queue of slots. In the upper row, the two
newest slots are locked for reading. In the second row, new data is written.
Therefore, the oldest slot is recycled and replaced by the new data. In the
third row, the newly written data now becomes the newest slot.

The two latest slots at time index
t and t-1 are locked for reading

After writing is finished, the new
data becomes the latest slot at ¢

If a unit wants to read data from a channel, the MIRA
Framework will return a read-accessor to the most current
slot. Additionally, that slot will be read-locked for concurrent
access, i.e. read access is allowed for other units whereas
write access is forbidden (first row in Fig. 2). If a unit wants
to publish data to that channel, the MIRA Framework looks
for a non-blocked slot first of all, i.e. a slot where no other
unit is reading from or writing to (second row in Fig. 2).
This slot will be locked exclusively, and a write-accessor is
returned that allows the unit to write its data directly into the
slot. To avoid unnecessary memory allocation, the memory
of a slot can be reused if the size of the data does not change.
A unit that e.g. captures data from a camera can store the
image data directly and thus, no data is copied unnecessarily.
If no free slot is available for writing, a new slot is created
and the channels queue will grow. After finishing writing,
the slot becomes the newest element for the channel and can
be read by other units (third row in Fig. 2). This concept
completely avoids blocking of the publisher of the data even
if other readers are still consuming. Vice versa a reader will
always be able to obtain data for reading without blocking. It
is essential in the use case of a single fast producer and many
or even slow consumers. Consumers can do time consuming
operations on the data without the need for copying it
and thus avoid blocking of the producer. Obviously, the
described slot-concept seems to lead to an additional memory
consumption for holding multiple instances of the data in
the slots. In the worst case, there will be as many slots as
readers and writers. However, in other middlewares that do
not use such a slot-concept, as for example ROS, each reader
or writer holds its own copy of the data anyway, leading
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to exactly the same memory consumption. Consequently, in
comparison to other concepts, our concept does not pose
any additional memory consumption overhead. In practice,
it even reduces the memory usage: in typical scenarios with
one publisher and two or more readers only two slots are
needed since several readers can share a single data slot.

Another advantage of this slot-concept is achieved by
keeping the slots of the channel’s queue in the correct
temporal order. This is done by using the queue as a ring
buffer, where the oldest element is replaced if new data
is written (second row in Fig. 2). This allows read access
to data from the past or even reading whole intervals of
continuous data. This is an essential feature for transmitting
audio data where it is important that no audio frame is
dropped. Moreover, such a history allows to interpolate or
filter data since the filter or interpolation function can access
multiple consecutive values. Currently, we support linear-
and cubic-interpolation as well as a moving average-filter
that, for instance, allows to compute the average of the
channel’s data within the last second.

B. Remote Procedure Calls

Remote procedure call (RPC) is a concept for invoking
procedures and methods from remote as if it were local ones.
It is a form of inter-process communication. Our approach
for RPC can be used for both inter- as well as intra-process
execution of a unit’s subroutines. Each unit exposes some
of its functions as a named service available for RPC to
the framework. Most RPC systems make use of an interface
description language (IDL) to describe the layout of the
methods. In others, the methods must follow a special syntax
or have special types for parameters and return values. In
MIRA, return values and parameters are strongly typed as
we use our serialization concept for marshalling them. It
allows to publish any global or class member function with
an arbitrary number of parameters. The only requirement
is that the return value and the parameters use serializable
data types. This has the advantage that the user can exploit
existing methods to the RPC system later with a single line
of code. Registration of methods is done analogue to the
serialization of members in the reflect method.

class Foo {
template<typename Reflector>
void reflect (Reflector& r) {
r.interface ("IAverage");
r.method ("computeAverage", &Foo::computeAverage, this,

"Computes the average of all vector elements");

float computeAverage (const std::vector<float> data) {

return sum / data.size();
)

For obtaining the returning value of a remote procedure,
MIRA utilizes futures that act as a proxy for the result of the
asynchronous call. The use of futures dramatically reduces
latency for RPC, since the caller can decide whether to wait
for the result or to query for it later on. For example, one
can invoke a call to a remote procedure which may take
some time to complete. In the meantime, one can process
or compute something else to use the time efficiently while
waiting for the result of the call.

std::vector<float> data;

data.push_back (1.0f);

data.push_back (2.0f);

std::string service = waitForServicelInterface ("IAverage");

RPCFuture<float> future = callService<float> (service,
"computeAverage", data);

// do some time consuming computation here

// now obtain the result of the call by blocking

// until it is available

float result = future.get();

We have also enhanced the functionality of standard RPC
facilities by object-oriented features. Units can implement
interfaces so that other units may query for a list of services
that provide a certain interface without knowing the name
of the service provider. Interfaces enable code reuse, i.e. a
navigation algorithm can control a variety of different robotic
drivers that implement an “IRobot” interface. Units can even
wait for a required interface to become available. Addition-
ally, we support exposing of virtual member methods that
can be reimplemented in derived classes.

Another feature of RPC in MIRA is exception passing.
That is, errors and exceptions that occur on the service side
will be transported back to the caller. When the caller tries
to access the return value of the call, an exception will be
thrown that contains the marshalled error. Here again, MIRA
only relies on built-in features of the C++ language.

As mentioned before, calling service methods is done by
serializing passed parameters and return values. This allows
for using fast binary serialization as well as calls with JSON-
RPC encoded messages, e.g. via Javascript over a website.

V. RESULTS

In the following, we compare the performance of MIRA
with several other commonly used robot middlewares ROS,
Yarp, Urbi, Player, LCM and MOOS. Thereby, we concen-
trate on the performance evaluation of the communication
techniques only. In general, we analyze the communication
overhead that is imposed by the middlewares.

Since each middleware offers slightly different concepts
for communication, the performance of those concepts can-
not be compared directly with each other. Instead, we
defined simple scenarios that were implemented for each
middleware using the available techniques that are pro-
vided by the middleware. The scenarios also define the
performance metrics that are evaluated, e.g. delay, latency,
memory usage, etc. The source code for all benchmarks
is written in C++ and adapted to each tested middle-
ware. Moreover, it was compiled with full compiler op-
timizations for all middlewares. It can be downloaded at
http://www.mira-project.org/ for own evalua-
tions.

All benchmarks were carried out on the a single machine
with an Intel Core i7-2620M, 2.70GHz processor and 4GB
of RAM. For timing measurements we used the “RDTSC”-
instruction to access the Time Stamp Counter of modern
processors. It counts the number of CPU cycles since system
start and, therefore, has an extremely high resolution of less
than one nanosecond on the testing machine. In the timing
results below, we have converted the measured CPU cycles
into milliseconds.



in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 2591-2598, IEEE 2012

a) T T T T T T T T T T T TTTT b) T T T T T T T T T T T T c) é
1 [

1000 |

=z g g

— 2 = | |
z & - i | —m—MIRA

Q 1]

= E g 100 |- -| —@— ROS
5 <01} = | | = Yap
= 35 % L ] Urbi
a g 101 | —e— Player

a8 = =

0.01 | Lol Lol Lol 001_!' T It | g ool ool c ol

1 10 100 1000 1 10 100 1000 1 10 100 1000

data size [kB]

data size [kB]

data size [kB]

Fig. 3. Benchmark results for intra-process communication where publisher and subscriber are located within the same process. a) Latency for transmitting
data depending on the size of the transmitted data. b) Time for publishing data depending on the size of the transmitted data. ¢) Memory usage caused by

data transmission depending on the size of the data.

T T T} c) o ARl e e ol e e R
10000 f
5 i | —a—MIRA
o 1000 £ =
& E 1 —e— ROS
3 e 1 —8&— Yarp
4 & 100 8:5 = Urbi
E £ F | —o— Player
1 5 Ll 1 ——LcM
TN T \HHHT

a) J T T T T \\\y b) i
G © ©
10 | = 1
- [ g |
B s |
5 E
<
ﬁ %0.1
=
o
Ll Lol Lol 0.01
1 10 100 1000 1 10

data size [kB]

data size [kB]

1
100 1000 1 10 100
data size [kB]

1000

Fig. 4. Benchmark results for inter-process communication where publisher and subscriber are located within different processes. a) Latency for transmitting
data depending on the size of the transmitted data. b) Time for publishing data depending on the size of the transmitted data. ¢) Memory usage caused by

data transmission depending on the size of the data.

A. Intra-Process Communication

The first scenario consists of a publisher that sends data
to a subscriber. Both the publisher and the subscriber are
located within the same process. The scenario was executed
several times - each time with a different size of the
transmitted data. The size was varied within a range from
1 kB to 1000 kB. In practice, a size of 1 kB corresponds to
small objects like odometry data, while a size of 1000 kB
corresponds to 640 x 480 color images. Therefore, both are
typical sizes for data that need to be transmitted by robot
middlewares. To achieve reliable measurements we averaged
the benchmark results of 100 consecutive transmissions
which were sent with a rate of 10 transmissions per second.

1) Latency between Publisher and Subscriber: As first
performance metric the time duration was measured from
the moment when the data was sent by the publisher until
it was received by the subscriber. For a robotic middleware
this latency should be small to enable highly reactive appli-
cations. Moreover, the latency is an indicator for the CPU
usage of the transmission as it contains the time needed for
the serialization, transport and potential copying of the data
- operations that are very CPU intensive.

The left plot in Fig.3a shows the latency depending on the
size of the transmitted data for the different middlewares.
Please note that logarithmic scales are used in those plots.
MIRA and Urbi have a constantly small latency that is

independent from the data size. The latency of MIRA on
average is 0.03 ms, which is slightly lower than Urbi’s
latency of 0.04 ms. In contrast, the latency of ROS, Yarp
and Player increases with the size of the transmitted data. In
Player this is caused by copying the data.

For ROS and Yarp on the other hand, one would not expect
the latency to increase with the size of the data at first glance,
since both simply share the memory between the publisher
and the subscriber. However, in practice the publisher has to
make sure to not interfere with the subscriber. Therefore,
the publisher has to create a new shared memory block
whenever it wants to write new data, since the subscriber
may still be reading from the previous shared data. This
is common practice in most ROS nodelet implementations.
Therefore, we treat this implementation detail as necessary
part of the data transmission and had to take it into account
in our benchmarks, where we allocate new memory before
the transmission of the data. Consequently, for large amounts
of data, allocating the memory results in a large performance
penalty for ROS as shown in Fig.3a. For Yarp the same tech-
nique has to be applied when intra-process communication
is used. For large amounts of data, ROS, Yarp and Player
are up to 40 times slower than MIRA and Urbi due to the
allocation or copying overhead.

2) Overhead for publishing data: In addition, we have
measured the time a software module blocks when it is
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publishing data. For a publisher this time should be as small
as possible to avoid performance penalties, especially when
data is written with high frequencies.

Fig.3b shows the time that is needed for publishing data
depending on the size of data that is written. In MIRA pub-
lishing data constantly takes about 0.01 ms, i.e. a software
module is able to publish data with a rate of up to 100 kHz.
This is significantly faster than the other middlewares. For
ROS, Yarp and Player, the time again increases with the size
of the transmitted data, caused by the memory allocation
(ROS and Yarp) or memory copying (Player). On the other
hand, when using Urbi, a publisher blocks for a constant
amount of time, similar to MIRA. However, the time is
significantly higher. This is a result of the non-copying mode,
where the publisher has to wait until all subscribers have
finished processing the data.

B. Inter-Process Communication

In a second scenario, we tested the inter-process perfor-
mance. In contrast to the first scenario, the publisher and the
subscriber were now located in two different processes on
the same machine. The results are shown in Fig.4.

1) Latency between Publisher and Subscriber: Fig.da
again shows the latency for the transmission of a data
packet. It is not surprising that the latency is higher for all
middlewares as inter-process communication creates more
overhead. The inter-process performance of MIRA and ROS
is almost identical. Both are significantly faster than Urbi
and Player.

The graph of the MOOS middleware is not included in the
diagrams, as its performance is very poor. With 100 ms the
latency of MOOS is 100 times higher compared to MIRA.
Beside the slow string-based data exchange, this is caused by
the low frequency that is used for fetching the data from the
central database, although this frequency was already set to
the maximum of 200 Hz in our tests. It is questionable if such
a middleware is suitable for realtime robotic applications,
that need to respond quickly.

Beside MOOS, Player also has a poor inter-process perfor-
mance since it does not support this kind of communication
natively. Instead, it requires the use of a special ‘pass
through’-device which results in significant overhead.

In contrast, Yarp shows an extremely good inter-process
performance and achieves even smaller latencies than ROS
and MIRA for larger amounts of data although all three
middlewares use TCP for the inter-process data transport.

The LCM middleware also performs well, especially for
small amounts of data. For larger amounts of data its latency
becomes up to two times larger than that of MIRA and ROS.
This is caused by the used UDP multicast, which seems to
perform worse on a single Linux machine compared to TCP.

In general, the inter-process communication is about
10 times slower than the intra-process communication for
all middlewares that support both, especially when large
amounts of data are transferred. This needs to be taken
into account when images and other large data packets are
exchanged between software modules.

2) Overhead for publishing data: As shown in Fig.4b,
in ROS, Yarp, Player, Urbi and LCM the blocking time
increases with the size of the transmitted data when pub-
lishing data. This is because these middlewares block until
the whole data is transferred into the transportation buffer
(TCP stack, etc). However, in MIRA the publishing overhead
remains constantly low. This is a result of the employed slot-
concept which ensures non-blocking access for reading and
writing. The actual transfer into the TCP stack is done by
a separate thread. Therefore, in MIRA the communication
stays fully transparent no matter if inter-process or intra-
process communication is used.

C. Memory Consumption

In the above tests, we additionally measured the memory
usage during the transmissions. Measuring the total memory
consumption of a process is difficult as it contains the code
size of shared library and the process itself and would,
therefore, lead to incomparable results. For this reason,
we first obtain the memory usage of each process before
starting the transmission and again afterward. The difference
of both values yields the additional memory usage that is
solely caused by the data transmission. Again, these mea-
surements were made for different sizes of the transferred
data packets and for intra-process communication (Fig.3c)
and inter-process communication (Fig.4c). In the latter case,
we computed the memory usage for both involved processes
and added them.

When using intra-process communication, ROS, Yarp and
Urbi use exactly the amount of memory that is allocated
by the data packet. There is almost no additional overhead.
MIRA and Player require two times more memory here. In
MIRA this is caused by the slot-concept which allocates
memory for two data packets. In Player the additional
memory is required since there is a data buffer for both the
publisher and the subscriber, where the data is copied to.

When using inter-process communication, the memory
overhead is significantly higher for all middlewares. ROS
and LCM have the lowest memory consumption followed
by MIRA, Player, Urbi and Yarp.

Interestingly, the memory usage of ROS, LCM and Urbi is
significantly lower than that of MIRA, Yarp, and Player as
long as small amounts of data are transferred. Apparently,
MIRA, Yarp and Player have a minimum size for their
transportation buffers that create some overhead in these
cases. This constant overhead is the highest for Yarp. On
the other hand, when using large data packets the memory
overhead of Urbi rises dramatically, up to 6-10 times more
than the other middlewares.

Nevertheless, the general memory usage characteristics are
similar for all middlewares and none of them really wastes
memory. Moreover, on current architectures memory usually
is not the limiting resource.

D. Latency of Remote Procedure Calls

In a third scenario, we compared the performance of
remote procedure calls. Therefore, one software module
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offers a service that is called by another module. To measure
the influence of the amount of data that is transported
together with the RPC call, the service method takes a single
parameter where the data is passed. Again the latency is
evaluated, i.e. the time that elapses from sending the RPC
call until the invocation of the service method is measured.

Due to the limited or missing RPC support of Urbi, Player,
Yarp and LCM, the benchmark can be performed for ROS
and MIRA only. Fig.5 shows the latencies of RPC calls for
both middlewares.
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Fig. 5. Latency when performing a remote procedure call depending on

the size of the transmitted data.

For RPC calls where a small amount of data is transferred,
the latency of MIRA is similar to using channels for inter-
process communication. When using ROS on the other hand,
RPC calls are significantly slower compared to the other
communication technique using ROS topics. In a direct
comparison with MIRA, the latency of ROS RPC calls is 7
times higher if only a few bytes or kilobytes are transmitted.
However, with an increasing size of data, this difference is
getting smaller. For very large amounts of data the latency
of ROS even becomes smaller than that of MIRA. This
drawback is a result of unnecessary data copying within
MIRA’s RPC framework and will be fixed in the next release.
Nevertheless, RPC calls are usually not used to transport
huge amounts of data. Channels should be preferred for this
purpose.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new middleware for robotic
applications. Although many middlewares already exist for
this purpose, most of them apply similar communication
techniques that lead to the same disadvantages. With our
slot-based communication technique, we presented a novel,
very efficient approach that avoids blocking and unnecessary
copying of data when concurrent read and write access comes
into play. Using this technique, our middleware is able to
outperform other middlewares that are regarded as state of
the art. The high performance and the fully decentralized and
therefore reliable architecture allows to apply MIRA in real-
world applications. While other middlewares are strongly
focused on the transport of plain data, MIRA’s serialization
concept allows to transport complex objects as easily as
normal data and, therefore, allows to apply the object-
oriented programming paradigm within the whole distributed
application.

This enables new techniques like the migration of units at
run-time. Depending on the workload within the distributed
application, units can move from one process to another

or even to a different machine. This offers completely new
possibilities for robotic applications and even self-organized
applications. The current implementation already supports
migration, and we want to extend this feature within the
next releases.

Its performance and the new features mentioned in this
paper make MIRA an valuable alternative to the existing
middlewares. To increase the distribution of MIRA within
the robotic community, it is available as open source for
download at http://www.mira-project.org/.

Another main contribution of this paper is the first ever
performance comparison of the most commonly used mid-
dlewares ROS, Player and Urbi. On the one hand the results
of these benchmarks can assist developers and designers
of robotic applications to choose the right middleware de-
pending on their needs, and on the other hand it may help
to improve the performance of the overall application by
choosing the right design decisions, e.g. by using intra-
process communication where applicable.
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