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Abstract

Fast and robust person reidentification is an important
task in multi-camera surveillance and automated access
control. We present an efficient appearance-based algo-
rithm, able to reidentify a person regardless of occlusions,
distance to the camera, and changes in view and lighting.
The use of fast online feature selection techniques enables
us to perform reidentification in hyper-real-time for a multi-
camera system, by taking only 10 seconds for evaluating
100 minutes of HD-video data. We demonstrate, that our
approach surpasses current appearance-based state-of-the-
art in reidentification quality and computational speed and
sets a new reference in non-biometric reidentification.

1. Introduction
Fast and robust person reidentification is a key condi-

tion for multi-camera surveillance applications. Tasks vary
from supporting image-based tracking in ambiguous situa-
tions, cross-camera global tracking, up to automated access
control for restricted areas.

In this paper, we focus on cross-camera global person
tracking in an uncontrolled multi-camera surveillance sce-
nario, like the terminal building of an airport. Common rei-
dentification approaches from biometrics (face, iris, finger-
print, and gait) are known to be very robust for controlled
scenarios (e.g. automatic passport control), with cooper-
ating passengers. In uncontrolled scenarios, biometric ap-
proaches are not (iris, fingerprint) or only limited appli-
cable (face, gait). Facial person reidentification is easily
avoided by turning away from the camera or occluding the
face. Gait recognition often fails due to missing full body
views. Therefore, appearance based reidentification meth-
ods are preferable for uncontrolled scenarios. Nevertheless,
face and gait-based reidentification can be used in parallel
to this.

To realize a reidentification system for uncontrolled
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surveillance scenarios, it is often not necessary to distin-
guish all persons from each other, but to only reidentify one
selected person. In those systems, it is sufficient to use the
selected person’s model and rank all persons according to
their similarity. In comparison to binary classification, a
ranking is often better suited for reidentification tasks, since
it provides additional score (confidence) values. Therefore,
we introduce a novel reidentification approach that provides
scores and rankings, while being real-time capable for a
multi-camera surveillance system.

We focus on the scenario of airport surveillance. Our
reidentification method supports an operator in finding a se-
lected person. All search tasks are triggered by the operator.
For speeding up the operator triggered search, features for
reidentification are precalculated for all persons during the
recording of the videos.

The remainder of the paper is organized as follows: In
Sect. 2, we summarize current state-of-the-art methods for
person reidentification. Then, we introduce the proposed
reidentification method in Sect. 3. In Sect. 4, we evalu-
ate our approach on a public benchmark dataset and a real-
world surveillance application. We end with a conclusion.

2. State-of-the-Art
Recently, a lot of research is done in the field of per-

son reidentification. A coarse, but systematic review of the
different approaches is given in Fig. 1. The state-of-the-
art differs in the capabilities concerning a variety of chal-
lenges. A comparison of some of the most important algo-
rithms with the method proposed here is given in Tab. 1. For
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Figure 1. Categorization of reidentification methods
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classification, our approach is applicable for view-invariant
appearance-based reidentification with occlusions present.
It uses a feature selection for feature space reduction. Due
to the reduced feature set, it is real-time capable in the exe-
cution phase.

Method VIA FSR FS OCC RTC SPS NNS FUS

MSCR, RHSP [5] × × × × × ×
Histogr., PCA [26] × × × ×

Haar-Ft., MI [14] × × × ×
SIFT, ISM [13] × × × ×

Proposed Method × × × × × ×
Table 1. Comparison of state-of-the-art reidentification approaches.
Columns indicate, whether the denoted methods can handle view-invariant
appearances (VIA), do a feature space reduction (FSR), use feature selec-
tion (FS), can handle occlusions (OCC), are real-time capable (RTC), can
be trained on a single positive sample (SPS), do not need negative samples
for training (NNS), and are easily applicable for fusion (FUS).

3. Ranking-based Reidentification Using Fast
Online Feature Selection

In this section, we present our reidentification method
which provides similarity scores and rankings instead of
only binary decisions. Ranking person hypotheses has sev-
eral advantages compared to strict classification. While
classification only produces a definite response, the rank-
ing can be used even in ambiguous situations by providing
scores for each hypothesis. As for example, in a situation,
where no hypothesis can be accepted due to ambiguities,
our method can at least reject all hypotheses, that are defi-
nitely unsuitable, without the risk of rejecting the person of
interest.

A tremendous amount of different features can be ex-
tracted from images in order to realize appearance-based
person reidentification. Depending to the current situation
in the scene, different sets of features are suited to realize a
robust reidentification. Our approach uses feature selection
and information-theoretic learning, to find a set of suitable
features to circumscribe one person compared to all other
persons in the scene. Afterwards, the ranking provides the
similarity of a person’s model to all other persons.

To establish a ranking, we have to choose a person rep-
resentation that can be used to provide a similarity func-
tion. For reasons of simplicity, we use a multi dimensional
mixture of Gaussian probability distribution [2]. To esti-
mate the similarity of a person hypothesis to a learned per-
son specific model, we compute the Mahalanobis distance.
Using the ascertained distances for all persons in the test
dataset, a ranking can be established. A shortcoming of
the chosen approach is the need for estimating high dimen-
sional covariance matrices, which cannot be approximated
with a small number of samples. In surveillance scenarios,
usually only 100-500 samples (several seconds of video se-
quences) are available for model training. Therefore, this
model cannot be applied to high dimensional feature spaces
in such a scenario. To overcome this ”curse of dimension-
ality” dilemma in person reidentification, most approaches
use a preselected set of features to reduce the dimension of

Figure 2. Proposed algorithm, composed of live analysis (a-b), model
training (c-e), and execution phase (f).

the feature space. This is counterproductive, since without
the knowledge of the current scene and the persons within
the scene, only a sufficiently manifold feature space makes
it possible to separate the persons from each other. Choos-
ing a small preselected set of features could fail in cases
with many persons, since the relevant features for separat-
ing this person from others might be left out.

The approach we introduce uses online feature selection
to find a discriminative but small feature set, which can be
used for the selected person, rather than separating all per-
sons from each other. This enables us to estimate the covari-
ance matrix for a person specific similarity function at run-
time. Containing only the most discriminative features, this
can be achieved even with relatively few training samples.

Fig. 2 shows all steps of our approach: The first step
is the detection and tracking of all persons in the scene.
The features, needed for reidentification, are extracted for
each tracking hypothesis. This ”live analysis phase” is ex-
ecuted in parallel to the recording of the video sequences
(Sect. 3.1).

After a person is selected, the ”model training phase”
starts. Model training cannot be applied for all persons
in the scene, since it is computationally very expensive.
For model training, a dataset is generated using well suited
tracks of the selected person and others in the scene. Then,
the features of the training data are normalized, and on-
line feature selection is performed using the joint mutual
information [28] for subsets of features. After the features
were selected, the space spanned by the remaining features
is clustered to get the person specific multi-Gaussian model
(Sect. 3.2).

Having all models trained, the score calculation and
ranking can be done very fast. Score-level-fusion is used
to increase the performance. The start of this ”execution
phase” is triggered by an operator (Sect. 3.3).

3.1. Live Analysis Phase
Real-Time Person Detection and Tracking

In order to reduce the number of reidentification tasks,
robust components for person detection and tracking are
needed to produce long and non-ambiguous trajectories. In
our approach, real-time person detection is done using an
advanced version of contour cues [27], which is speeded
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up by foreground segmentation and calibrated cameras. For
person tracking, we implemented a simple and fast sparse
template-based feature tracker. We improved the approach
of [6], by using color features drawn from homogeneous
regions and choosing a faster direct search strategy (loga-
rithmic search [10]). This template-based approach has the
advantage that hypotheses with occlusions can be detected
and handled separately in the model training phase. We de-
cided in favor of these person detection and tracking meth-
ods, since they perform at high frame rates, leaving enough
computational time to extract lots of features. Nevertheless,
these components are exchangeable, and thus, the algorithm
can easily be adapted to other applications.

Feature Extraction
Basically, all kind of features can be used for this

appearance-based reidentification approach. But since fea-
ture selection should only select a minimum number of most
relevant feature space dimensions, one single feature should
only consist of one channel, or a small number of channels,
which can be decomposed into a set of discriminative chan-
nels. We characterize a channel as a single component of a
set of elements assembling a feature. As example, we com-
pare the channels of RGB and SIFT:

• The RGB-mean-color feature consists of three decompos-
able discriminative channels (red, green and blue), which
makes this feature applicable.

• A SIFT-descriptor has a set of 128 channels, each alone with-
out discriminative power. Therefore, this descriptor can only
be applied, if it is transformed into a single channel using a
similarity function.

A second condition for the features is, that they have to
be extracted in real-time for the proposed surveillance sce-
nario. Fig. 3 shows a categorization of possible features.
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Figure 3. Categorization of features suitable for appearance-based reiden-
tification

At first, to find the most relevant features for a particular
reidentification task, we extract as much features as possible
during the live analysis phase. To emphasize the recognition
capabilities of our approach, we restrict the feature set in in
this paper’s experiments as follows:

• 13 texture features from Haralick et al. [8] (f1 − f13).
• The mean color of a defined region in 9 different color spaces

[4], [24] (RGB, Y CbCr , HSV , HSL, HSI , RG-BY -
WS [19], XY Z, CIE L ∗ a ∗ b∗, I1I2I3 [17])

The features are extracted from two predefined regions
(upper and lower body) using the tracking hypotheses (see
Fig. 4). These two positions were experimentally deter-
mined to be very robust for matching foreground, while be-
ing stable in color and texture for different views and per-
spectives (including occlusions by body parts and diverse

clothing). Again, this is done for efficiency. An exact seg-
mentation of the person would eventually produce more sta-
ble regions, which may increase the performance. If our ap-
proach is adapted to other tasks, like animal or car reiden-
tification, the segmentation step could even be obligatory if
the position of the regions would change for different view-
points.

Figure 4. Regions for feature extraction. The left drawing shows the rel-
ative position of the used regions on upper and lower body to the tracking
hypothesis. On the right, sample images for different persons and views,
and the extracted regions are shown.

3.2. Model Training Phase
Training Dataset Generation

The quality of our real-time reidentification system
greatly depends on the quality of the training dataset. For
a good training dataset, it is essential to have enough non-
ambiguous training samples with a high variety of different
perspectives.

Since the features for reidentification are extracted au-
tomatically, the system needs to resolve possible conflicts
like occlusions and ID-switches by its own, while provid-
ing a high variety of samples, like perspective and light-
ing changes. In scenes with multiple overlapping cameras,
sensor fusion techniques can be used to build long contin-
uous tracks using geometrical dependencies [25]. Using a
network of calibrated cameras, the persons are tracked in
global coordinates. In regions with overlap, sensor fusion
techniques [16] can be used to resolve spatial temporal de-
pendencies, in order to connect tracks from different cam-
eras. Using tracks from more than one camera provides a
greater variety of different perspectives for training.

Global tracking can also be helpful to avoid possible con-
flicts while building the training dataset. Occlusions be-
tween persons and the risk of ID-switches can be detected
by taking the geometrical constraints between the persons
and the camera into account. To avoid false samples, these
conflict situations are excluded from the training.

Feature Selection based on Information-theoretic
Learning

In this subsection, we will introduce the online feature
selection, which is used to reduce the dimensions of the
feature space. At the end of this subsection, we also dis-
cuss the dimension reduction via subspaces, like Principal
Component Analysis (PCA).

For feature selection, the mutual information (MI; see
[20]) can be used to approximate the dependence between
a feature channel and the corresponding class labels (nega-
tive/positive). To evaluate the mutual dependence between
a set of channels and the class labels, the joint mutual infor-
mation is used (JMI; see [28]).

in: Proc. 9th IEEE Int. Conf. on Advanced Video and Signal-Based Surveillance (AVSS 2012), Beijing, China, pp. 184-190, IEEE 2012 



In [20], methods for estimating the MI for feature selec-
tion are compared. Their experiments conclude that using
the correct ranking of the MI is sufficient for feature selec-
tion. This makes a correct calculation of the MI obsolete.
The experiments also show that a correct ranking is already
achieved with simple histogram based methods. Since sim-
plicity beats complexity, we use a simple histogram ap-
proach with equal bin width. This reduces the complex-
ity of the implementation of MI and JMI, since the typical
integrals are replaced with sums and the probability distri-
butions are represented by histograms. For further details,
it is referred to [23]. Our approach additionally includes a
weighting of samples and an exceptional handling of multi-
modal distributions. This increased the performance signif-
icantly.

The following two approaches are common for selecting
the correct features:

• MI in combination with the MIFS-algorithm [1]
• computing the JMI for different subsets of features and

choosing the subsets with the highest JMI

Our evaluation shows that MIFS performs badly on our
datasets. We believe that this is caused by the choice of the
first channel, which has a large influence on the choices of
the remaining features. Since MIFS only uses the MI, it is
deficient if XOR problems are present. In XOR problems,
the MI of both channels is 0, even though the JMI is 1. Since
we detected XOR like problems in feature spaces for reiden-
tification, we decided in favor of the JMI. Nevertheless, also
the JMI-based feature selection has some shortcomings:

• High dimensional distributions: Trying to approximate a
high dimensional distribution with only few samples is prob-
lematic. Therefore, only small sets of channels can be con-
sidered (in surveillance scenarios 3-6, dependent on the num-
ber of samples).

• Computation time: Choosing a suitable set of channels is
computationally expensive, since every possible combina-
tion of channels needs to be evaluated.

• No incremental selection possible: Incremental selection
of features will fail, since it lacks the same problem as the
MI for XOR like problems.

Since it is almost impossible to compute the JMI for
all combinations of channels, we divide the channels into
nearly independent groups (five to ten channels). This can
be achieved by using the MI or designer knowledge. Using
small groups, the best subset of channels, based on the JMI,
is chosen for each group. In the next iterations, close groups
are combined to find new subsets and non selected channels
are removed. The elimination of channels is repeated until
a maximum number of channels is selected.

Also a transformation to a subspaces would be applicable
to reduce the number of dimensions. But most techniques of
this category are unsupervised (Principle Component Anal-
ysis (PCA), Independent Component Analysis (ICA), Non-
Negative Matrix Factorization (NMF) [7]). This means,
they ignore the class labels, which causes a high risk of
eliminating important dimensions for separating two per-
sons. Therefore, the use of these unsupervised methods may

lead to errors and should be avoided. Otherwise, the most
common supervised method, Linear Discriminant Analysis
(LDA) [7], is only applicable for linear separable data, and
therefore, it is not preferable for our scenario.

Building the Similarity Function
Having the N most significant features selected, the

next step is straight forward: In the N -dimensional feature
space, we utilize the mean shift algorithm with a Gaussian
kernel to cluster the positive samples. For each cluster, we
calculate the mean vector and covariance matrix. This cre-
ates the multi-dimensional Mixture-of-Gaussian model and
enables us to use the Mahalanobis distance to the nearest
Gaussian kernel as similarity measure.

The model training phase takes 2 seconds (40 channels,
10 seconds of video data for training) up to 40 minutes (600
channels, 1 hour of video data for training), strongly de-
pending on the size of the training data set and the num-
ber of features. In surveillance scenarios, usually the time
needed for model training does not exceed 2 minutes (for
600 channels) due to small training data sets. This can
easily be compensated in the execution phase (see below).
When dealing with huge training data sets, subsampling
should be performed to reduce the time needed for training.

3.3. Execution Phase
Scores and Rankings

In the execution phase, which is dealing with the person
search triggered by an operator, the model of the selected
person is used for reidentification. To calculate the similar-
ity di of a test sample i to the model’s nearest of k Gaussian
kernels, we use the Mahalanobis distance dij as similarity
measure (di = argminj (dij), j = 1 . . . k). Since only us-
ing a single sample is not very robust, we calculate a score
s for all spatio-temporally associated observations of a per-
son (termed ”track”), based on the score of each sample of
the track.

For track comparison, the benefits of using a simi-
larity measure instead of a classification become appar-
ent: Instead of using a majority vote, we can use the
best match sbest = argmini (di), the average distance
savg = avgi (di), or a combination of both. Our exper-
iments show, that using a combination is the best choice
(scombi = argmini (di) + avgi (di)). Having the scores for
all candidates calculated, we construct a ranking, based on
the score values. For deciding which person fits best to the
model, we use the following criteria:

• For closed set scenarios (e.g. supporting image-based track-
ing in ambiguous situations), we choose the person ranked
first, if the difference between the scores of the first and sec-
ond rank is large enough. Otherwise, we use score level fu-
sion with other reidentification methods (see below).

• For open set scenarios (e.g. multi-camera surveillance sys-
tems), we choose the person ranked first, if the score is better
than a global threshold. Otherwise, we use score level fusion
with another method, see below again.

Due to the reduced feature set and the use of a very sim-
ple similarity measure, the execution phase is very efficient.
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We are able to perform 12 000 score calculations within one
second on an Intel core i7 system. Therefore, the time for
model training can easily be compensated in the execution
phase.

Score-Level-Fusion
For decision fusion, a large variety of methods exists

[15]. We use a score-level-fusion mechanism, that permits
the fusion of our method with any other reidentification ap-
proach on an abstract level. To be able to do so, both meth-
ods must provide a normalized score and have to be almost
statistically independent. This can be achieved by working
on different data (e.g. using features from upper and lower
body), or using different features (e.g. skin color and a face
reidentification mechanism).

A good choice to make the scores of all methods com-
parable, is the normalization regarding the false acceptance
rate (FAR), since the mapping can be learned data-driven.
Therefore, we use score values of person comparisons with
models of any other person (which would be false positives,
if accepted), on a huge dataset with known ground truth
(e.g. public available benchmark dataset). Then we map
the k collected scores for method m to the FAR (Eq. 1)

FAR(smi ) =
rank(smi )

argmaxj rank(s
m
j )

(1)

using the ratio between the rank of a score si and the max-
imum rank of all scores sj , j = 1 . . . k (= the probability
for observing a false positive as a function of the score).
Since frequent calculations of ranks in the execution phase
would be computationally expensive, a lookup table is used
instead. The use of a logarithmic measure (Eq. 2) [9] is
preferable to Eq. 1, due to the simplification of the fusion of
two scores of methods m and n to a single addition (Eq. 3)
which correlates with a multiplication of the two methods’
probabilities of accepting a false person (Eq. 4).

snorm,m
i = − log10 FAR(smi ) (2)

sfus = snorm,m + snorm,n (3)
= − log10(FAR(sm) · FAR(sn)) (4)

Using normalized scores has an additional major advan-
tage: It can be interpreted easily. E.g. a score snorm = 2
depicts a probability for a false acceptance of 1 : 100, while
a score snorm = 6 stands for a probability for a false ac-
ceptance of 1 : 1 000 000. This can be extremely helpful,
if a threshold for decision making has to be chosen. As for
example, a surveillance system has to identify 1000 persons
per hour, and one false decision per hour is considered to be
acceptable, a threshold of 3 should be the choice (chance of
1 : 1000 for a mismatch).

4. Evaluation
In order to evaluate our approach, we used the Ca-

sia A dataset [3] (Fig. 5(a)). It was originally designed for

gait recognition, but it has also been used for benchmark-
ing view invariant person reidentification [13]. It contains
recordings of 16 persons walking in six different directions
in two sequences. We compare our approach to [13], which
uses SIFT and ISM features for reidentification. So far,
this method performed best on the chosen dataset. More-
over, we demonstrate the performance of our approach on a
surveillance system, installed in the terminal building of the
Erfurt-Weimar airport, Thuringia, Germany (Fig. 5(b)).
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Figure 5. (a) Casia A dataset [3], (b) Airport scenario

View Invariant Person Reidentification
For the Casia A dataset (see Fig. 5(a)), the task is to as-

sign a test sequence of a person to the best fitting model in
a database. Therefore, we have to deviate from our normal
scheme: Instead of ranking a set of persons for a model, we
rank a set of models for a given person.

For the database, we had to train models on all 192 se-
quences (16 persons, 6 views, 2 sequences per view), result-
ing in 32 models per view. Since we need both positive and
negative samples, we divided the 32 sequences of each view
into two parts. Negative samples were only drawn from the
15 negative sequences from the same part as the actual pos-
itive sequence. This way we trained all the models.

As [13], we also conducted a closed set evaluation. In
the execution phase, all 32 models of a single view are used.
The 32 sequences of a second view are used as test samples.
For our approach the task is to calculate a ranking for each
sequence, based on the similarity to each model. For eval-
uation, we use the Correct Classification Rate (CCR) [12].
To get a fair comparison, we only assess the ranking as cor-
rect, if the two models (out of 32) belonging to the same
person as the test sequence are ranked first and second. Ev-
ery model of the person ranked worse is called a mismatch.
For the same view, we leave out the model trained on the
test sequence, and evaluate if the remaining model for this
person is ranked first (out of 31 models). The evaluation is
done for every possible view combination (for training and
test phase).

Tab. 2 shows the results of our approach, for different
viewpoint combinations of the CASIA A dataset, using only
features extracted from the upper body. Tab. 3 depicts the
results, obtained by using features extracted from lower
body. For comparison, Tab. 4 presents the results of [13].

As it can be seen, the usage of simple but discrimina-
tive features leads to very good results for view-invariant
person reidentification. The reason can be explained using
following example: The color and texture of clothes (used
in our approach) are usually the same for different orienta-
tions, but a highly discriminative feature as that one used
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Angle 0◦ 90◦ 135◦ 180◦ 270◦ 315◦

0◦ 100 78 94 100 81 92
90◦ 73 100 83 77 89 75

135◦ 84 89 94 83 78 86
180◦ 100 78 88 100 78 94
270◦ 81 91 88 81 100 91
315◦ 86 66 77 78 89 100

Table 2. CCR of our approach with upper body features for different view
combinations of the CASIA A dataset. Rows show the view used for model
training, and columns the view of test samples. For easy comparison to the
best approach so far presented in [13], the results are highlighted green for
better, black for equal, and red for worse performance.

Angle 0◦ 90◦ 135◦ 180◦ 270◦ 315◦

0◦ 94 70 72 86 72 75
90◦ 50 100 64 45 94 61

135◦ 80 89 88 70 83 88
180◦ 89 72 73 91 70 75
270◦ 61 94 75 52 100 80
315◦ 83 66 80 66 73 94

Table 3. CCR of our appr. with lower body feat., highlighted as in Tab. 2.

Angle 0◦ 90◦ 135◦ 180◦ 270◦ 315◦

0◦ 93 25 42 81 27 57
90◦ 25 100 36 20 67 34

135◦ 42 36 100 50 36 72
180◦ 81 20 50 93 20 25
270◦ 27 67 36 20 100 42
315◦ 57 34 72 25 42 100

Table 4. CCR of [13] for CASIA A dataset.

in [13] can only be found on a preferred direction. There-
fore, a color or texture feature sampled from one direction
is more likely to be seen in another orientation. Although
the results obtained so far are very good, they can be im-
proved further by not using only features from one region.
Therefore, in our third experiment we evaluate the score-
level-fusion component of our approach for fusion of the
reidentification methods using only upper body respectively
lower body features. As shown in Tab. 5, the performance
can be increased significantly. We outperform [13] in ev-
ery viewpoint combination considerably. If the views for
training and execution phase resemble, we reach a perfect
classification. All scores for same views in training and exe-
cution phase were suitable for being accepted in an open set
scenario. The lowest score was snorm = 2.1, which gives
a probability for a mismatch of only 1

126 . Fig. 6 shows the
ROC and DET curve for scores of all viewpoint combina-
tions on the Casia A dataset.

Since the performance increase for reidentification using
score-level-fusion appears to be minor in Fig. 6 in compar-
ison to the reidentification using upper body features, the
FAR-axis is shown logarithmically scaled in Fig. 7. The
most significant region for a good rank is within the range
of a FAR of 10−2 and lower. The much higher verification
rate of the fusion in this region in comparison to the single
methods is obvious.

Angle 0◦ 90◦ 135◦ 180◦ 270◦ 315◦

0◦ 100 91 100 100 92 98
90◦ 78 100 89 77 95 78

135◦ 98 98 100 97 97 94
180◦ 100 94 100 100 91 97
270◦ 88 100 98 86 100 100
315◦ 97 94 100 94 95 100

Table 5. CCR for score-level-fusion of reidentification results with upper
and lower body features, highlighted as in Tab. 2.

(a) ROC curve (b) DET curve

Figure 6. Receiver Operating Characteristic (Verification Rate, False Ac-
ceptance Rate), (b) Detection Error Tradeoff (False Rejection Rate, False
Acceptance Rate) on Casia A dataset.

Figure 7. ROC curve of Fig. 6(a) with logarithmic scaled FAR-axis.

Application on a Real Surveillance Scenario
Evaluating our reidentification approach only on an arti-

ficial dataset does not take the importance of training dataset
generation into account. This training dataset generation
component chooses suitable negative samples and rejects
unsuitable training data, and therefore is essential for the
quality improvement of the training data set. Therefore,
we evaluated our approach, including all components, on
a realistic surveillance scenario. With two non-overlapping
cameras, we recorded 50 minutes of HD-video data with
10fps in the terminal building of the Erfurt-Weimar airport,
Germany.

The scenario includes frequent occlusions, changes in
lighting, and varying views. Eight persons traversed the
scenes frequently. The task was to mark every occurrence
of a person selected by an operator on the whole recording
of both cameras.

The Ground-Truth, that was needed to assign person
hypotheses between the non overlapping cameras, was
extracted with an automatically calibrated Laser-Range-
Finder-network [22], that covered the view area of both
cameras and the space in between. We used five LRF at
the height of 0.7 m and the tracking algorithm described
in [21] to record the movement paths of all persons in
the scene. The foot points were projected into the cal-
ibrated cameras (spatio-temporally synchronized with the
LRF-Network) and the ROIs were approximated using an
constant person height and height/width-ratio.

The visual person tracker extracted 1 562 tracks (aver-
age track length 48 frames, person height 150px–1000px).
The training-dataset-generation component collected vari-
ous different views of the selected persons and negative
samples, which were well suited for model training. Fig. 8
shows the ROC and DET curves for a closed set (only the
eight persons in the test set) and an open set evaluation (all
persons on the airport) for all scenes of both cameras. More
than 80% of false hypotheses could be rejected early, due
to a very low similarity to the model of the selected person.
In unambiguous situations, the surveillance system reidenti-
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Figure 8. Receiver Operating Characteristic (Verification Rate, False Ac-
ceptance Rate) and Detection Error Tradeoff (False Rejection Rate, False
Acceptance Rate) on a realistic surveillance scenario.

fied all persons correctly. In some cases, persons not present
in the training data, produced high scores, but could still be
distinguished from the selected person. Only situations with
many occlusions by other persons yield to errors.

Reidentification of one person for all frames on 100 min-
utes of HD-video data, using precomputed features from
live analysis phase during recording, took less then 10 sec-
onds on 4 cores of an Intel core i7.

Although, the proposed method performs very well in
our experiments, some failure modes should be mentioned:

The chosen person detector and tracker are only able to
handle upright standing persons. If other objects or per-
sons in other poses should be reidentified, the detector and
tracker must be replaced.

In the experiments, we use the mean color of a pre-
defined region as feature. This can cause problems when
lighting changes appear frequently (e.g. in outdoor scenar-
ios) or the lighting of the training data differs a lot from
the test data. There are two possibilities to compensate this
problem: (A) Color invariants can be added to the feature
set. They will be automatically selected if they are better
suited, to separate the person from others, than pure colors.
(B) Colors can be normalized with a lighting compensation
method. An adapted version of [18] shows promising re-
sults in our first experiments. If no lighting compensation is
done, the quality of the ranking degrades only slightly. The
person of interest will still be ranked in the top 10%.

Another problem is the presence of many (> 100) per-
sons. They cannot be distinguished by their appearance
with only some features. But again, the positive samples
should be ranked in the top 10% using the proposed method.
A cascaded approach, which considers only the persons in
the top 10%, could be used to distinguish the person of in-
terest from the remaining ones, by selecting new features,
that are suitable for this task. Another possibility to handle
a huge amount of people is to use cross camera probabili-
ties and transition times, as in [11], to reduce the number of
(probably similar) hypotheses.

5. Conclusion
We presented a novel approach for view invariant reiden-

tification of persons by their appearances. It uses an auto-
matic online feature selection mechanism based on the joint
mutual information. Therefore, it is able to use only the
most discriminative features for each person. During the

search phase, the proposed method performs in hyper-real-
time (10 seconds for 100 minutes video data). The experi-
ments showed that our approach outperforms appearance-
based state-of-the-art reidentification algorithms both re-
garding the reidentification quality and required computing
time. We also showed, that score level fusion is easily ap-
plicable to our approach and improves the performance sig-
nificantly.
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