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Deciding What to Inspect First: Incremental Situation Assessment
Based on Information Gain

Matthias Platho and Julian Eggert

Abstract—1In order to offer even more sophisticated func-
tionality, future driver assistance systems need the ability to
robustly recognize and understand driving situations. Especially
in inner-city scenarios the high complexity and variability of
situations encountered make their assessment a challenging
task. We propose to tackle these challenges by decomposing
situations into smaller, more manageable parts. We define such
a part as a set consisting of a road user and all entities (e.g.
cars, traffic lights) currently affecting its behavior. Though
the decomposition alleviates the assessment already, for higher
numbers of present entities the recognition of interrelated
entities is still computationally expensive if performed in a
brute-force fashion. Therefore we employ sensitivity analysis
on Bayesian Networks for sensibly controlling the recognition
process on the basis of information gain. This leads to an
active measurement process in which a situation is perceived
incrementally, concentrating first on the most meaningful sen-
sor measurements. The proposed method is evaluated on a
simulated inner-city scenario where it reliably recognizes the
affecting entities of each road user. We show that a recognition
process based on information gain can save more than 50% of
measurements without significantly impairing the recognition
rate.

I. INTRODUCTION

Advanced driver assistance systems are getting increas-
ingly more powerful and thus require an increasingly com-
prehensive understanding of the current situation. In recent
years, research in related fields has gained more and more
interest.

The works published so far can be coarsely divided
into those that target the assessment of a situation as a
whole and those that focus on specific driving situations
or maneuvers. The approaches presented by [1] and [2]
belong to the former category. In [1] situations are classified
by employing case-based reasoning on a set of predefined
situation prototypes. Encountered situations are subsequently
added to the predefined prototypes, which tackles the usually
high variability of situations but is also prone to harming
the stability of the classification in the long run. In [2] the
authors use description logic for reasoning about the relations
between cars in an intersection scenario. While they report
to successfully infer relations and possible conflicts between
road users, they also mention the high computational effort
required for reasoning.

Significantly more works have been published in the sec-
ond category, the recognition or prediction of specific driving

M. Platho is with Department of Neuroinformatics, Tech-
nical University  of  Ilmenau, D-98684  Ilmenau, Germany
matthias.platho@tu-ilmenau.de

J. Eggert is with Honda Research Institute Europe GmbH, D-63073
Offenbach am Main, Germany jeggert@honda-ri.de

situations. In [3] the current driving situation is assessed in
order to judge the possibility for performing a lane change.
The authors employ a Bayesian Network to enter evidence
about street parameters and surrounding road users and
obtain a recommended action. In [4] maneuvers comprising
two cars like passing’ and ’following’ are recognized using
a combination of Dynamic Bayesian Networks and Hidden
Markov Models. Recognizing driving maneuvers is also the
goal in [5]. The authors define 27 basic maneuvers between
two cars like ’cut in’ or ’following’, that are compactly
modeled using Object-Oriented Bayesian Networks. The
work presented in [6] focuses more on prediction: For two
cars at an intersection their motion trajectories are predicted
in order to foresee possible conflicts.

The approaches of the second category target either high-
way scenarios or limit the number of considered entities
and are therefore not directly applicable to a comprehensive
situation assessment in urban scenarios. The approaches of
the first category are challenged by the high variability and
intricacy of assessing situations. In this paper we propose
to tackle these challenges from two sides: Situations are
decomposed into parts that can be analyzed individually and
are therefore expected to be easier to handle. Additionally,
in order to make the recognition of parts computationally
feasible, we employ an active measurement process based
on computing the mutual information of taking specific mea-
surements. The latter aims at limiting the amount of sensor
measurements taken for correctly identifying a part to the
minimum necessary. The concept of an active measurement
process has already been applied successfully in the field of
robotics [7] and in works on probabilistic sensor fusion [8].

In this paper we present our approach along with an
evaluation demonstrating both its feasibility as well as its
benefits. Section II describes what defines a ’part’ in a
situation and how the decomposition of situations into such
parts is accomplished. In Section III a method for recog-
nizing configurations using Bayesian Networks is presented
and the active measurement process is detailed. Section IV
gives the results of a thorough evaluation of our approach in
simulations and in Section V future research directions for
further enhancing the presented methods are discussed.

II. DECOMPOSING A SITUATION INTO ITS PARTS

Among the most striking challenges for situation assess-
ment are the high complexity and variability of situations
encountered in urban driving. This complexity is especially
given in intersection scenarios, where other road users, traffic
lights and traffic rules have to be considered. Even if an
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intersection situation consists only of a moderate number
of lanes and vehicles as depicted in Figure 1, assessing the
given situation is non-trivial.
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Fig. 1. A typical intersection situation. Although the number of road users
and lanes is quite moderate, the assessment of this situation is non-trivial.

Interpreting the whole situation based on learned proto-
typical situations is hardly feasible, as situations are highly
variable in number, constellation and dynamics of the par-
ticipating entities (cars, pedestrians, traffic lights, etc) and
accordingly the state space is very large. At the same time,
for a given road user not all of the present entities are equally
relevant. E.g. in Figure 1, from the green car’s view, the vehi-
cles waiting at the red traffic lights are currently of no direct
relevance and will thus not affect its immediate behavior.
The entity actually affecting the green car’s behavior most is
the white car in the center of the intersection. The white car
has stopped in order to yield to oncoming traffic and blocks
the green car’s way, which is thereby forced to slow down.

The preceding description suggests that a situation can
be analyzed based on the way the present entities are
interrelated. Instead of interpreting or classifying a situation
as a whole, the individual vehicles are examined to determine
which entities affect their current behavior. This approach
decomposes a situation into multiple parts, with each part
consisting of a road user and all entities affecting its behavior.
We specify such a part in a representation structure that we
term configuration.

A configuration is defined by its participating entities,
the affected entity tagged reference entity and its affecting
entities (currently we consider only one). Additionally the
relations of the entities are specified, which serve as features
for indicating the presence of the configuration. Unary re-
lations describe the dynamic states of the entities, e.g. the
velocity or acceleration of a car or the state of a traffic
light. Binary relations describe relative states between ref-
erence and affecting entity like distance or relative velocity
between vehicles. If in a given situation the relations of two
entities match the relations of a certain configuration, the
entity matching the reference entity is said to be in that
configuration. The configurations used in this paper were
designed by hand; learning them will be part of future work.

An exemplary decomposition of the intersection situation

shown in Figure 1 into basic configurations is depicted in
Figure 2. The white car is about to turn in the upper left
arm of the junction, but has to yield to the approaching
orange car and therefore stops. This case can be described
by a configuration that is tagged “Stopped by intersection”,
with the white car being the affected entity (reference entity)
and the orange car being the affecting entity. Besides road
users also stationary entities like crosswalks and traffic lights
can participate in a configuration. In the given situation, the
blue car has halted because the traffic light for its lane has
turned red. In this “Stopped by red traffic light” configuration
the blue car is the reference entity and the traffic light is
the affecting entity. The third type of configuration present
is “Stopped by leading vehicle”: As already described, the
green car has to slow down as its way is blocked by the
stopped white car. This case also demonstrates that a road
user can be both affecting as well as affected entity at
the same time (but in different instances of configurations).
An entity can even be the reference entity in multiple
configurations at once: A car waiting behind the blue vehicle
would be both stopped by the latter and the red traffic light.

Fig. 2.
configurations. Each configuration contains an affecting and an affected
(reference) entity.

An exemplary decomposition of the intersection situation into

In this exemplary decomposition no configuration was
assigned to the two red cars. The reason is that we currently
only consider configurations that force the reference entity
to slow down or stop. This serves two purposes: First, such
configurations are especially safety-relevant, e.g. anticipating
the breaking of a vehicle helps to avoid rear-end collisions.
Secondly, these behaviors can often be explained by directly
or indirectly measurable causes like a blocking obstacle or
a certain traffic rule. In this sense the red cars are neither
affected by nor affecting any entity and are therefore not
part of any of the introduced configurations.

As configurations specify relational aspects they can be
naturally represented as graphs. In Figure 3 a simplified
sketch of the “Stopped by leading vehicle” configuration is
depicted. The root node provides the label of the configura-
tion; its child nodes denote reference entity and affecting
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entity. Relations are represented as child nodes of their
corresponding entities. In this example the configuration is
present if the reference car is either slowing down (defined in
node “Acceleration”) or stopped (“Velocity”). It furthermore
requires that the leading vehicle is not driving faster than
the reference car (‘“Relative Velocity”) and that they are in a
certain range (‘“Distance”). The actual values are not shown
in the Figure for simplicity.
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Fig. 3. A schematic representation of the configuration “Stopped by leading
vehicle”. It contains both unary relations (Velocity, Acceleration) as well as
binary relations (Relative Velocity, Distance).

ITII. ACTIVE MEASURING FOR CONFIGURATION
RECOGNITION

For recognizing configurations Bayesian Networks [9] are
employed. A Bayesian Network is a probabilistic graphical
model for representing random variables along with their
conditional dependencies in a graph structure. Nodes denote
random variables and directed edges between nodes state
conditional dependencies. Bayesian Networks are widely
used for probabilistic modeling as they possess various
desirable properties. For example, they offer a direct way
to incorporate expert knowledge and are able to cope with
missing evidence. They are especially suited for our approach
since the graphical representation of a configuration can be
almost directly mapped to a Bayesian Network and we can
use its robustness to missing data.

A schematic example of a Bayesian Network for config-
uration recognition is shown in the upper half of Figure
4. Each configuration is modeled as a Bayes classifier,
consisting of a configuration node C),, and a set of features
nodes F),. Each feature node corresponds to a single relation
of the configuration and the configuration node provides
the belief in the presence of the configuration. A single,
superordinated hypothesis node combines the beliefs of all
configuration nodes in one place. The configuration having
the highest probability in the hypothesis node is returned as
result for the regarded road user.

The lower part of Figure 4 depicts the sensor level as it
would be required for a complete recognition system. It is
capable of performing different measurements for perceiving
the environment, each of which requires reading one or
multiple sensors and performing a suitable computation.
Taking a measurement usually generates some kind of costs,
e.g. by blocking an exclusive resource like a pan-and-zoom
camera, occupying a data bus or requiring a demanding
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Fig. 4.  Schematic representation for the relation between high level

and sensor level in a complete system for configuration recognition. The
Bayesian Network in the high level relies on measurements taken in the
sensor level.

computation. Even if no costs are directly generated, at least
a certain amount of time has to be spent to wait for the result.

The high level comprising the Bayesian Network and the
sensor level are only connected in one way: For obtaining
the value of a certain feature in the Bayesian Network the
corresponding measurement has to be taken in the sensor
level. For each individual feature a dedicated measurement
is required. Apart from that, high level and sensor level are
independent.

When comparing the generally marginal computational
costs generated by inference performed in the Bayesian
Network with the costs from measuring a feature, the latter
requires usually significantly more resources. This means
that trading computations in the high level against taking
measurements in the sensor level would be advantageous.
This is indeed possible when employing an active measure-
ment process.

The general idea of such a process is to actively trigger
measurements based on the expected gain for a given task.
The goal is to save measurements by limiting the measure-
ments taken to the necessary ones for a specified level of
performance. When using probabilistic models like Bayesian
Networks the selection of a suitable measurement to take can
be based on its expected mutual information [10]. Employing
this method to situation assessment is an additional step
for dealing with the complexity of situations encountered in
urban driving that complements the decomposition method
described in the previous chapter.

The active measurement process proposed here measures
features sequentially, one after the other, until the probability
of a hypothesis for a certain configuration (including ’No
configuration’) surpasses a predetermined threshold 7. The
process pursues two goals: First, to incrementally gather
evidence in a way that reduces the set of probable hy-
potheses quickly to one. Secondly, to terminate the costly
measurement process as soon as it becomes improbable that
further measurements will improve the current hypothesis.
Its working principle can be summarized in four steps:
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1) Measurement Selection: Evaluate information gain of
yet unobserved features.

2) Observation: Measure the feature which provides the
highest expected information gain, i.e. which is ex-
pected to decrease the uncertainty on the current con-
figuration hypotheses most.

3) Inference: If the belief in the most probable configu-
ration is lower than 7 and not all features have been
measured already, continue with 1, else continue with
4.

4) Result: Return the most probable configuration.

The information gain is determined based on computing
the mutual information I between hypotheses H and features
F;,v € 1,...,n with n being the number of features. The
mutual information I(H; F;) is defined as:

F) = og P )
I(H; Fy) %jifjp(h,fﬂ o D

where p(h) stands for the probability of hypothesis h and
p(f) stands for the probability of F; having value f. The
mutual information provides the expected reduction in en-
tropy of H given an observation of F;. The higher the
mutual information is between two random variables, the
more knowing one tells about the other. In the case of
continuous features either a discretization can be applied,
e.g. using the method presented in [11], or the summation
can be matched with a definite double integral while the
probability distribution functions are replaced by probability
density functions.

The probabilities needed for these computations are pro-
vided by the Bayesian Network, which in turn obtains its
prior and conditional probabilities by parameter estimation
on a set of training cases.

An important aspect that can not be directly seen from
Equation 1 is the fact that the mutual information between
two variables changes if evidence on dependent variables is
entered. So in order to always measure the feature with the
highest information gain the mutual information has to be
recomputed after each observation, as in our Bayesian Net-
work the features are not independent from each other. This
means that the order of measurements has to be determined
online and can not be computed beforehand (offline).

IV. EVALUATION

As the feasibility of decomposing situations into configu-
rations and reliably recognizing them is already demonstrated
in related work [12], this evaluation focuses on quantifying
the benefits of an active measurement process. In order to
test the process we investigate how good it performs on
its two strongly related subtasks: Incrementally increasing
the confidence (belief) of the correct hypothesis with as few
measurements as possible and achieving reliable recognition
rates with also as few measurements as possible. The former
task is important because the confidence is used in the
measurement process as stopping criterion.

For the evaluation a simulated intersection scenario, con-
sisting of a 4-lane major road crossed by a 2-lane minor road,
was set up. The intersection is regulated by traffic lights.
Cars approach from all directions and, depending on their
goal and lane, go straight or turn left or right. The scenario
is simulated in a microscopic simulation framework which
was developed in the course of the research on situation
decomposition; a screenshot of the simulation is shown in
Figure 5. The framework employs standard models for e.g.
car-following [13] and was created in order to gain direct
access to the driver agent level, which is hard to obtain in
most commercial traffic simulators. This access is crucial for
our approach, as for determining whether a configuration was
correctly recognized the information which entities affected
a driver’s behavior is needed.
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Fig. 5. Screenshot from the simulated intersection. The symbol above a
car denotes the configuration it is currently in. Cars without symbols are
accelerating or driving at constant speed.

The data for the evaluation was generated by running
the simulator for about twenty minutes on the intersection
scenario. Every 100 milliseconds the dynamic state of each
present entity was logged, for cars additionally their currently
affecting entities were recorded. Based on the recorded
information, for each car at each recorded time instance a
case was generated, consisting of the measurements of the
configurations’ features and the current configuration. A total
of 142030 cases were generated. For the reported results ten-
fold cross validation was used.

The Bayesian Network used for recognizing configurations
is depicted in Figure 6. Like in the schematic Bayesian
Network described in Section II the configuration nodes (col-
ored green) provide the belief of being in the corresponding
configuration. Each configuration node possesses two unique
features while two features are shared among all configura-
tions: Velocity and Acceleration of the reference entity. The
reason for using these features for all configurations is that
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Probability assigned to correct configuration depending on the number of features measured
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Fig. 7. The plot depicts the different progress of the belief in the correct
configuration for both variants of measurement selection (based on mutual
information versus random). An active measurement process based on
mutual information achieves a high belief already after about half of the
possible measurements.

according to the definition given in Section II the reference
entity in a configuration has to be either braking or stopped,
otherwise it is in no configuration. The topmost node serves
as decision node as it combines the beliefs for the individual
configurations and its most probable hypothesis (including
’No Configuration’) is taken as result.
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Fig. 6. The Bayesian Network that was used for the second mode of the
evaluation. The configuration nodes are colored green. In the network for the
first mode the “Configurations”-node has only 4 states (i.e. the basic states
’StoppedByTrafficLight’, *StoppedByLeadingCar’, *StoppedByIntersection’
and 'NoConfiguration’), but no states for combined configurations.

There are cases in which a car is in multiple configurations
at once ("combined configurations’). Generally, one is inter-
ested only in the determining configuration, which is the one
causing the highest deceleration of the car. For example, if a
car approaches a distant red traffic light at medium speed it
needs to decelerate only slightly. If at the same time a vehicle
directly ahead performs an emergency brake the car is forced
to brake hard. In this case the determining configuration
would be ’StoppedByLeadingCar’. Nevertheless the infor-
mation about the ’StoppedByRedTrafficLight’-configuration
might still be useful later on so recognizing it would be
of additional benefit. This is why all of our following

evaluations are performed in two modes. In mode one the
goal is to recognize only the determining configuration and in
mode two all current configurations, including combinations
of the basic three, have to be recognized.

In order to quantify the gain from measuring features in-
crementally based on their mutual information, an additional
method was employed for comparison, where the sequential
order of measurements is determined randomly.

Belief in correct configuration

In this part of the evaluation the benefits of the proposed
active measurement process Over a measurement process
with a random sequential feature selection are investigated.
The expectation is that the active measurement process
achieves a high belief in the correct configuration at an
early stage with much fewer measurements. The results are
shown in Figure 7. The x-axis refers to the number of
measurements taken, the y-axis refers to the belief in the
correct configuration.

For both modes the measurement selection based on
mutual information leads to significantly higher beliefs in

the correct configuration than the random selection does -
up to 20% points. When employing the random selection

process the belief tops 80 percent not until 5 (mode 1)
or 6 (mode 2) measurements have been taken. Opposed
to that, the process guided by information gain tops it
after only 3 (3) measurements. The proposed measurement
process thereby proves to obtain a higher confidence in the
correct configuration than the random process while taking
significantly less measurements.

Recognition rates

The next question to investigate is whether the incre-
mental, active measurement process can reliably recognize
configurations while measuring only a subset of the available
features. Figure 8 depicts the results: The x-axis refers again
to the number of measurements taken and the y-axis gives
the percentage of correctly recognized configurations.

Using mutual information as selection criterion results in
a steep increase of the recognition rate as compared to the
gradual increase of random selection. After taking only three
measurements the recognition rate for both modes surpasses
90% when feature selection is based on expected information
gain, while the random process obtains less than 80%.
Employing an incremental measuring process thereby saves
measuring more than half of the features without impairing
the recognition rate more than 1.5% points.

V. DISCUSSION AND FUTURE WORK

The results presented in this paper demonstrate the gain
from employing an active measurement process, as it vastly
reduces the effort for recognizing configurations. Config-
urations in turn provide a way to decompose situations
into their constituent parts. Put together, these two methods
provide a viable approach for tackling the high complexity
and variability of situations encountered in inner-city sce-
narios by systematically reducing the computational effort
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Recognition rate depending on the number of features measured

work. One major research target will be to predict the
progress of a situation based on recognized configurations.
A potential approach could consist of two parts: A method to
anticipate when a road user will enter or leave a configuration
and a method for ’linking’ existing configurations in order to
incorporate indirect interrelations. Linking means to consider
transitivity in configurations: If vehicle A affects vehicle
B, and vehicle B affects vehicle C, then C is indirectly
related to A. We expect that these methods will provide a
more comprehensive understanding of a given situation and
accomplish a major step towards building a driver assistance
system for inner-city driving.
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Fig. 8. This plot compares the recognition rates achieved after measuring

one to eight features when selecting the order of measurements either
based on mutual information or randomly. It shows that the active mea-
surement process (mutual information) achieves reliable recognition rates
when measuring only three features. Interestingly, the recognition rate in
mode 2 (mutual information) drops after taking 5 measurements. A possible
explanation is that some features are unreliable, but this has to be further
investigated.

needed for situation assessment. The active measurement
process facilitates an incremental recognition of a road user’s
configurations, while recognizing configurations allows for
incrementally building up an understanding of the current
situation.

In future work, the active measurement process will be
further extended to circumvent testing configurations on
all pairs of entities. Instead, based on feature priors only
reasonable pairs should be examined.

The evaluation was performed in a simulation frame-
work, where erroneous sensor measurements are not yet
considered. In order to achieve a sufficient robustness to
sensor noise as required by a real-world system, multiple ap-
proaches will be investigated, e.g. modeling sensor readings
probabilistically or enabling the detection of conflicting mea-
surements, which can also be accomplished in the Bayesian
Network framework currently used.

At this stage, the approach answers solely the question
"Who is affected by what?’. Nevertheless, this provides a
basis for situation assessment, that will be build on in future
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