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Abstract— With the trend to highly automated driving, future
driver assistance systems are required to correctly assess even
complex traffic situations and to predict their progress. As soon
as other road users are present the number of possible situations
becomes infinite, rendering their assessment based on learned
situation types impossible. In this paper we propose to break the
situation down into sets of interrelated entities by estimating
for each road user the entities that affect its behavior most.
The decomposition offers numerous advantages: Attention can
be focused on relevant entities only and predictions can be
performed with a smaller set of considered entities. As the
high variability among situations requires a large amount of
data for learning and testing, we implemented a simulation
environment that gives access to the causes for the behavior of
each road user. In a simulated intersection scenario we show
that we can reliably infer the affecting entities for each road
user only utilizing features that can be obtained by common
sensors.

I. INTRODUCTION

Correctly assessing the situation in which a car is currently
involved in is an important requirement for advanced driver
assistance systems. Especially when driving in an urban
environment there is a wide variety of entities that need to
be considered, like cars, traffic lights or pedestrians. For the
interpretation of the current situation both the constellation
and the dynamic state of these entities has to be taken
into account. The high complexity of situations makes their
assessment both challenging and computationally expensive
which is exacerbated when also the prediction of future
behavior of other road users is targeted.

In recent years there has been an increasing interest in
the field of situation recognition and behavior prediction
in traffic scenarios. A possible discerning property for the
approaches is whether they aim at interpreting a situation
as a whole or specialize on detecting a certain behavior.
The goal to interpret a situation as a whole was pursued
e.g. in [1] and [2]. In [1] case-based reasoning is employed
in order to store a basic set of situations in memory and
match new situations to it. The approach offers the ability to
continuously extend the memory with encountered situations,
but struggles with maintaining stability in the face of the
unlimited number of possible situations. The authors of
[2] focus on an intersection scenario, in which they use
description logic for reasoning about the relations between
cars. While they succeed to infer the relations and possible
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conflicts between road users, they report a high computation
effort for the reasoning process.

A larger number of publications deal with approaches that
specialize on detecting particular maneuvers or behaviors
([3], [4], [5], [6], [7], [8], [9]). In this field probabilistic
modeling is widely used, ranging from particle filters to
Object-Oriented Bayesian Networks. The approaches target
either at predicting a single behavior ([3], [6], [9]), addi-
tionally recommending one [4] or recognizing one out of
multiple maneuvers ([7], [5], [8]). In [3] an approach for
recognizing and predicting situations involving two vehicles
at an intersection is presented. Using particle filters possible
conflicts can be predicted up to two seconds in advance,
but the approach is limited to two vehicles only. In the
work of [6] an upcoming overtake scenario is predicted up
to one second in advance. This is accomplished by using
Dynamic Bayesian Networks that are learned and tested in a
simulator environment. In [4] the opposite goal is pursued:
Using a Bayesian Network the current situation is assessed
for judging the possibility to perform a lane change.

The authors of [7] use Hidden Markov Models for rec-
ognizing one of multiple maneuvers, namely “passing”,
“aborted passing” and “following”. One of the drawbacks
of their approach is its sensitivity to the way the situation is
temporally segmented and normalized. Recognizing an even
higher number of driving maneuvers is the goal of the work
presented in [5]. Using Object-Oriented Bayesian Networks
the relative movement and position between two vehicles is
categorized into 27 maneuvers like “cut-in” or “cut-out”. The
approach is tailored to highway scenarios, which is also the
focus of [8]. In that work behavior recognition is combined
with trajectory prediction for driving modes like “free ride”
or “following” and overtake maneuvers.

The cited works show that there are various approaches
for situation assessment and behavior recognition that differ
in their emphasis of either the descriptive or the predictive
aspect in their method. The predictive methods assume that
the relevant entities that need to be incorporated - e.g.
cars possibly causing a conflict - are known or can be
extracted easily from the context. This holds true if the
scenario is artificially limited to a certain number of entities
or if it is at least partially constrained, like in a highway
scenario. However, for driving in inner-city the complexity
of situations is dramatically increased. One common solution
to over boarding complexity is to divide the problem into
parts that can be managed more easily. A possible application
to the problem of situation assessment is to group entities
that depend on each other via a cause-effect relationship.
For a given road user this would mean to determine all
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the other entities that have a significant influence on its
behavior. We propose to decompose complex situations into
(overlapping) sets each consisting of a road user and the
entities affecting it. The decomposition does not only help
to deal with complex situations but can also be used as a
preprocessing step for further computations: It allows for
limiting the entities subject to prediction to the relevant ones
and provides a way to guide attention.

In this paper we show the feasibility of our approach and
how such interrelated sets can be specified using Bayesian
Networks. In order to obtain the required data for a quantita-
tive evaluation we made use of a traffic simulator, for which
we developed an agent model that controls the vehicles.
This step became necessary as in standard traffic simulators
the information about which entity triggered a road user’s
behavior can hardly be extracted, while our implementation
was designed explicitly for this purpose. In Section II we
detail on the implementation of the agent model, while in
Section III we explain our method for modeling sets of
interrelated entities. In Section IV we present the results
of our evaluation and in Section V we give an outlook on
extensions and future work.

II. DRIVER AGENT DESIGN
In order to develop and evaluate methods for situation

recognition in traffic scenes a significant amount of data is
needed. While it is possible to record videos of busy streets
and intersections and label them using tracking methods and
manual refinement, this process is both time-consuming and
cumbersome. Further drawbacks are the need for repeating
this procedure whenever a different street topology should
be tested and the missing guarantee to record exactly the
situations one is interested in. As long as the focus of
research is more in the direction of developing the basic
methodology rather than an exact parameterization for a
specific real-world application, the use of a traffic simulator
lends itself for data generation.

In the field of traffic engineering traffic simulators are
important tools for designing roadways in a safe and efficient
manner. That is why there are a multitude of commercially
available traffic simulators like VISSIM, PARAMICS and
AIMSUN, that either work on a macroscopic or microscopic
level. Macroscopic traffic simulators describe traffic in an
averaged way using flow and density. Microscopic traffic
simulators (MTS) in turn simulate each entity (e.g. cars,
trucks, pedestrians) individually and thus provide data for
individual road user behavior. Most of the commercially
available MTS claim to model all of their simulated types of
entities as sophisticated agents [10], and that these models
have been successfully evaluated with real traffic. Unfortu-
nately, in many cases these simulators provide only limited
access to the entity level for extracting the causes for the
current behavior of an agent. As this information is crucial
for our approach, we have implemented our own agent model
that allows for the desired introspection. The implementation

uses standard models for vehicle behavior. In the following
we will detail on the implementation, as it is the basis for
all the data generated for learning and testing.

Vehicles - or more precisely: their drivers - are modeled as
autonomous agents. This means that they actively perceive
their environment, base their behavior planning on the infor-
mation obtained and finally act according to their collected
information. Also in situations where cooperation between
vehicles is needed (e.g. at an unsignalized intersection) each
agent acts independently without using a central coordinating
instance.

The agent possesses the capabilities for avoiding colli-
sions, keeping a safe distance (car-following) to the nearest
leading vehicle in the same lane, adhering to traffic lights
and crossing intersections while obeying right of way. In
order to choose the appropriate behavior it senses obstacles,
traffic lights, vehicles and intersections in a limited sensor
range and determines its driving mode accordingly. If the
agent detects no relevant entities in its range it accelerates to
the permitted speed. It is possible that a vehicle encounters a
situation where multiple behaviors could be applied but their
required actions differ significantly, for example a distant
traffic light turns red (low deceleration) while the leading
vehicle stops abruptly (high deceleration). In such cases the
agent acts conservatively choosing the behavior that requires
the highest deceleration.

The car-following behavior is based on the linear model
proposed by Helly [11], which has also been used in the
MTS SITRA-B+ [12]. This behavior requires that the leading
vehicle is less than the agent’s specific reaction range for
car-following ρf ahead. The mathematical formulation (as
adapted from [13]) for each car is:

a(t) = C1∆v(t− T ) + C2∆x(t− T )−D(t) (1)

D(t) = α+ βv(t− T ) + γa(t− T ) (2)

where

a(t) is the acceleration of the regarded vehi-
cle at time t

D(t) is the desired following distance to the
nearest leading vehicle in front of it

v is the speed of the vehicle
∆x is the relative distance between the re-

garded vehicle and the leading vehicle
∆v is the relative speed between the re-

garded vehicle and the leading vehicle
T is the driver reaction time
α, β, γ, C1, C2 are (vehicle-specific) calibration con-

stants

The merits of this model are its reported good fit to
observed data [13] and the direct real-world correspondence
of its calibration constants. For example, the constant α
corresponds to the desired minimum distance to the leading
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car and β is the factor for the desired velocity-dependent
distance.

When approaching a red traffic light the agent performs
a steady deceleration that brings the car to a stop near
the traffic light’s stopping line. For triggering this braking
maneuver the traffic light has to be in the agent’s perception
range ρt. The strength of the deceleration is computed as
follows:

a = −1

2

v2

∆x
if ∆x < ρt (3)

where

a is the proposed deceleration
v is the current speed of the vehicle
∆x is the relative distance between the regarded

vehicle and the nearest stopping line on its
lane and direction

The behavior for crossing an intersection is the agent’s
most complex one. The vehicle’s speed has to be low-
ered during approaching when the intersection is currently
blocked or will be blocked shortly. The agent has to consider
whether it is driving on a major or minor road and which
lanes it will occupy during crossing. Based on this informa-
tion a prediction of the behavior of other approaching vehi-
cles has to be performed for identifying possible conflicts.
The goal of all these considerations is to detect the next safe
gap at which the intersection is free, allowing the vehicle
to cross the intersection without interfering with other road
users. The agent judges a gap as sufficient if the time for
crossing plus a safety margin εs is smaller than the time the
intersection is estimated to be vacant.

As mentioned above all agents are consistently imple-
mented as individual, autonomous entities. Advantages of
this approach are for example that it matches the way it
works in the real world and that it enables a certain degree
of emergence, such that the overall behavior of all vehicles
differs from the sum of individual behaviors. The variability
of the situations created by the agents is further increased
by the fact that the parameters of the behaviors are varied
between each agent.

The agents are deployed in a simulation environment
that provides the roadways, switching of traffic lights and
recording ability. During a simulation the dynamic states
of all entities and the behavioral states of all agents are
recorded. In addition, the information why an agent chose
its behavior is also recorded. This ability was, as mentioned
earlier, the main motivation for implementing an own agent
model.

III. RECOGNITION OF RELATED ENTITIES

Our approach aims at decomposing a traffic situation into
sets of related entities in order to obtain an understanding

which road user is affected by what. This understanding can
also be seen as a preprocessing step for attention control
or prediction processes. When knowing that the leading
vehicle’s behavior is mainly determined by a car on a
crossing major road then attention can be focused on this car.
The same holds true for prediction processes: a prediction
module can limit the considered entities to the relevant ones
and thus save computational resources.

For specifying prototypical combinations of a reference
entity and its affecting entities we use a representation that
we term configuration. A configuration is defined by its par-
ticipating entities along with the information how the entities
have to be related to indicate the configuration’s presence.
The relations can specify the dynamic state of an individual
entity (unary relations) or relative states between multiple
entities (k-ary relations). Examples for unary relations are
the state of a traffic light or the current acceleration of a
car; examples for k-ary (e.g. 2-ary) relations are the relative
distance or velocity between vehicles. When the relations
of a reference entity and another entity match that of a
certain configuration, the reference entity is said to be in
that configuration. This is equivalent to the information that
the reference entity is affected by the other entities. In this
paper configurations consist of only a single affecting entity,
but this is not a limitation of the method.

The configurations we are aiming to recognize are the
ones leading to interesting behavior. We consider driving
at or accelerating to a road’s permitted speed as normal
behavior, while considering significantly slowing down or
stopping as interesting behavior. Deceleration is of special
interest because it is both safety-relevant and can usually
be explained from the situation (e.g. blocking obstacle, red
traffic light, crossing tram).

The three configurations used in this paper were hand-
crafted according to these considerations and with regards
to the entities simulated by the framework described in
Section II. In order to limit the need for expert knowledge
to a minimum, learning configurations from data, whether
obtained from simulations or taken from the real world, is a
topic of ongoing research.

An exemplary decomposition of a schematic situation is
shown in Figure 1. It depicts a typical traffic situation at
a signalized T-junction. The red car is about to turn in the
upper left arm of the intersection, but has to yield to the
approaching blue car and therefore stops. This case can
be described by a configuration that is tagged “Stopped
by intersection”, where the red car is the affected entity
(reference entity) and the blue car is the affecting entity.
Not only road users participate in configurations, but also
stationary elements like traffic lights or crosswalks. For
example the white car has stopped because the traffic light
on its lane is red, thus creating a “Stopped by Red Traffic
Light”-configuration that uses a traffic light entity. Another
important aspect is that a road user can be both affecting
as well as affected entity at the same time (but in different
instances of configurations). In the presented example the
green vehicle has to slow down because the red car blocks
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its path, making the red car thereby additionally to its role as
reference entity in the intersection configuration an affecting
entity in a “Stopped by Leading Vehicle”-configuration. It
is also possible that a vehicle is the reference entity in two
configurations at once: A vehicle waiting behind the white
car would be blocked by both the traffic light and its leading
car. Note that in the following we abbreviate “entity X is
the reference entity in configuration Y” by “entity X is in
configuration Y” for better readability.

Fig. 1. A traffic situation with various present configurations.

A configuration can be most naturally represented by a
graph, a simplified example is shown in Figure 2. It specifies
a “Stopped by leading car“ configuration where two cars are
driving one after another and the leading car’s velocity forces
the following one to slow down or even stop. The root of
a configuration yields its label; entities are represented as
rectangular nodes while relations are denoted by rounded
nodes. In the example the reference entity is the car that is
forced to slow down as it is blocked by the leading car. The
presence of the configuration is indicated by the fact that the
following car is either stopped or decelerating, represented
by the nodes Velocity and Acceleration, respectively. Further
indicators are that the leading car is slower (Relative Velocity)
and that it is within a certain range (Distance) to the
reference car. Note that the actual values of the relations
are not shown in the Figure for simplicity.

For learning and recognizing configurations we use
Bayesian Networks [14]. A Bayesian Network is a directed
acyclic graph that represents a set of random variables.
Random variables are represented by nodes while edges
denote probabilistic dependencies between them. We chose
Bayesian Networks as it is a well-researched method for
modeling probabilistic processes and allows for considering
sensor noise and classifier confidence. Bayesian Networks
furthermore provide an intuitive representation of probabilis-
tic dependencies and have the ability to cope with incomplete
evidence. Additionally, configurations as those shown in
Figure 2 can be mapped to Bayesian Networks without
significant changes.

Fig. 2. A schematic representation of the configuration “Stopped by leading
car”. It contains both unary relations (Velocity, Acceleration) as well as
binary relations (Relative Velocity, Distance).

IV. EVALUATION

In order to verify the feasibility of our approach, we set
up an intersection scenario in which we simulated traffic
consisting of vehicles that were controlled by the agents
described in Section II. The intersection consists of two
crossing roads; one of them is a major road having two lanes
in both directions (see Figure 3). The other one is a minor
road with only one lane in each direction. The intersection
is signalized by traffic lights. Cars approach the intersection
from all incoming lanes, on average there are always about
fifteen cars around the intersection.

Fig. 3. Screenshot from the simulated intersection. The symbol above a
car denotes the configuration it is currently in. Cars without symbols are
accelerating or driving at constant speed.

The goal was to recognize for each car the configuration it
is currently involved in. We used three basic configurations,
namely “Stopped by red traffic light” (TL), “Stopped by
leading car” (LC) and “Stopped by intersection” (IS). The
last mentioned configuration is present when a car has to
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slow down or stop because it has to yield right of way
to another road user. In case a car was currently in no
configuration, this should be recognized as well.

Since the different configurations share several of their
relation nodes, all three configurations were incorporated in
a single Bayesian Network, that computes for a given car
the probabilities for being in a configuration (see Figure 4).
Assembling all configurations in a single network introduces
additional conditional probabilities but in return it allows
normalizing the beliefs in the configurations directly. Each
configuration is modeled as Bayes classifier, where the class
variable denotes the probability of being in that particular
configuration. The feature variables are designed to match
the configuration’s relations. Each classifier possesses four
feature nodes, two of which appear in all configurations,
namely the Velocity and Acceleration of the reference car.
These nodes are required by all configurations as they test
whether a configuration is present at all, because it requires
the reference car to be decelerating or stopped by definition
(since we are only interested in these behaviors, see Section
III). Continuous features were discretized into at most five
intervals, after pre-tests had shown that the obtained speed-
up in relation to continuous modeling outweighs the small
loss in recognition performance.

Fig. 4. The Bayesian Network that was used for the second mode of the
evaluation. In the network for the first mode the “Configurations”-node has
no states for combined configurations. The class nodes are colored green.

The evaluation was performed in two different modes. For
both modes we tried to identify for each car present in the
scene its current configuration. The difference between these
two modes was the way how cases were treated in which a
car was in multiple configurations at once. In the first mode
we tried to identify for each car only the configuration affect-
ing the agent’s behavior, while in the second mode we tried to
recognize all current configurations. The difference between
these two modes becomes clear, when remembering that a
vehicle can be in multiple configurations at once. While only
the most influential affects the agent’s behavior, the others
can theoretically still be recognized from their relations. We
observed that two combinations of configurations - although
possible in theory - did not occur in the data generated.
These combinations are the joint appearance of “Stopped
by leading car” and “Stopped by Intersection” (LC+IS) and
the combination of all configurations at once (TL+LC+IS).

TABLE I
CONFUSION MATRIX FOR RECOGNIZING THE MOST RELEVANT

CONFIGURATION FOR EACH CAR.

TL LC IS None ← Measured/Actual ↓
30530 792 17 241 TL

293 25481 1185 0 LC
0 30 1184 0 IS
0 355 138 81784 None

Nevertheless these combinations were kept as distractors for
the recognition evaluation.

The data generation for the evaluation was accomplished
using the agents within our simulation environment, as intro-
duced in Section II. The simulations recorded the dynamic
state, the agent’s behavior and the entities affecting it every
0.1 seconds. The simulation was run for about 20 minutes.
For each car at each recorded time instance a case was gen-
erated, containing the measurements for all of the mentioned
features, yielding a total of 142030 cases. These cases were
then randomly distributed in ten partitions of equal size in
order to perform a 10-fold cross validation. In each fold,
the conditional probabilities of the Bayesian Network were
learned using Expectation Maximization [15] on the training
data. The reported recognition rates are the averaged results
on all ten partitions. The presented confusion matrices were
obtained by summing the confusion matrices of all partitions.

In the first mode, where only the most relevant configura-
tion had to be recognized, a recognition accuracy of 97.9%
was achieved. The corresponding confusion matrix is given
in Table I. The confusion matrix has high values on the main
diagonal showing a high accuracy for recognizing each of the
configurations.

In the second mode, where all current configurations of
a car had to be recognized, still a recognition accuracy
of 94.2% was achieved. Table II depicts the corresponding
confusion matrix. It shows that in 17581 cases a vehicle was
both affected by a traffic light and a leading car (TL+LC)
at the same time, of which 14558 were recognized correctly,
yielding an accuracy of about 83%. The combination TL+IS
occurred in only 140 cases, but was nevertheless correctly
recognized 95 times.

Errors in the recognition are mainly a result of the low
number of features used, which complicates recognizing
ambiguous situations. Such a situation arises for example if
two cars approach an intersection and the leading one starts
braking to give way to a car on a major road. Then it can be
hard to discern whether the following car brakes because of
leading (“Stopped by leading car”) or crossing car (“Stopped
by Intersection”).

In both runs configurations were reliably detected. The
results obtained confirm the feasibility of our approach;
however, the effect of noisy measurements has still to be
investigated. As recognizing a configuration is equivalent to
determining the affecting entities of a road user, the results
show that in the given scenario a complex traffic situation
was successfully decomposed into its related entities. While
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TABLE II
CONFUSION MATRIX FOR RECOGNIZING ALL CONFIGURATIONS FOR EACH CAR.

TL LC IS TL+LC TL+IS LC+IS TL+LC+IS None ← Measured/Actual ↓
26444 0 17 171 2405 0 27 241 TL

0 9867 1065 5 0 738 0 19 LC
0 17 1194 0 0 19 0 0 IS

1465 0 0 14558 205 0 1353 0 TL+LC
45 0 0 0 95 0 0 0 TL+IS
0 0 0 0 0 0 0 0 LC+IS
0 0 0 0 0 0 0 0 TL+LC+IS
0 187 123 65 0 5 19 81681 None

this provides a basis for understanding a situation, we are
going to detail in the next section how we plan to build on
this knowledge.

V. CONCLUSIONS AND FUTURE WORK

In this paper an approach for assessing complex traffic
situations in urban environments has been presented. We
propose to decompose a situation into sets, each consisting
of a road user and its affecting entities. These sets termed
configurations can be modeled as graphs, specifying the
participating entities, their states and their relations that have
to be matched to indicate the presence of the configuration.
The graphical specification of a configuration can be directly
mapped to a Bayesian Network that we employ for learning
and recognizing configurations in traffic scenes. In order to
generate sufficient amounts of data for learning and testing
that also includes the information about which road user is
affected by what we have implemented a driver agent for
use in a traffic simulator. In a simulated complex intersection
scenario we are able to recognize the configurations a vehicle
is involved in with an accuracy of up to 97.9%. Recognizing
the configurations of road users provides an elementary
understanding of a situation, which we are targeting to
exploit in future works, e.g. for predicting the evolution of
a situation.

We are aware that there are classifiers that are simpler
or more powerful than Bayesian Networks, but one reason
for using them in this evaluation is that they can be directly
created from a configuration specification. Furthermore, their
properties play an important role in future extensions of our
approach. In order to be more robust against sensor noise,
measurements will be modeled probabilistically, considering
uncertainties and expected noise. Additionally, we investigate
how the recognition of configurations can be performed in an
incremental manner, instead of testing each road user against
each entity, which scales quadratically. For this purpose, we
target that our system selects measurements of features based
on their expected information gain, which can be directly
computed in a probabilistic model. It is investigated how
this can be used to discard improbable configurations early

in the recognition process and save a significant amount of
measurements.
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