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Abstract. When mobile robots operate in home environments, a robot
should consider the inhabitants while moving around. In this work, an
approach is presented, which at the one hand predicts the movements of
a person in a very simple way, and on the other hand uses the predicted
movement to plan a motion path of the robot. We deploy a potential
field approach to predict the person’s movement trajectory and use an
modified Fast Marching planner to access a time-variable cost function
for the planning process. The goal of our development is an early avoid-
ing behavior of the robot, when the robot passes a person. This should
increase the acceptance of the robot, and signal a ”busy”-behavior. We
show the feasibility of the presented approach in some first simulation
results.

1 Introduction

If mobile robots are used in everyday life, the acceptance of these robots is impor-
tant, especially, when the users are non-expert users. As experiments show [14],
users expect human-like behaviors from technical devices like mobile robots. Nor-
mally, the scenario of human-robot interaction is investigated, when the robot
and its human user want to interact in a dialog with each other, as for example
in [5,6]. In the work presented here, we want to emphasize the case of human-
robot interaction, when the robot does not want to interact with a person. For
example, when the robot is on a tour to collect food orders, or the robot has to
drive to its charging station, an interaction with a passing person is not wanted.
In such cases, the robot has to signal its busy state. The spatial configuration of
non-interaction was investigated by Hall [7] in the theory of the personal space.
In our work, this spatial distance is used to signal non-interaction. We want
the robot during the path planning phase, to take the predicted motion of an
observed person into account, and plan a non-intrusive path towards a prede-
fined goal which keeps the robot out of the interaction distance to signal busy
behavior.

Related work: In the COGNIRON project [3] a proof of the validity of the per-
sonal space could be given. In robotics, the personal space is used regularly in
tasks such as approaching a person [11,18] and also path planning [17]. The
method of Sisbot[17] is only defined in an static environment, and cannot deal
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Fig. 1. The idea of the presented approach: the robot should be able to politely pass
a moving person. To do so, the person’s path is predicted (see a)) and the personal
space of the person is used in a spatio-temporal planning process to compute a feasible
path. In b), a planning wave is propagated from the robot origin towards the goal
(blue cross). This wavefront is deformed from the obstacles as well as from the moving
personal space from the predicted trajectory.

with changing environment situations. In [13], a rule based behavior was con-
structed to pass a person in a feasible distance in straight floors. This behavior
only works in floor-like environments and fails in complex situations or environ-
ments. Today, there are no further known publications on the topic of politely
passing a moving person with respect to the person’s distances. However, there
are many approaches which concern spatio-temporal path planning, to which our
approach belongs to. The most advanced methods operate on planning trees, like
lattice graphs [15,12], which are not real-time capable today, or expanding ran-
dom trees [11,9], which have the problem on reconfiguration by deviating from
the given path. In the approach presented here, we use a modified Fast March-
ing Planner, originally proposed by [16], to include a moving person into the
planning process. To the best of our knowledge, there are no comparable works
done in this field. A fundamental precondition for spatio-temporal planning is
the prediction of the motion trajectory of the recognized person. Here, a large
set of prediction algorithms exist, mostly using probability densities, which are
build upon a large set of trajectory observations [10,2]. The disadvantage of
these approaches is the need of an exhaustive data collection to learn trajectory
models. We prefer an out-of-the-box approach, where the trajectory of a person
is predicted using the current motion direction and a potential field, presented
in [9].

Presented approach: Our approach uses a modified version of the Fast Marching
Method, to propagate a wavefront into the environment. The passing times of
the wavefront could be afterwards used to extract an optimal path. The passing
time of the wavefront is determined by using a physically correct simulation
of the wave, which also includes the predicted motion trajectoriy of a person
and their personal space. The obstacle and personal space configuration is only

in: Autonomous Mobile Systems 2012 (AMS), Stuttgart, Germany, Informatik aktuell, pp. 59-67, Springer 2012



evaluated inside the wavefront. We use the well known potential field method [9]
to predict the trajectory of the moving person. A brief overview of the key idea
of the presented approach is shown in figure 1.

2 Prediction of the person’s movement trajectory

In this section, the prediction method of the person’s movement trajectory is
presented. We use a very simple model, also known as potential field, which is
also used in [9]. The key idea is, to model the environment as a set of point like
electrical charges, which create an electrical field. This field could affect other
charges by applying a force towards them. Two forces are modeled to predict
the motion trajectory. On the one hand, the pushing forces of the obstacles are
used, to avoid collisions, and on the other hand, the pulling force of a virtual
target line in front of the person is modeled. The definition of the electrical field
is applied to compute the resulting force. For a given set of charges in positions
xi, the field at a position x is defined as:

E(x) =
n∑

i=0

Q−i ·
x− xi

|x− xi|3
(1)

The resulting force is also influenced by the virtual target of the person,
which is defined by a tangential line towards the current motion direction at a
defined distance. The force could be also calculated as shown in equation 1, and
results in a pulling force towards the current motion direction of the person. So,
the resulting force is defined as follows:

F (x) = Q−(Eobs(x) + Etarget(x)) (2)

The idea of predicting the trajectory is, to iteratively simulate the movement
by considering the force F (xj) in the currently predicted position xj for the time
interval ∆t. If the motion of a charged particle within the resulting force field
should be processed, the well known momentum equation could be formulated:
vt+1 = vt + F /m ·∆t. Here, m denotes the mass of the charged particle, and vi

denotes the speed at time i. It could be seen, that the mass influences the update
of the speed. Since a collision free path of the person should be constructed, the
mass is set to zero and only an approximation of the momentum equation is
used to update the current person speed:

vt+1 = |vt| ·
F

|F |
·∆t (3)

The predicted, piecewise linear person’s path is used for the robot’s motion
planning.

3 The Adapted Fast Marching Planner

As stated before, we use the Fast Marching Method approach from Setian [16]
for robot path planning. It is executed on a regular grid, where each grid cell
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Fig. 2. In image a), the details of the interpolation of one cell element of the wavefront
are shown. Blue values are initially known, while black values are computed. The red
values describe the final step of interpolation, where from the virtual wave sources s0
or s1 the passing time of the wavefront is calculated. On the right side b) a full simu-
lation step is shown. Note, that only the blue elements of the wavefront investigating
the current speed configuration. The wavefront is only updated with the current speed
configuration until the elements reach the simulation time t+∆t, shown in b1). After-
wards, the speed configuration is updated to t + ∆t and the propagation of the wave
is simulated until t+ 2∆t is reached (see b2)).

contains a cost value that physically reflects a speed, at which a virtual wavefront
is able to travel through this cell. Near zero values are assigned to obstacle cells,
whereas high values are assigned to free space. The advantage of this method
is, that all positive real values can be applied to the map cells, while in most
common planning approaches [4,8] only binary values could be used. The main
benefit of the standard Fast Marching Method is the ability, to construct mono-
tonical raising functions with any configuration of positive speed values, which
is essential for a path planning algorithm. The Fast Marching Method calculates
a solution of the so called Eikonal equation v(x) · |∆T (x)| = 1, which describes
the evolution of a closed curve in time T , reacting on the different speeds v(x)
at the positions x. In most cases, the solution could not be found in closed form.
Fast Marching proposes a numerical solution to this problem. The wave starts
from a single point and spreads to neighboring points by expanding grid cells,
which are currently part of the wavefront. The neighbors are added to an open
list, sorted by the interpolated travel times. The elements of the open list with
the smallest traveling time values are expanded and deleted sequentially from
the list, until no expandable cells remain. The key idea of the interpolation of
one cell is shown in figure 2. The two neighboring cells with the smallest travel
times are used to calculate the two possible sources of the wavefront section. The
most distant source is used to calculate the passing time with the current speed
of the wave within the interpolated cell. The mathematical details are described
in [16].

3.1 Adaptation for Predicted Motions

Our main idea is, to evaluate the speed, the waveform can travel through a cell
element at the time, the cell is reached by the wavefront. This is the key element,
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changed within the standard Fast Marching approach. To adapt the interpolation
method from static cell speeds v(x) to time variant traveling speeds of v(xi, t),
a number of changes are necessary. First, the planning direction is reversed.
Normally, a path from the target position to the current robot’s position is
planned. Since the traveling times of the wave have a physical meaning, in our
case the robots’s position at passing time, the path is planned from the robot
towards the goal. Second, the fusion process of the static environment with the
person’s trajectory is the fundamental change in wavefront propagation. The
system starts from a time t0 and updates the prediction of the person movement
as well as the propagation of the wavefront in time intervals ∆t. This means
for the n-th planning step, that only those wavefront cells are expanded, whose
travel times are smaller than to + n ·∆t, and only for these cells, the dynamic
speed function v(xi, t0 + n ·∆t) is evaluated.

The dynamic speed function consists of two parts: the static part vst(xi)
from the obstacle configuration with the free parameters vmax, dmax, dmin, and
a dynamic part vdyn(xi, t0 + n ·∆t), defined by the predicted motion trajectory
of the person and their corresponding personal space, represented by the width
σ:

vst(xi) =
{
vmax · d(xi)−dmin

dmax−dmin
, if d(xi) ≤ dmax

vmax , else
(4)

vdyn(xi, t0 + n ·∆t) = 1− exp
(
−|xi − xp(t0 + n ·∆t)|2

2πσ2
p

)
(5)

Here, d(xi) is the distance to the next obstacle cell, described by the distance
transform of the map, and xp(t0+n·∆t) is the predicted position of the person at
the current simulation time. The fusion is done by a simple minimum operation:

v(xi, t0 + n ·∆t) = min(vst(xi), vdyn(xi, t0 + n ·∆t)) (6)

3.2 Following the Calculated Path

The planning is complete, if the wavefront has reached the predefined target
cell. Note, that our approach also calculates when the target is reached. Each
cell, passed by the wavefront, contains the passing time. The driving path is
calculated by performing a gradient descent from the target cell towards the
robot’s original position. The robot has to follow this path as good as possible
with the defined speeds, calculated during the planning process. If the person
deviates to much from the predicted path in space and time, a replanning has
to be performed. This is triggered, if the three dimensional Euclidean distance
|(xpred

p − xobs
p ), (ypred

p − yobs
p ), (tpred − tobs)| is above a certain threshold.

4 Experiments and Results

During the simulation experiments, two scenarios with different characteristics
were evaluated. In the first scenario, a person moves on a straight line in the
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Fig. 3. In a), an example of the force field is shown, which is used for motion prediction.
In b) the function of the passing times of the wave is depicted. From this function, the
resulting path is created by gradient descent. It can be seen, that the traveling time
raises significantly, when the wavefront intersects the personal space of the person. A
detailed view of that part of the function is shown on the right.

Simulation Step ∆t=3s ∆t=1.5s ∆t=0.5s ∆t=0.2s

tavg 75ms 75ms 75ms 89.2ms
Speed factor 13 13 13 11

Table 1. Overview of the achieved computation time results for different time steps ∆t
for person position prediction. Here, tavg is the average computation time per iteration
step. On larger time steps up to 0.5 seconds the system is able to predict and plan 13
times faster than real time. Only on small simulation steps, this factor begins to lower.
In test runs, a simulation time of 0.5 seconds is chosen.

narrow space of our living lab, and the robot has to plan a path which crosses
this line. In the second scenario, the person meets the robot in a wide corridor.
The person moves also in a straight line and the robot should approach a goal
by driving in the opposite direction. Both scenarios are based on real world map
data of our lab. The map is 15m x 100m and has a map resolution of 10cm per
cell. Person detection and tracking is done by using a laser-based leg detector,
based on the approach of Arras [1]. The resulting planning functions and the
associated cell speeds, are shown in figure 4 for both scenarios. It can be seen,
that in both cases the personal space of the moving person slows down the
wavefront and guides the wavefront around the person. To provide a practical
system, the robot should be able to plan a path much faster than real time. In
fact, it must be possible to plan the path in a fraction of a second for multiple
seconds beforehand. Otherwise, the predicted trajectory becomes invalid, since
the person has moved to far until the robot starts driving. For the experiments a
Core 2 Duo mobile processor with 2.1 GHz was used by using only one core. Table
1 shows the results of the runtime investigation for multiple simulation intervals
∆t. In average, the method is capable of simulating 13 times faster than real
time. The simulation step time of 0.5 seconds is used for our experiments, since
this time provides maximal accuracy by providing still good performance. The
simulation and planning of ten seconds of motion can be done in 770 milliseconds.
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Fig. 4. Propagation of the planning wave for both scenarios. The predicted personal
space is shown by multiple bright circles. The wavefront travels through the room until
the target is reached and avoids the personal space. Finally, with gradient descent a
path is extracted from the wave’s passing times. The final path is shown as a dashed
line, whereas the planned path without a person is shown as a solid line. Note, that
every two seconds in simulation time, the color of the wavefront changes from red to
green. Below the traveling time function the used cell speeds are shown, which are
calculated when the wavefront passes the cells. Blue corresponds to slow traveling
speeds, while red corresponds to high traveling speeds.

5 Conclusion and future work

In this work, an approach for spatio-temporal path planning with regard of one
moving person is shown. Up to this stage, the problem of re-planning is only
addressed when the person deviates from the predicted path. Here, the behavior
of the robot has to be investigated in further experiments with complex situa-
tions. Especially, when multiple persons move around the environment, a more
sophisticated prediction method has to be used. We plan to use either a statis-
tical model, or a model based on social forces.
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