
I’ll Keep You in Sight: Finding a Good Position to Observe a Person

Jens Kessler1 and Daniel Iser1 and Horst-Michael Gross1

Abstract— Usually, in mobile robotics the robot has to deal
with tasks like interacting with a person or performing a driving
task. But what happens, if the robot just has to wait and thereby
still has to react on user commands? In this case, the robot has
to find a good position where the user can still be observed,
and the robot does not disturb the user’s activities. Such a
position has to fulfill different criteria: first, to guarantee the
observability of the person with the robots on-board sensors
and second, the robot should be able to observe the person
when the person changes its position at its resting place. In
this paper, a new approach is presented how to find a position,
providing all these aspects, by solving an optimization problem
using a particle swarm optimizer. We also present first results
for that problem in the 2D and 3D case.

I. INTRODUCTION

In recent years, mobile robotics more and more attain
the homes and places of nonexpert users to actually fulfill
task like reminders, video call services, emergency aids [1],
remote controllable robots [2], guide customers in super-
markets and home improvement stores [3], [4], and being
robotic butlers to serve drinks or food [5]. One of the projects
that provide a robot to remind and entertain elderly users,
living in their home environments, is the ALIAS (Adaptable
Ambient LIving ASsistant) project. ALIAS has the goal of
developing a mobile robot system to ”interact with elderly
users, monitor and provide cognitive assistance in daily life,
and promote social inclusion by creating connections to
people and events in the wider world” [6]. The used robot
is shown in Fig. 1.

In the domain of navigation, there are a lot of problems to
be solved when dealing with interaction, map building, path
planning, or localization. But, if one thinks about end user
applications in home scenarios, where a robot takes over the
role of a service assistant or a butler, there is also a lot of
time when the robot is idle and has no actual task to do. Here,
the robot has to recognize commands (e.g. gestures) from the
user while it needs to be able to perceive the user. Due to
these reasons, it is also a task for a robot within a long-term
home scenario to observe a person in a non-intrusive way.

There are several criteria a good observation position
should fulfill: (i) the user should of course be visible from
that position, (ii) the observation position should not disturb
the user, (iii) the distance should be sufficient to be able to
detect the user with the robot’s on board sensors, and (iv)
from the chosen observation position the robot should be
able to see many possible resting positions where the user

*This work was financed by the project AAL-2009-2-049 ”Adaptable
Ambient Living Assistant” (ALIAS) co-funded by the European Commis-
sion, the Federal Ministry of Education and Research (BMBF), and the
Thuringian Ministry of Science.

1Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of
Technology, Ilmenau, Germany, jens.kessler@tu-ilmenau.de

OmnicameraOmnicamera

Kinect 3D camera

Omnicamera

Kinect 3D camera

Laser range finder

Omnicamera

Kinect 3D camera

Laser range finder

Sonar system

Omnicamera

Kinect 3D camera

Laser range finder

Sonar system

Frontal camera

Omnicamera

Kinect 3D camera

Laser range finder

Sonar system

Frontal camera

Touch display
+ speakers
+ microphones

Fig. 1. The ALIAS robot, a SCITOS G5 platform of MetraLabs GmbH,
equipped with cameras, a Kinect 3D sensor, and a laser range finder. It
interacts with the user by touch-display and speech output.

could stay. This knowledge should enable the robot to chose
an observation position where it can place itself most of the
time, especially when the person changes its position only
slightly.

Similar problems are rarely described in the literature so
far. There exist approaches of intelligent photograph robots
which attempt to take good pictures in party situations [7],
or realize a robotic camera man to distinguish good shooting
positions for video conferences [8]. In these approaches
the quality of the taken pictures is the central criterion
to optimize the observation position. A larger group of
publications refers to the so called next-best-view problem.
Here, a sequence of observation points should be extracted
to gain maximal structural information, for example from
3D objects [9] or the structure of the environment (2D and
3D map building) [10], [11]. Within these approaches, the
information about an object or a scene has to be gathered
in an incremental fashion by using a minimal number of
observations. It differs from our approach in a way, that
these approaches try to increase the structural information
about the observed objects or scenes in an optimal fashion.

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

We do not want to maximize information gain, and it is
also not suitable for our problem to observe the person from
a position with maximal information retrieval since such a
position would eventually not fulfill all our criteria and only
guarantees, that the robot’s sensors will perceive the person
correctly. Other approaches simply try to keep the person
in a certain position (and distance) within the camera image
or laser scan by using controller schemes [12], [13]. This
is called visual servoing and is also not suitable for our
problem, since the robot should stay at its position, even
when the person moves slightly, e.g. on the couch.

The remainder of the paper is structured as follows: in
section II, at first the optimization problem with its different
criteria is shown in a principal fashion. In section III the
problem is formulated for the 3D case, while in section IV
the simplified 2D case is shown. Afterwards, experiments for
both cases are presented in section V, and a conclusion is
drawn in section VI.

II. FORMULATION OF THE OPTIMIZATION
PROBLEM

As stated above, the observation position has to consider
a variety of criteria. To find an optimal position to observe
a person, the set of criteria has to be evaluated in possible
samples of the search space. The search space is described
by the position x = (x, y, z) of the robot and its horizontal
view direction φ. We assume the robot can only move at
the ground plane, so the z component is fixed by the robots
height. Also, the pitch and roll angle of the camera are fixed,
and only the yaw angle φ has to be considered. Within
this three dimensional search space, the optimal point has
to be chosen as the best observation position. Since the
problem is formulated as an optimization problem, we have
to consider at the one hand the bounding conditions and
on the other hand the optimization function. Both aspects
are described in the next two sections. Additionally, the
optimization algorithm is briefly described afterwards.

A. Boundary conditions

The solution of the optimization process depends on the
boundary conditions that exist when the process is started,
and which may also change during the process. In fact,
these conditions reflect the knowledge we have about the
respective environment. On the one hand, this is the map
m(x) of the environment, which gives information about
known obstacles, and on the other hand it is the position ot
of the person to be observed at a given time t. Additionally,
we also include knowledge where the person usually sits,
stands or lies. This is done by providing a density function
p(o = x) to give the probability that a person can be
observed at a certain point x in the home environment. Figure
2 shows all boundary conditions summarized. The person
occupancy density function is approximated by building an
3D histogram.

Here, in each histogram bin the number of person ob-
servations is counted and normalized over all observations
perceived in all bins over the whole observation time. Since it

Fig. 2. The boundary constraints of the optimization problem: the obstacles
within the environment, the current person position ot, the person occupancy
distribution p(o), and the position of the camera on the robot.

is not possible to observe the true function, this function has
to be build incrementally, and the estimation of this function
could be improved over time. In this work, we chose an
efficient grid based space representation, namely an occu-
pancy map representation and a voxel space representation.
We collect point cloud data from a 3D Kinect camera, using
the OpenNI framework to separate user points from non-
user points, and cluster them into voxels to build a person
occupancy histogram to represent p(o).

But, is this optimization problem a dynamic or static one?
Looking at the different boundary conditions, the map m is
considered to be static. Observed over a long time interval,
even the person occupancy density function p(o) is a static
function. But since this function has to be estimated over
time, its first representation may be wrong, and the problem
begins to show dynamic properties. The person pose ot is
the most fluctuating and dynamic boundary condition, which
forced us to handle the problem as a dynamic optimization
problem. That is why we have chosen an optimizer suitable
for dynamic optimization problems, namely the particle
swarm optimization (PSO) [14].

B. The optimization function

The optimization function f , defined in 1, reflects the
different criteria to be considered and fuses these criteria
into a single function. It is a function over the optimization
space S = {x, φ}, where x ∈ <2, φ ∈ <. There are two hard
criteria to reflect physical properties to constrain the search
space and mask out impossible search positions. These are
the driveability d(x), and the visibility of the person v(x, φ).
Both functions d and v are binary functions defined within
the map space m(x).

Moreover, a set of soft criteria ci has to ensure: (i) an
appropriate distance to the user (cdist), (ii) the ability of
the sensor to detect a person in that observation pose (cdet),
(iii) to perceive the person from the front (cfront), and (iv)
how much of the person’s occupancy distribution can be
observed from that observation pose (cpodf). An example

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

of all functions is shown in Fig. 3. Since these criteria
are no hard criteria, an optimal compromise between the
linear superimposed criteria has to be found. So, the resulting
optimization function can be defined as follows:

f(x, φ) = d(x) · v(x) · [α1 · cdet(x, φ) + α2 · cdist(x)
+α3 · cfront(x) + α4 · cpodf (x, φ)] (1)

Note that f(x, φ) is also a function of all boundary
conditions, but due to simplicity they are absent in the
function formulation and will be described in section III
and IV. Most criteria are simple, and at this point we will
take a closer look only to cpodf , the criterion considering the
person’s occupancy distribution.

Since positions are already masked out, where the person
could physically not be seen (using v(x)·d(x)), it is possible
to observe the person from the subset of all remaining
positions Xv = x1...xn. Now, the question is: how much
of the places where the person usually rests at, are observed
by each possible observation pose xi? Here, it should be
noticed, that the person is observed using the Kinect 3D
camera, mounted in a fixed position on the robot and having
a certain opening angle. So, a view cone Xf is cast by the
camera into the model of the home environment, depending
only on the orientation of the robot and the position inside
Xv . Note that Xf is not a subset of Xv! The idea of cpodf
is now to integrate all observable points x from p(o = x),
where x ∈ Xf and where p(o) > 0 to indicate, how much
of the resting places are observable from an observation
position:

cpodf =
∫
x

p(o = x) , if x ∈ Xf (2)

The key idea is shown in Fig. 4. This function should
guarantee that the robot places itself at a position where most
of the places, the person usually rests at, are observed. Also,
the robot should not change its position, if the person only
moves slightly.

C. Particle swarm optimization
The optimization problem is simply, to find the best values

of (x, φ) that maximizes the output of f(x, φ). Our solution

}
}

e) Driveability

d) Visibility

c) Sensor
distance

b) Social
distance

soft
criteria

hard
criteria

a) Person
occupancy

(d * e)

(a + b + c)

*

Fig. 3. Hard and soft criteria. The hard criteria mask out the possible
search space, and particles are only placed in the remaining region. The soft
criteria determine the optimum and are summed up to form the optimization
function. Note, that the soft criterion of view direction is not shown here.

Xv

Xf

AA

BB

particle

person
p(o=x)

Fig. 4. In red: the set Xv of all positions where the person is visible. From
all other positions the person is covered by an obstacle. Particles only exist
in Xv . In blue: the view cone Xf which one selected particle can observe.
Note that Xf defines the area where p(o) is integrated: in this case the
region A and B.

to the defined optimization problem uses the particle swarm
optimization (PSO) approach. It is a well known technique
(see [14], [15]) to find a global optimum by sampling from a
defined optimization function, and uses a mixture of directed
and random search within the search space to iterate towards
the optimum. Unlike a particle filter, the particle swarm does
not represent a probability distribution. Constriction factor
particle swarm optimization (see [15]) is used to solve the
problem iteratively. The found solution is further refined by
applying a kernel density estimator [16]. Subsequently, we
are briefly describing what each particle contains, how one
iteration of the particle swarm optimization is defined, and
how the kernel density estimation is used to get the optimal
position from the current iteration step.

Each particle consists of a state, which is part of the
current optimization space, and a speed vector also residing
within that space. So, in our case one particle is defined
by a position (x, y) ∈ Xv and a view direction φ. Note
that we only optimize over (x, y) and chose φ to view
directly towards the current person position ot. That’s why,
we only need speed components of the particles in x and
y direction, namely vx and vy . This way, each particle is
defined by p[i] = {x[i] = (x, y), φ[i],v[i] = (vx, vy)}.
In the first step, particles are randomly initialized inside
Xv , and the optimization function f(x, φ) is calculated for
each particle. Here, two special particle positions have to be
remembered: one is the currently best, with the highest value
the particle i has experienced so far, called p

[loc best]
[i] , and

one is the particle with the best value of fp[i] ever measured
over all particles in all iterations, called p[glob best]. The
idea behind the particle swarm optimization is, that particles
tend to search near both positions for better values of the
optimization function. The speed component hereby enables
the particles to overcome local minima and move around
both positions. The variables r1 and r2 are random numbers
from an interval [0..1]. The parameters c1 and c2 are chosen
to prefer either the local best particle or the global best
parameter.

x[i]
t+1 = x[i]

t + ∆t · v[i]
t

v[i]
t+1 = K

[
v[i]
t + c1 · r1 · (p[loc best]

[i] − x[i]
t+1)

+c2 · r2 · (p[glob best] − x[i]
t+1)

]
(3)

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

The update of the position and speed component is simple,
but needs the constriction factor K to guarantee convergence.

K =
2∣∣2− θ −√θ2 − 4θ

∣∣ , with θ = c1 + c2, θ > 4 (4)

Since our optimization is defined as a dynamic problem,
we select c1 to be the higher value to allow each particle
to be dominated by its individual best position and not the
global best position. This way, the particle swarm should
be more explorative and also be able to adapt to changing
boundary conditions.

Finally, we use a kernel density estimation to refine
our solution of the best position since the particles almost
never hit the exact optimum. Here, each particle defines the
center of a Gaussian kernel. All particles are summed up to
represent a probability distribution p(x, y):

p(x, y) =
1
N

N∑
n=1

1
2πh2

· e−
(x−xn)2+(y−yn)2

2h2 (5)

Here, h represents the kernel size and is estimated by using
the highest variance of the particles positions in the x- or
y-dimension: h = max(σx, σy). Note, that the maximum
value could not be extracted from the kernel density in a
closed form. That’s why we calculate the density in every
point within Xv and simply select the maximum point as
the current best observation position. By using the kernel
density estimation, we could improve the value of f(x, φ)
by 3-4%, and we could also supress stochastic outtakes from
the random optimization process.

III. THE 3D CASE

In this section, we will describe in detail all functions
which are part of the optimization, and we also show the
representation of the environment.

A. Data structures

All information is given to the optimizer by using a grid
based voxel representation. The obstacle map as well as the
person occupancy probability distribution are defined within
a voxel grid of the same cell size. The typical size is 10 cm.
An example configuration is shown in Fig. 5. Also, the view
cone consists of a set of voxels, and the robot position is the
voxel containing the camera at the defined height over the
robot base.

The voxel map is derived from a 3D model of the
environment in an external process. We do not investigate
this problem here, since it refers to the domain of 3D
SLAM approaches [19]. The person occupancy probability
distribution is a simple histogram, where each voxel volume
counts the number of points belonging to a person observed
earlier. These person points are collected from observations
with the Kinect 3D camera. The OpenNI framework [17] is
used to separate background points from person points. So,
p(o) for a cubic voxel element v with the width w is defined
as:

pv(o = x) =

∑
j∈v oj∑

i∈m oi · w3
(6)

The numerator counts the 3D points oj within the voxel
v and normalize them by the volume w3, while the denom-
inator counts all observed points oi ever perceived from the
person in the whole map m.

B. 3D-Implementation of the single criteria

1) Driveability: Here, we discuss the first criterion of
equation 1: d(x). This function selects all voxels which could
be reached by the robots camera. This function is either zero,
when the voxel is not reachable, or one, when this voxel is
reachable. A horizontal cut through the voxel space is created
by considering only voxel cells at the same height as the
robot base. The resulting layer is dilated by the robot radius
to consider only cells which are reachable by the robot, and
to be able to assume a point like robot. Then, flood-filling
at the current robot position is applied to efficiently extract
all reachable voxels. But, since potential camera viewing
positions should be simulated by a set of particles, the voxel
positions on the ground layer are shifted by the camera height
to define the first set of Xv , which defines the function d(x).

2) Visibility: The next function is the visibility criterion
v(x). Although this function is independent from d(x), it
makes sense to only consider points which are inside Xv ,
since d(x) and v(x) are multiplied. So, the task is to check
every voxel of Xv , if the person could be seen from that
voxel. This is done by ray-casting from the current voxel
inside Xv towards the projected person position at the plane
defined by the camera height. Note that all obstacles have to
be projected towards that plane. With that, the set of voxels
inside Xv is reduced. An example of both functions is shown
in Fig. 5 a). With both functions known for a given map and a
given person position, the particle swarm could be initialized
by randomly drawing voxels from Xv , if no other particle
already represents that voxel. The selection is finished, when
the full particle count is reached.

3) Sensor distance: The sensor distance criterion cdet(x)
has to consider the ability to detect a person with a certain
sensor. Since we use the Kinect sensor, the recognition
distance is limited to 3 meters. So, the sensor distance
ds = |xi − ot|, which is the Euclidean distance from the
observed voxel xi towards the center of the person position,
and the maximal sensor distance smax is considered:

cdet(x) =
{

1 , if ds < smax − 1
1

1+exp(ds−smax−0.5) , else
(7)

4) Social distance: The social criterion cdist should keep
the robot away from the observed person. As Hall [18]
explains, the social distance, where persons do not consider
to interact with each other, is around 2.5 meters and above.
This value is our social distance to ensure an observed person
to feel comfortable. To consider this fact, a circular function
is defined around the person, using the parameter σd to define
the thickness of the circle:

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

cdist(x) = e
− (ds−2.5)2

2σ2
d (8)

5) Frontal view: For gesture recognition, face identifica-
tion, and emotion recognition, it is often necessary to observe
the user from the front. That’s why, we define an angle
interval where a good viewing angle from the front could
be guaranteed. Since it is a hard detection task to find the
gaze direction of a person, we rely on the upper body pose
to roughly estimate the view direction of the person. Again,
this is provided by the OpenNI framework. The deviation
from the person’s upper body orientation towards the robot’s
pose is defined to be angle β. With that angle, cfront could
be described as follows:

cfront(x) =
{

0 , if |β| > π/2
1

1+exp(|β|−π/6) , else
(9)

6) Person occupancy distribution: As described in section
II, the function cpodf describes which part of the person
occupancy density function can be seen from the given voxel
into the given direction. This is a time consuming operation,
since the visibility of the voxels of the person occupancy
density function has to be calculated. The key idea is, to
cast multiple rays in a regular grid from the hypothetical
camera view into the viewing cone and follow these rays
until an obstacle is hit. Here, the maximal distance from the
camera, and the voxel size determine the density of the rays,
since the sampling theorem has to be considered. We have
to guarantee that at least two rays cross the most distant
voxel. All voxels, crossed by a ray, are collected to a set of
visible voxels of the viewing cone Xfv . An example of the
cone is shown in Fig. 5 c). Now, all density values which
are covered by Xfv are summed up from p(o). Figure 5 b)
shows an example of the function p(o).

cpodf =
∑
i

p(o = xi) , if xi ∈ Xfv (10)

C. Complexity Problems

Although it seems to be the most natural way to calculate
the optimization solution within a 3D voxel model, there
are some practical problems within this modeling approach.
First, we have to build a complete 3D model of the environ-
ment before it could be converted into a voxel representation.
Incomplete maps tend to find points behind walls as best
observation positions, since these walls are incomplete, and
a huge effort has to be done to construct a feasible map. Sec-
ond, and most important, the calculation of the visible voxels
inside the viewing cone Xfv of the camera to calculate cpodf
is very time consuming, which leads to calculation times not
feasible for a real world system (see section V for details).
Because of these facts, we implemented also an approach
working only in a 2D world, which drastically reduces the
work load per iteration cycle.

IV. THE 2D CASE

The 2D approach is very similar to the 3D approach.
Therefore, we only describe the differences towards the 2D
case here.

A. Data structures

Instead of using voxel representations, we use an occu-
pancy map representation to model our environment. So, all
person poses and camera positions are 2D points within that
map. The given person occupancy density function is also a
2D function, which is created by integrating p(o = (x, y, z))
over z, leading to ṕ(o = (x, y)).

B. 2D-Implementation of the single criteria

1) Driveability: This criterion is also constructed using
flood-filling, starting from the current robot position, to mark
all reachable cells.

2) Visibility: Here, from all chosen cells inside Xv(which
could all be reached by the robot) the visibility of the person
is checked. If an obstacle is between the person and the
investigated cell, the corresponding cell is removed from the
search space.

3) Sensor distance: This function is identical to the 3D
case. The Euclidean distance is now calculated in a 2D
coordinate system.

4) Social distance: This function is identical to the 3D
case. The Euclidean distance is also calculated in a 2D
coordinate system.

5) Frontal view: This function is identical to the 3D case.
6) Person occupancy distribution: As mentioned before,

the 3D voxel representation of p(o = x) is projected to one
layer resulting in ṕ(o = x). Again, parts of the distribution
can be occluded by obstacles, but this time we have to
calculate the visibility Xfv only for a 2D layer and not
for a volume, which significantly speeds up the calculation
time. The only problem is, that obstacles in the map may be
obstacles in a sense of navigation, but could be overlooked
by the robot in the real world. Examples are tables or
couches, where the robot is not allowed to drive, but the
line of view towards the person is free. These cases can
be modeled correctly in the voxel grid representation, but
appear problematic when dealing only with 2D maps, since
the height of obstacles is initially unknown. So, our search
space Xv is smaller than necessary. At the moment, this is
a recognized problem that will be solved in future work by
adding a probabilistic 2.5D elevation map estimation which
also uses the Kinect measurements.

V. EXPERIMENTS

In this section, we report experiments done for the 3D and
2D case. The experiments for the 3D environment were done
by using two different artificially created 3D models (one is
shown in Fig. 2), while the 2D experiments were executed
by using the 2D occupancy map of our lab. The experiments
were focused on the stability and the speed of our approach.

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

Person

a) b) c) d)

Fig. 6. Top view of the 3D model with an example timeline of the particle swarm. The person position is shown by the blue crossed circle. Driving
obstacle edges are shown as gray boxes. Solid dots show particles. The colors of the particles code the result of the optimization function f(x, φ). Red
color represent high values while blue color represent small values. Image a) shows the initial configuration of the swarm, while b) shows the swarm after
7 iterations and c) after 100 iterations. It can be seen, that the particles converge towards one position and increase their values of f(x, φ). The last image
d) shows the calculated kernel density estimation of the particle set from c) with the extracted optimal observation position.

Fig. 5. An example of a rasterized 3D home environment with a) the two
criteria of driveability and visibility (d(x) ·v(x)) , b) the person occupancy
density, and c) a view cone of one particle.

Resulting position Calculation time
mean variance tavg

x 4.14 m 7.6 cm update 54 s - 15 s
y 2.94 m 4.8 cm KDE 0.6 s
φ 20◦ 0.0◦ total 90 min - 25 min

Fig. 7. On the left: resulting optimal position of one map. We perform
10 runs to get the mean position value and variance. We executed 100
iterations per run. On the right: average time consumption for one iteration,
the kernel density estimation (KDE), and the total processing time for all
100 iterations. Note, that the highest time value represents one processor
core while the lowest value represents six cores. We used 100 particles
within the PSO for the optimization process.

A. Finding positions in 3D

Since we simulate the 3D environment, we also define
a person position artificially within this environment. The
resolution of our simulated map was 10 cm per voxel. The
person occupancy distribution was recorded within a real
sitting setup, which equals the simulated sitting area, using
a Kinect device and the OpenNI library to track the person
around the sitting area. Since our PSO never terminates the
optimization process, we measure the found best position
after 100 iterations, the calculation time for all iterations,
and the average time per iteration. The results are shown in
Fig. 7.

The variance of the found observation positions from 10
test runs is 7.6 cm, which is more than sufficient for the
task. The calculations are executed using a 6 core 3.5 GHz
AMD Phenom II processor at 3.2 GHz. We used up to all
6 cores, since the calculation of f(x, φ) at multiple particle

Resulting position Calculation time
mean variance tavg

x -3.1 m 13.1 cm update 32 ms - 64 ms
y 1.6 m 14.5 cm KDE 1.7 s
φ −95◦ 0.5◦ total 8.1 s - 4.9 s

Fig. 8. The comparing results of the 2D case. Here, the calculation of cpodf

is done in 2D and speeds up the process significantly. Up to two cores of
the robot’s hardware were used. Note, that the resulting coordinates differ
from the 3D case since a different map was used for this search.

positions could be parallelized easily. But still, the user has
to wait at least half an hour until the robot calculates a
good position. Most of the processing power is used by the
soft criterion cpodf to calculate the view cone Xfv . This
calculation time is not feasible for real-world applications,
and even the used hardware setup is much faster than our
standard robot hardware. So, calculation times on a real robot
will become even worse.

B. Finding positions in 2D

Due to the high demands of processing power, we reduced
our approach to work with a 2D world representation as
described in IV. Here, we can use a real map of our lab
(see Fig. 9) and the same static Kinect camera that records
p(o = (x, y, z)) to detect the person position. Note that the
implemented approach is not able to use the same amount of
detail, especially on predicting the visibility of the person for
cpodf . Nevertheless, the found solution also produces reliable
results by providing a much faster calculation time. Note that
the resulting positions are not comparable to the 3D case,
since the 2D case reflects real world data, while the 3D case
uses a simulated environment. The results for the 2D case
are shown in Fig. 8.

Now, the variance of the 10 test runs is 14.5 cm, which
is not as reliable as the 3D results, but also provides a
stable position. Here, a 2.66 GHz Intel dual core processor
was used, running directly on the mobile robot. The results
show calculation times of 5 - 10 seconds, depending on the
number of used processor cores, which is much faster than
the 3D version and lead to a usable system on todays robot
hardware.

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

p(o = x)p(o = x)p(o = x)p(o = x)
ot

v(x)

d(x)

Fig. 9. On the left: 2D map of our lab environment with the person occupancy density function p(o) as the original voxel representation, the drivable
space from d(x), and the visible space v(x) where the person ot could be observed. Note that ot is not visible here, since it is occluded by the red voxel
elements from p(o = x). Also, the final observation position is shown. On the right: the evaluation function f(x, φ), calculated for each cell of the map.
The calculation of the full function in each point is computational expensive and is only shown for convenience. The particle swarm optimization replaces
the full calculation to find a more efficient solution.

VI. CONCLUSIONS

In this paper, we have presented an iterative approach
how to find a feasible observation position by considering
multiple criteria and a technique, how to fuse these criteria.
We have proposed a 3D version of our approach, which
solves this problem by using a 3D voxel map. This solution
turns out to be too slow to be computed on up-to-date
robot hardware. For this reason, we implemented a simpler
2D version, which also generates stable results and has
the only drawback, that the visibility of the person cannot
be reliably predicted, giving only the 2D occupancy map.
This task is planned to be solved in the future by learning
the visibility using the Kinect data and adapting a 2.5D
elevation map during operation of the system. We also
plan to include additional hard and soft criteria towards the
optimization problem. One further hard criterion, which has
to be considered, is to not block the line of view from
the user towards known ”objects of interest” (like the TV).
Another desired soft criterion could be, that the robot should
not place itself on paths where the person usually walks
in his/her living environment. Overall, we want to provide
an observation system with multiple modular, exchangeable,
and reconfigurable conditions, that could be adapted to
different observation tasks with one common optimization
solution and fusion technique.

REFERENCES

[1] Gross, H.-M., Schroeter, Ch., Mueller, S., Volkhardt, M., Einhorn,
E., Bley, A., Martin, Ch., Langner, T., Merten,M , I’ll keep an Eye
on You: Home Robot Companion for Elderly People with Cognitive
Impairment, in Proc. IEEE-SMC 2011, pp. 2481-2488, 2011

[2] Kessler, J., Schroeter, Ch., Gross, H.-M., Approaching a Person in
a Socially Acceptable Manner Using Expanding Random Trees, in:
Proc. 5th ECMR, pp. 95-100, 2011

[3] Gross, H.-M., Boehme, H.-J., Schroeter, Ch., Mueller, St., Koenig, A.,
Einhorn, E., Martin, Ch., Merten, M., Bley, A., TOOMAS: Interactive
Shopping Guide Robots in Everyday Use - Final Implementation and
Experiences from Long-Term Field Trials, in: Proc. IROS, pp. 2005-
2012, 2009

[4] Kanda,T. et al.,N., A Communication Robot in a Shopping Mall, in:
IEEE Transactions on Robotics, vol. 26, nr.5, pp. 897-913, 2010

[5] A. Mertens et al., Assistive Robots in Eldercare and Daily Living:
Automation of Individual Services for Senior Citizens, in Proc. of
4th International Conference on Intelligent Robotics and Applications,
Springer LNAI 7101, pp. 542-552, 2011

[6] F. Walhoff and E. Bourginion, ALIAS Project description,
http://www.aal-alias.eu/content/project-overview, 2012

[7] Z. Byers et al., An autonomous robot photographer, in: Proc. IROS,
pp. 2636-2641, 2003

[8] Schroeter, Ch., Hoechemer, M., Mueller, St., Gross, H.-M., Au-
tonomous Robot Cameraman - Observation Pose Optimization for a
Mobile Service Robot in Indoor Living Space, in: Proc. ICRA, Kobe,
Japan, pp. 424-429, 2009

[9] E. Dunn and J. van den Berg and J.-M. Frahm, Developing Visual
Sensing Strategies through Next Best View Planning, in: Proc. IROS
, pp. 4001-4008 , 2009

[10] K.L. Low and A. Lastra, Efficient Constraint Evaluation Algorithms
for Hierarchical Next-Best-View Planning, Third International Sym-
posium on 3D Data Processing, Visualization, and Transmission , pp.
830-837 , 2006

[11] M. Strand and R. Dillmann, Using an attributed 2D-grid for next-best-
view planning on 3D environment data for an autonomous robot, in:
Proc. ICRA , pp. 314-319 , 2008

[12] M. Piaggio et al., An optical-flow person following behaviour, in
Proceedings of the IEEE ISIC/CIRA/ISAS Joint Conference, pp. 301-
306, 1998

[13] X. Ma et al., Sensor integration for person tracking and following with
mobile robot, in: Proc. IROS, pp. 3254-3259, 2008

[14] R. Eberhart and Y. Shi, Particle swarm optimization: developments,
applications and resources, in: Proceedings of the 2001 Congress on
Evolutionary Computation, vol. 1, pp.81-86, 2001

[15] R. Eberhart and Y. Shi, Comparing inertia weights and constriction
factors in particle swarm optimization, Proc. of the Congress on
Evolutionary Computation, vol. 1, pp. 84-88, 2000

[16] M. Rosenblatt, Remarks on some nonparametric estimates of a density
function, in: Annals of Mathematical Statistics, vol 27, pp.832-837,
1956

[17] http://www.openni.org, 2010
[18] E.T. Hall, Proxemics, in: Current Anthropology, vol. 9, nr.2, pp. 83+,

1968
[19] N. Engelhard and F. Endres and J. Hess and J. Sturm and W. Burgard,

Real-time 3D visual SLAM with a hand-held RGB-D camera, Proc. of
the RGB-D Workshop on 3D Perception in Robotics at the European
Robotics Forum, Sweden, 2011

in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 4392-4398, IEEE 2012

