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Abstract— Fast vision-based object and person tracking is im-
portant for various applications in mobile robotics and Human-
Robot Interaction. While current state-of-the-art methods use
descriptive features for visual tracking, we propose a novel
approach using a sparse template based feature set, which is
drawn from homogeneous regions on the object to be tracked.
Using only a small number of simple features, without complex
descriptors in combination with logarithmic-search, the tracker
performs at hyper-real-time on HD-images without the use of
parallelized hardware. Detailed benchmark experiments show
that it outperforms most other state-of-the-art approaches for
real-time object and person tracking in quality and runtime. In
the experiments we also show the robustness of the tracker and
evaluate the effects of different initialization methods, feature
sets, and parameters on the tracker. Although we focus on the
scenario of person and object tracking in robot applications,
the proposed tracker can be used for a variety of other tracking
tasks.

I. INTRODUCTION

Tracking arbitrary objects or persons in video sequences
in real-time, is a key condition for many applications in
mobile service robotics and Human-Robot Interaction (HRI).
Applications vary from tracking body parts (e.g. head or hand
tracking for mimic and gesture classification), object tracking
(e.g. manipulating objects in dynamic scenes), and person
tracking (e.g. visual following of a person [1] or person re-
identification [2]). Since typically only very limited hardware
is available on an autonomous mobile robot platform, very
hard computational restrictions are demanded for the used
algorithms.

In recent years, many efficient tracking methods have been
introduced for different tasks. Nevertheless, many of them
have disadvantages regarding two mayor criteria:

o Often, underlying assumptions about the environment
can not be met, including static background, no changes
in lighting and inhomogeneous or invariant appearances.
These idealized conditions are usually missing for ob-
ject tracking in high dynamic environments, as they are
common in challenging mobile robotics scenarios, as
the one presented in [3]. Methods building complex
object models in advance are often not applicable, due
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to the high variability in the appearances of the object
or person to be tracked.

o Most methods are computationally very expensive. In
the proposed applications, the objects often need to be
detected and tracked in real-time, however, typically
only 10% of the computational ressources of the robot
are available for a tracking task, as the other main tasks
(navigation, dialog, etc.) claim the remaing part. This
may be achieved with increased processing power, e.g.
by using GPU parallelization, but mobile robots often
lack of the required hardware configurations of GPU
extensions or the use is restricted, due to their high
power consumption.

In this paper, we introduce a novel template based ap-
proach for hyper-real-time object tracking in dynamic envi-
ronments. We define hyper-real-time as significantly faster
than real-time, which is 25 fps. After initialization, the
presented object tracker needs less than five milliseconds per
frame on HD-images, using a single core of a Intel Core i7,
while outperforming most other state-of-the-art approaches
in tracking quality. Therefore, it can be used for a variety
of applications in mobile autonomous service robotics and
Human-Robot Interaction.

The remainder of the paper is organized as follows: In
Sect. II, we summarize current state-of-the-art methods for
object and person tracking. Then, we introduce the proposed
tracking method and give a short overview of different
configurations in Sect. IIl. In the experimental Sect. IV,
we evaluate different initialization and parameter setups on
public benchmark datasets and own human-robot interaction
experiments. Finally, we summarize and give an outlook on
upcoming improvements and applications.

II. STATE-OF-THE-ART

For visual object tracking, many successful and accurate
approaches have been proposed in recent years. Fig. 1 shows
a categorization. Examples for each category can be found
in [4].

Tab. 1T shows a comparison of the proposed method to
common and related approaches: Some common methods
(interest points) are only applicable to a certain degree,
since they are designed for tracking structured regions which
are not present in every scenario. Our method is able to
track objects without structural information by using color
features sampled from homogeneous regions or a collection
of homogeneous subregions. Additionally, it can handle full
occlusions and all affine transformations that typically occur
when objects move in 3D. The method presented in [13]
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Fig. 1. Categorization of object tacking approaches and the proposed
method following the scheme of [4]. Approaches applicable for tracking
homogeneous regions are highlighted blue.

belongs to the same category as our approach. It is designed
for tracking predefined homogeneous regions on a face with
a fast search strategy (center-biased diamond search) using
a set of randomly sampled points within the defined regions.
However, this approach is not sufficiently versatile to be used
in other scenarios. In comparison to that, our approach is able
to detect regions suitable for sampling points on any object.
It uses a logarithmic search for finding the best matching
position of the template. The idea of using logarithmic search
for tracking was introduced in [14]. Logarithmic search
allows for speeding up the search enormously and increasing
the accuracy. But the conditions for the applicability for
tracking are hard to fulfill. As far as we know, our approach is
the first one, that automatically initializes a sparse template
that fulfills the requirements for logarithmic search, as we
will show in Sect. III. The combination of logarithmic
search, a very small number of describing points for the
sparse template, and the abstinence of complex descriptors
for these points allows to track an object with very few
comparisons. Therefore, our approach is the only one as far
as we know, being able to track an arbitrary object in hyper-
real-time, even on HD-images, without using the effect of
parallelization on special hardware.

Affine Occl. Init. Appl. for Speed Speed
Method Trans. Handl. | Region | Homog. Reg. SD HD
Mean-shift [5] T+S part. opt. yes RT S
Prob. Tr. of Hist. [6] T+S part. opt. yes RT S
Col. Desc. [7], [8] T+S+R full opt. yes RT S
SIFT [9], [10] A part. opt. no RT S
KLT [11], Opt. Flow [12] A part. opt. no RT s
Diam. Sear. [13] T+S none predef. yes RT RT
Proposed Method A* full opt. yes HRT HRT

TABLE I

COMPARISON OF THE APPROACH PRESENTED IN THIS PAPER (LAST
ROW) WITH RELATED APPROACHES. ABBREVIATIONS: AFFINE
TRANSFORMATIONS (TRANSLATION, SCALE, ROTATION, AFFINE (*:
WE USE T+S+R, BUT A CAN BE DONE IF NECESSARY); SPEED SD:
COMPUTATIONAL SPEED ON SMALL IMAGES (S SLOW, RT REAL-TIME,
HRT HYPER-REAL-TIME), SPEED HD: COMPUTATIONAL SPEED ON
HD-IMAGES WITHOUT SPECIAL HARDWARE

Fig. 2. Proposed algorithm: Logarithmic search in combination with a
sparse template. The sparse template is built from samples of homogeneous
regions, extracted by clustering. The template matching is done using
logarithmic search. To be able to react to perspective or lightning changes,
the template is updated after a new detection if no occlusion is detected. If
occlusions are detected, a motion model (Kalman filter) is used instead of
logarithmic search, until the matching error decreases.

III. SPARSE TEMPLATE TRACKING WITH FEATURES
FROM HOMOGENEOUS REGIONS

In this section, we are introducing our proposed method
for hyper-real-time template-based person tracking using
logarithmic search. First, we will give a short overview,
followed by a detailed description of the single steps in the
enclosed subsections.

At first, an initial position of the tracked object must
be supplied. This is usually done by an object or person
detector. The position is given as an rectangle enclosing the
object. Using the enclosed region, a template for representing
the object is generated. Afterwards, the template has to be
relocated in consecutive frames with a template matching
procedure, described in Sect. III-A. For searching the optimal
template position, we use a local logarithmic search strat-
egy, presented in Sect. III. To fulfill the special conditions
needed for logarithmic search, we use a sparse template,
generated by sampling color features from homogeneous
regions (Sect. III-C). Since adequate features are essential
for matching the template in consecutive frames, we evaluate
different color spaces and distance metrics in Sect. III-D. To
continuously update the template during the tracking process,
we reinitialize the template after each new detection. In order
to avoid ID-switches, the template is only reinitialized when
no occlusion is detected. Therefore, we include a motion
model and occlusion detection to improve the precision of
the tracker (Sect. III-E). The whole algorithm described here
is illustrated in Fig. 2.

A. Template Matching

In template matching, the presence of a known object is
searched by comparing the object template U(m,n) with
the scene V, where m and n is the size of the template. For
matching the template U (m,n) with a position (p, ¢) in the
scene, the following error function (Eq. 1) is defined.
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Fig. 3. Steps of the logarithmic search. The target is colored blue and the template is shown in grey. First, the translation is searchend (left) as described.

Afterwards, the rotation (center) and the scale (right) is adapted.

m n

err(p,q) = > Y dU(i,5),V(p+iq+3) (1)

i=1 j=1

where d is a distance measure like the Euclidean or Man-
hattan distance. The position (z,y) of U(m,n) is calculated
by searching the minimum error err(p, q) (see Eq. 2).

(z,y) = argmin(err(p, q)) ()
p.q

Usually, not only the displacement, but also a new scale
and rotation of the template is searched. Therefore, the
search-space expands to (z,y, «, s), where « is the rotation
and s the scale of the template. Calculating the error function
for every position and appearance of the template, using

direct search, is very time consuming for HD-images.

B. Logarithmic Search

An efficient search strategy for direct search is sampling
the search space logarithmically. This method reduces the
search iterations dramatically. Using the last position (z,y)
of the object, the template is moved by the step width p
to the neighborhood positions. While in translation a 4N or
8N connected neighborhood (V) is possible, the scale and
rotation is limited to 2N. For each neighbor position, the
error is calculated using the defined error function (Eq. 1).
The template is then moved to the position with the lowest
error. This step is repeated until the position with the lowest
error response is found, using the current step width. In the
next iteration, the step-width p is divided in half and the
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search is continued. The algorithm terminates after p < w,
where w is the threshold for the specific dimension.

Our proposed method uses the logarithmic search to find
the translation (Fig. 3 left), rotation (Fig. 3 center) and scale
(Fig. 3 right) parameters separately. This results in a runtime
of O(log(py - py) + log(pa) + log(ps)), where p is the
maximum step-width for each dimension. It is also possible
to perform a combined search of all dimensions. This is also
evaluated in the experimental section.

C. Generating the Sparse Template

The tracking quality of a template-based approach depends
mainly on the choice of the template. A useful template
must be a good representation of the object and needs to be
robust during translation and perspective changes between
two consecutive frames. Sparse templates can meet both
of these criteria, if the right subset of features is chosen.
Moreover, a sparse representation of the template has the
advantage of matching only a subset of features of U(m,n).
Most state-of-the-art methods use descriptive features, as for
example edges, textures, and interest points. While these
features are robust during perspective changes, translation
and scaling, the extraction is often time consuming. Fur-
thermore, they often cannot be applied for tracking distant
objects (no texture information) or fast objects (motion blur).
An additional disadvantage of descriptive features is, that
the template position cannot be searched with local search
strategies, like logarithmic search. This is due to the cluttered
search space of the error landscape in the local surroundings
(see Figure 4(a)), which has the disadvantage that only

clustered features

Fig. 4. Error landscape for different feature selections on Seq. A of the "BoBoT” dataset [8] (see Sect. IV). Edge features or other interest points result
in cluttered cluttered search space, as illustrated in (a). Random sampling (b) and features and clustered regions (c) have a smooth search space and do not
violate the logarithmic search condition. Sampling from similar regions (c) results in a wider attractor basin and is therefore better suited for local search

strategies
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cost expensive search strategies can be applied for template
matching.

To achieve a smooth error function with a sparse repre-
sentation of the template, we use a set F' of weak descriptive
features f;, sampled from homogeneous regions of the color
space. Each feature f; contains the position p, , relative
to the template position and the color vector c, g~ of
the used color space. We use the term “weak descriptive”
since one feature alone is not sufficient to describe the
object. The appearance of the object is encoded by a set
of these features and their spatial relations. Drawing the
features from homogeneous regions enables us to use local
search strategies, like logarithmic search, as the template
error function response is continuous and smooth around
the optimal position (Figure 4(b-c)). At the end of this
subsection, we will discuss how descriptive such a sparse
template is.

For finding homogeneous regions, we cluster the ob-
ject to be tracked using well known methods from image
processing. The features are sampled randomly within the
found clusters, but not too close to the cluster borders. This
approach is fast and ensures that only those features are
selected which are homogeneous in the local surroundings.
For clustering, we use a watershed approach and region
growing (see Fig. 5 for the clustering results). These two
methods only need a linear runtime of O(M), where M is
the number of pixels to be clustered. For algorithmic details,
it is referred to [15] and [16]. The cluster regions can also
be used to estimate background regions, or regions very
similar to the object. Assuming that an object is surrounded
by background, a larger region is clustered around the
template’s initial position. All clusters which contain many
pixels outside the initial (not enlarged) region are assumed
as background and therefore excluded from sampling the
features.

Fig. 4 illustrates the resulting error landscape when mov-
ing a template, built by the presented methods, in an area
of fifty pixels around the initial position (translation on
the x and y axis). The error landscape is a very good
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Fig. 5. Homogeneous regions found by the proposed clustering algorithms,
for initial hypothesis of Seq. A (a-c) and D (d-f) of the "BoBoT” dataset
[8]. The clusters are filled with the mean color of the region. Pixels that are
excluded from feature sampling are displayed yellow. Watershed clustering
results in more clusters but also permits sampling from non-homogeneous
clusters, as for example the writing on the ball. Region growing clustering
only permits sampling from homogeneous regions

indicator in which range the logarithmic search is able to
find a good matching position. Logarithmic search using
descriptive features instead will fail due to the cluttered
search space (Fig. 4(a)). Sampling the features randomly
often gives a fair precision for logarithmic search (Fig. 4(b)),
but placing the features into homogeneous regions using
clustering (Fig. 4(c)) simplifies the search, because this
allows for enlarging the step size for logarithmic search due
to a wider attractor basin.

In the last part of this subsection, we are discussing how
descriptive a sparse template is, which uses color features
sampled from the clustered homogeneous regions. The tem-
plate is evaluated using two experiments, on a challenging
high definition sequence from person tracking with multiple
persons. Experiment 1 evaluates how descriptive the template
is on the initial frame in comparison to the local search
area (area of 200 x 200 pixels around the center of the
initial position. Experiment 2 focuses on how robust the
template is during fifty consecutive frames for the full image.
This results in 96,000,000 possible template positions. For
evaluation we show the ROC Curve, which is commonly
used for reidentification tasks. The experiments are repeated
using a different number of sparse features (1, 16, 64, 128).

In experiment 1, the true positive positions (TP) are
defined as a 10x 10 area around the template’s initial position
(minimum area of the attractor basin). All other positions in
the 200 x 200 search area are false positives (FP). Fig. 6(a)
shows, that using more then 64 features results in a good
template representation for the local search area (see marking
(A)) since only 0.2% (FAR axis) of all FP positions (80 of
39,900) have a better or equal matching score than the worst
matching position in the TP area. Experiment 2 evaluates
the matching score of the template using 50 consecutive full
frames. The TP positions are defined as a 10 x 10 area around
the ground truth positions of the bounding box (for each of
the 50 frames). All other possible template positions on each
frame are FP. Fig. 6(b) illustrates (marking (B)) that even on
this long sequence for 128 features only 0.5% (FAR axis) FP
positions have a better or equal matching score than the worst
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Fig. 6. ROC curves (verification rate VR, false acceptance rate FAR) for
local neighborhood (a) and full image on 50 consecutive frames (b); The
FAR axis is logarithmically scaled.
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matching position in the 50 attractor basins. With 64 features
the number increases to 3% (marking (C)). The experiment
also shows that using 16 or less weak descriptive features is
not sufficent for a descriptive template.

D. Color Spaces and Distance Metrics

Choosing an adequate color space and the belonging
distance metric has a big influence on the precision and
runtime of the clustering and matching procedures.

In our evaluation, we included four common color models:
RGB, HSV, CIELAB, and the Y -channel of Y C,C,.. For
a more detailed comparison and mathematical descriptions of
the transformation from RGB to the other color models, we
refer to [17].

To compare colors, a distance metric is needed. The
following distance measures are commonly used in real-time
applications: The Manhattan distance (d;), the Euclidean
distance (ds), and the maximum distance (d,). Additionally,
more complex distance measures are described in [18] and
[19]. Since we need to calculate distances frequently, we only
use the mentioned fast to compute metrics. To compare vec-
tors of color pixels, we use the sum of absolute differences
(SAD). Using the proposed template, this measure creates
a continuous and smooth error landscape (Fig. 4), which is
essential for efficient logarithmic search. We compare the dif-
ferent color spaces and distance metrics in the experimental
section IV.

E. Dealing with Occlusion

One difficulty in object tracking is dealing with occlusions.
In template matching, the error of the best template match
can be used as a good indicator for occlusion. A sudden
increase of the error is often the result of a full or partial
occlusion. Evaluating the region of the error increase in
the template, as done in [20], gives a good estimation,
which part of the template is covered. After masking the
covered area, the template matching is continued with the
remaining features. Although this simple strategy seems to
be efficient, we use a different approach, since full occlusions
can occur in our scenario and computational time has to be
saved. Using a Kalman filter, we estimate the motion model
of the tracked object. After detecting a sudden increase
in the error of the template matching, the motion model
is used to predict the next optimal position, instead of
using the best template matching hypothesis (see Fig. 2,
too). When the template matching error decreases again, the
logarithmic search algorithm can be continued with the initial
template. Occlusion detection and handling had influence on
the following sequences in the experiments: Sequences F and
I of the BoBoT-dataset [8] (Tab. III and Fig. 10), PETS 2009
dataset [21] (Fig. 9 A) and on our own dataset (Fig. 9 D). On
the remaining sequences occlusion detection was performed,
but since no significant occlusions were detected a correction
was not necessary.

F. Reducing the Search Space in Person Tracking

While tracking objects, the template position is usually
adapted using translation (z,y), scale s and rotation «. In

Tracked Object | Challenges
ball translation, rotation, and scale; fast speed changes

o

coffee mug similar background and object color

juice box fast speed changes, other objects close
person perspective changes

person partial occlusion

person multiple full occlusions

rubiks cube perspective changes and other objects close

toy multiple lighting changes
person very long track with multiple occlusions
and perspective changes

TABLE II
CHALLENGES OF TEST SEQUENCES

—maoTmmoaw> e

the scenario of person tracking, the search dimensions can
be reduced due to certain presumptions. In person tracking
the rotation o does not need to be estimated, since people
will only appear in an upright position. Additionally using
calibrated cameras and the assumption that persons move
on the ground and have a constant height, the search space
can be reduced by omitting the scale s. The height of the
template is estimated using the extrinsic parameters and the
initial hypotheses, the scale is then adjusted depending on
the translation. This is applicable on hard mounted cameras
in mobile service robotics and surveillance scenarios with
calibrated cameras.

IV. EXPERIMENTS

In this section, we present the quantitative and qual-
itative results of our tracking approach. To evaluate our
approach, we used the public tracking data-set "BoBoT”
of the University of Bonn [8]. It contains nine sequences
recorded at 25fps with a resolution of 320 x 240 pixels.
The sequences cover different challenges of object tracking
(Tab. II). Additionally, the ground truth is provided for each
sequence. We compared our approach to five related state-
of-the-art methods (see Fig. 1), evaluated in [8], using nine
sequences of this dataset (Tab. III). The first tracking method
is a simple histogram based method [6]. The second method
is a component based tracker [7], which builds an object
description of the surrounding feature maps from color and
intensity. The remaining three methods are Haar-like center-
surrounded feature based classifiers, introduced in [8].

We conducted four experiments to determine the influence
of different parameters and configurations on the tracker.
The first experiment analyses the usage of different distance
metrics for each color space. Experiment 2 evaluates different
ways for generating the sparse template. In experiment 3,
we analyzed the usage of logarithmic search for translation
in combination with scale, or the combination of scale and
rotation. Experiment 4 evaluates how many sparse features
are needed to robustly track the object and how the number of
features influences the runtime. For a fair comparison to [8]
and to show the robustness of the tracker, it is only initialized
on the first frame using the ground truth. In real applications
the tracker is initialized and updated by a detector. In order
to evaluate the different setups, we run each experiment 100
times and calculated the average and variance of the overlap-
join-ratio (score = %) between the bounding boxes of the
ground truth (G) and the tracking hypothesis (7' [8]. In the
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Seq. | #Fr avarage score [%]

our.

(6] [71 [81(a) | [8I(b) | [8I(c) | approach

A 601 707 | 632 | 384 65.1 59.4 69.2
B 628 67.0 | 50.7 | 6.0 79.0 77.4 80.4
C 403 476 | 63.7 | 89.3 90.7 91.3 67.9
D 946 634 | 764 | 62.8 71.1 75.2 80.6
E 304 782 | 774 | 83.1 84.5 86.3 86.0
F 452 444 | 40.0 | 64.0 60.8 68.3 56.1
G 715 463 | 49.6 | 343 71.3 71.2 87.1
H 411 622 | 865 | 95.8 94.4 94.5 98.3
1 1016 | 68.9 | 47.6 | 49.0 75.0 56.3 71.7
avg 61.0 | 61.7 | 58.1 71.5 75.5 78.1

TABLE 1II
COMPARISON OF OUR APPROACH WITH CURRENT STATE-OF-THE-ART
METHODS. IN SEQUENCES B, D, G, H, AND I, OUR APPROACH
OUTPERFORMS CURRENT STATE-OF-THE-ART TRACKERS. IN
SEQUENCES A, E AND F OUR APPROACH IS CLOSE TO THE BEST
METHOD. ONLY IN THE SEQUENCES C AND F THE TRACKER PERFORMS
AVERAGE. FI1G. 10 SHOWS A VISUALIZATION OF THE TRACKING
RESULTS.

last part of this chapter, we will also show examples of our
tracking approach on other public and own data sets and on
a mobile robot for real-time person tracking.

A. Different Metrics and Color Spaces

In this experiment (Tab. IV), we evaluate the precision and
runtime of different distance metrics and color spaces. While
in the Y channel only the absolute distance is possible, we
evaluate Manhattan, Euclidean and Maximum distance in the
RGB and HSV color space for the calculation of the SAD.
In the CIELAB color space the Euclidean distance is used,
since it is optimized for it.

Seq. avarage score [%]
Y RGB RGB RGB HSV HSV HSV CIE
LAB
dy da doo dy do doo da
mean | mean | mean | mean | mean | mean | mean | mean
A | 453 55.9 54.0 53.1 63.3 69.2 66.6 39.4
B | 75.1 78.1 78.1 79.0 78.6 79.8 79.2 80.4
C | 552 62.9 61.8 61.8 67.9 66.9 66.6 66.1
D | 747 78.0 80.1 80.6 66.2 78.4 79.2 70.0
E | 8.9 81.3 86.0 85.9 71.3 83.7 82.1 85.9
F | 56.1 48.8 54.8 39.7 8.8 49.6 32.1 26.2
G | 765 80.4 80.7 78.2 81.9 82.1 80.9 80.4
H | 96.7 96.3 96.3 96.4 96.0 95.7 95.9 96.0
1| 777 772 71.5 74.8 59.5 66.3 66.0 57.0
avg. | 71.5 73.2 74.4 722 66.6 74.6 72.1 66.8
avg. 1.10 2.37 2.77 2.58 391 4.12 3.84 15.36
rtpf
in ms

TABLE IV
TRACKING SCORE FOR DIFFERENT COLOR SPACES AND DISTANCE
MEASURES AND AVERAGE RUNTIME IN MS FOR ITERATING ONE FRAME
(RTPF)

The Y channel is the fastest of all setups, but only has
a fair precision on most data sets. CIELAB is the compu-
tational most expensive color space and does not perform
better on most datasets. Both RGB and HSV perform well
with all three distance measures. For HSV the Euclidean
distance seems to be the most reliable. In RGB, all three
distance metrics perform well. Against this background, we

recommend the RGB color space, since it is the most com-
mon one and does not need further transformation steps. For
the RGB color space, we decide in favor of the Manhattan
distance, since it is the fastest with equally good results.

B. Initialization

We evaluated the different techniques for sparse template
initialization in this experiment (Tab. V). Creating a template
with random sampling seems to be sufficient for most
sequences. Nevertheless, on objects with a lot of texture
information, like sequence C and G, this kind of initialization
fails. Clustering the object for finding homogeneous regions
for sampling the features, with watershed or region growing,
always results in a good sparse template representation. Since
region growing is a little more stable, we prefer this method.
The runtime of the different initializations is shown in the
last row of Tab. V;

Seq. avarage score [%]

random whatershed region-
growing

mean | var

A
B
C
D | 80.5 0.07 79.2 0.31 78.0 0.19
E | 85.1 <0.01 85.7 <0.01 85.5 <0.01
F | 339 0.09 51.7 0.48 54.8 1.15
G | 72.6 0.10 76.6 1.17 80.4 0.89
H | 983 <0.01 95.7 <0.01 96.3 <0.01
1| 71.6 0.29 754 0.33 77.2 0.19
avg 67.9 71.8 74.3
avg 15ms 46ms 46ms
runtime |
TABLE V

TRACKING SCORE AFTER DIFFERENT TEMPLATE INITIALIZATIONS AND
AVERAGE RUNTIME FOR INITIALIZATION

C. Combined Dimension Search

The first part of this experiment investigates only searching
the translation of the template. As expected, only searching
the translation performs worse on sequences with dynamic
cameras. In the second part of the experiment, we evaluated
the usefulness of combining search dimensions with each
other. Our usual setup is to search translation, rotation and
scale separately. The combination of translation with scale

Seq. avarage score [%]
separate only translation+ scale+
translation scale rotation
mean var. mean var. mean var. mean var.
A | 599 0.61 58.4 0.36 40.9 226 | 52.0 1.08
B | 78.1 0.02 | 72.96 <0.01 68.7 0.16 | 55.1 2.24
C | 629 0.19 | 43.10 | 0.12 34.3 037 | 37.7 0.10
D | 78.0 0.19 | 61.70 | 0.95 69.9 0.75 | 553 0.02
E | 86.1 0.08 | 84.57 <0.01 78.1 1.75 | 65.1 2.29
F | 548 1.15 | 42.37 1.32 23.0 0.88 | 04 <0.01
G | 804 0.89 | 7096 | 0.23 59.5 7.82 | 793 0.33
H | 963 0.01 98.59 <0.01 95.8 0.02 | 60.0 4.25
1| 772 0.19 | 51.29 | 0.38 64.4 1.22 | 46.5 2.30
avg. | 73.88 64.88 59.40 50.15
TABLE VI

TRACKING SCORE FOR DIFFERENT COMBINATIONS OF SEARCH
DIMENSIONS
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estimates the scale while searching for the new transition of
the template. The rotation is adapted separately. Combining
scale and rotation, first the translation is searched, then the
rotation is adapted while scaling the template. Combining
the search dimensions in this form increases the search space
from p, -py+pa+ps (Where p is the maximum step width for
the dimension) to p, - p, -ps +p, for translation and scale and
Dz - Py + Pa - Ps for scale and rotation. Tab. VI shows, that
a larger search space decreases the precision dramatically.
Therefore, it is advisable to keep the search space as small
as possible.

D. Number of Features

In this experiment, we evaluated the influence of the
number of features in the sparse template set (Tab. VII).
In most scenes, a higher number of features increased the
precision of the tracker. Particularly, on objects with small
clusters, a higher number of features is helpful. Both setups
with 400 and 600 features show a good performance. Since
the difference of precision between 400 and 600 features
is very small, we use a template of 400 features to save
computational time.

Seq. avarage score [%]
100 200 400 600
mean var. mean var. mean var. mean var.
A | 544 1.04 | 55.7 0.68 | 55.9 0.61 54.6 0.51
B | 76.1 0.14 | 775 0.04 | 78.1 0.02 77.8 0.03
C | 562 0.87 | 60.6 044 | 629 0.19 63.3 0.11
D | 73.6 0.58 | 749 0.76 | 78.0 0.19 78.3 0.14
E | 727 226 | 77.1 194 | 813 1.08 82.8 0.76
F | 398 1.68 | 43.1 1.94 | 54.8 1.15 51.6 0.78
G | 73.6 1,24 | 76.8 1,1 80.4 0.89 87.1 0.75
H | 949 0.02 | 957 0.01 96.3 <0.01 96.6 <0.01
I | 69.0 0.18 | 71.2 022 | 77.2 0.19 72.1 0.23
avg. | 67.82 70.27 73.88 73.78
avg. 0.77ms 0.80ms 2.37ms 3.60ms
rtpf
TABLE VII

TRACKING SCORE FOR DIFFERENT NUMBER OF USED FEATURES AND
AVERAGE RUNTIME IN MS FOR ITERATING ONE FRAME (RTPF)

E. Experiments on the Robot Platform CompanionAble

In this experiment, we address the problem of visual
person following (visual servoing) in mobile robotics. For
a first evaluation, we use following experimental setup. The
robot (Fig. 7) is standing in our robotics lab and tracking
a person simultaneously with a laser based leg detector and
the proposed method for visual tracking. The visual tracker is
initialized using a predefined region on the first frame. We
evaluate three different sequences (person is standing still,
person is moving with normal speed and person is moving
with sudden direction and speed changes) with a length of
60 seconds each. The quality of the vision-based tracker
is compared to the laser based leg detector, since the later
provides very good ground truth. As comparative measure,
the Euclidean distance and variance in world-coordinates
is used. It is important to mention, that it is difficult to
transform image coordinates into world-coordinates by just
using a bounding box and the extrinsic parameters of a

fish eye camera

Standing | Normal Rapid
mean 0.001m 0.05m 0.35m
var. <0.001 0.004 0.23

Iaser range finder

Fig. 8. Mean distance and variance
between our approach and laser based
leg detection used as reference tracker
while the test person stands still,
during normal movement, and with
rapid speed and direction changes.
The mean Euclidean difference and
the variance are determined over all
frames in the sequence.

Fig. 7. CompanionAble robot
(SCITOS G3 platform); For vi-
sual servoing we use the nose
camera, which has a resolution
of 1600px x 1200px and a
viewing angle of about 180°

camera mounted on the robot at a low height (about 110cm -
see Fig. 7), since only slight changes in position and scaling
of the bounding box lead to a significant error in world
coordinates. Despite that, the tracker performs well on all
three sequences showing a maximum average error of 35cm
(Tab. 8) on the third sequence. This is still sufficient for a
robust vision-based person following. It is remarkable, that
while tracking, our approach required less than one percent
of the robots computational resources. This first experiment
shows, that our approach is accurate enough to realize visual
based person following for scenarios where no laser range
data is present.

F. Experiments on Other Datasets

As supplementary material, we attached videos of our
experiments on the “BoBoT” dataset [8] and additional
datasets, which are often used in computer vision for bench-
marking new algorithms. Since no person detection is used in
these cases, the tracker was initialized per hand on the first
frame of the sequence. Sequence A of Fig. 9 is included
in the PETS2009 dataset [21]. Three persons are robustly
tracked by our algorithm in hyper-real-time dealing with
diverse occlusions and perspective changes. Sequence B is
part of the Motinas Face Tracking dataset [22]. Sequence C
is part of the PETS2006 dataset [23] for person tracking.

Fig. 9. Visualization of additional datasets. All sequences are attached as
supplementary material.
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Fig. 10. Comparison to [8] on BoBoT-Dataset. Graphs show score, runtime and SAD of our approach (blue) vs. [8] (red). Additionally, in the right image
the occlusion detection by sudden increases of the SAD values is highlighted. A video of all scenes is attached as supplementary material.

Here our algorithm simultaneously tracked four persons in
hyper-real-time. The last experiment (D) shows a sequence
of our own dataset where six persons are tracked in hyper-
real-time even on HD-images (1600 x 1200), dealing with
a broad spectrum of occlusions. For the last experiment and
sequence, a calibrated camera was employed.

V. CONCLUSION

We presented a new template based tracking approach for
hyper-real-time object and person tracking. The innovation
of our approach is the automatic initialization of a small
set of features, sampled from suitable homogeneous regions
on the object to be tracked. Not using descriptive feature
points enables us to use logarithmic search as local search
strategy. Disregarding the image size, our approach finds
the optimal matching position with only few comparisons.
The qualitative comparison shows that our method performs
equal or better to current state-of-the-art methods in real-
time object tracking, while being up to 40 times faster. Ad-
ditionally, we showed that this approach is robust enough to
realize visual person following (visual servoing) on a mobile
robot. In our future work, we will implement the presented
method in combination with laser range finders [24], [25]
and sensor fusion algorithms into a general tracking and
evaluation framework for robotic applications.
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